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EXTENSION OF REPRESENTATIONS OF THE CLASSICAL GROUPS
TO REPRESENT A nONS OF CA TEGORIES

YU. A. NERETIN

ABSTRACT. It is shown that with each series An, Bn, Cn, Dn ofthe complex classical
Lie groups a certain category GA, B, C, D is connected in a natural fashion. A finite-
dimensional representation of any classical group extends to a representation of the
corresponding category. It is proved that the representations of the categories GA,
B, C, D can be indexed by a set of numerical markers on infinite Dynkin diagrams.
Similar assertions are obtained für infinite-dimensional representations with highest
weight of the groups U(p, q), Sp(2n, R.) , and SO*(2n). There is also adefinition
given für a morphism of noncompact symmetric spates, and natural categories are
constructed that are connected with all the series of real classical groups.

We layout in this paper a new point of view für certain classical objects in rep-
resentation theory (finite-dimensional representations of the classical groups and the
symmetric groups, infinite-dimensional representations of Lie groups with highest
weight). Specifically, we show that the classical groups ofany one series (An, Bn, Cn,
Dn) hut of different rank combine in a natural fashion into certain categories, and
the theory of representations of all the groups of any one series becomes the theory of
representations of the corresponding category. It is curious that these facts, which it
would seem could have been discovered 50 years ago, have been noticed only recently
(see [1]-[3]), from the "eminence" of representation theory für infinite-dimensional
groups.

In [4] and [5] the point of view is expressed that the representations of an infinite-
dimensional group are in fact representations of a considerably larger, and to the
naked eye invisible, semigroup. More recently [1 ]-[3] it has become clear that in
many interesting cases these semigroups (which have proved to be a very effective
instrument für dealing with the original groups corresponding to them) consist of lin-
ear relations (i.e., of operators that are possibly not everywhere defined, and possibly
multivalued, hut are in a11 other respects linear). Furthermore, it has tumed out that
the formulas für the operators in a representation can be written so as to apply also
to linear relations between various spaces; i.e~, it has tumed out that we are dealing
with representations of categories.

When it became clear that linear operators and linear relations are of more or less
equal status as rar as concems representation theory für infinite-dimensional groups,
the question natura11y arose of the finite-dimensional case. This is the question ex-
plored in the present paper. In §§2 and 3 we consider the finite-dimensional represen-
tations of the classical groups; in §4, the representations of the groups U (p, q) with
highest weight; in §5, the categories connected with the real classical groups; and in
§6, those connected with finite groups. In § 1 we illustrate, by exhibiting the simplest
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§l. EXAMPLE: THE CATEGORY Op

Our paper contains a number of classification theorems für the representation of
categories. All the proofs have a generic trivial part. In this section we examine the
simplest case, where the proof reduces entirely to this "generic part". The results
of this section can hardly be called new, although they seem not to have previously
received any explicit formulation.

1.0. Notation. Let % be a category, and let V and W be objects in it. We denote
by Mor%( V, W) = Mor( V, W) the set of morphisms V -+ W. In addition, by
r%(V) = r(V) we mean the semigroup Mor(V, V), and by f'i>%(V) the set of
invertible elements of r % (V) .

1.1. Tbe category Op and its representations. The objects in Op are the finite-
dimensional complex linear spaces, and the morphisms are the linear operators. We
are interested in the representations T = (T, T) ofthis category Op, i.e., the functors
from Op to itself. Thus, für each linear space V (i.e., object in Op) we rollst con-
struct a finite-dimensional linear space T(V), and für each operator A: V -+ W an
operator T(A): T(V) -+ T(W) such that T(AB) = T(A)T(B) whenever the product
AB is meaningful. We restrict ourselves to holomorphic representations; i.e., we shall
suppose that A -+ T(A) is a holomorphic operator-valued function on Mor(V, W).
The definitions of subrepresentation, irreducible representation, direct SUfi of rep-
resentations, and tensor product of representations are entirely obvious, and will
be omitted. Let us state, however, the definition of a morphism of representations
(an "intertwining transformation") (T, T) -+ (T', T'). This is a set of operators
Sv: T( V) -+ T' (V) such that für any A E Mor( V, W) the diagram

T(V) -~ T(W)

Sv Sw

-r'(A)
IT'(V) T'(W)

is commutative.
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We give also the definition of cyclic huf/. Let L be a sub set of T(V). In each
space T(W) consider the subspace H(W) spanned by all the vectors of the form
-c( Q)v , where v E L, Q E Mor( V, W). It is easily seen that the set of subspaces
H( W) defines a subrepresentation in T, which we call the "cyclic hüll of L".

Let T = (T, -c) be a representation ofOp. Then in every space T(V) there is an
action of the group Ii>(V) = GL(V) :) SL(V) and, more than that, of the semigroup
r( V) of all operators V -.V. These representations of the groups SL( V) and
GL( V), and of the semigroup r( V), will be called representations subordinate to
the representation T of the category Op.

Lemma 1.1. a) A representation -c ofthe group GL(n, C) has at most one continuous
extension -c' to a representation of the semigroup r( cn). If -c is reducib/e, so is -c'.

b) A holomorphic irreducible representation -c of the group GL( n , C) extends by
continuity to a representation of the semigroup r( cn) if and only if -c is po/ynomial.

We recall that a representation of GL(V) is called polynomia/ if all its matrix
elements are polynomials in the elements of the corresponding matrices g E GL( V) .
Polynomial representations of GL( V) are completely reducible. All the irreducible
polynomial representations of GL( V) can be realized in the contravariant tensors
over the identity representation.

Proof. a) GL(n, C) is dense in r(cn).
b) If -c is not polynomial, then it cannot be extended by continuity even to the

multiplicative semigroup of all diagonal matrices. 8

Lemma 1.2. Let (T, -c) be an irreducible representation ofthe category Op. Then all
the subordinate representations -Cn ofthe groups GL(n, C) are irreducible.

Proof. Let Q be a proper GL(n, C)-invariant subspace in T(cn). Then the cyclic
hüll of the subspace Q is a subrepresentation in T different from T itself. 8

1.2. Schur-Weft duality. Let L = (L, J..) be the identity representation of the cate-
gory Op. Consider its nth tensor power Li&>n. In each space L(V)i&>n there is defined
an action, by permutation of factors, of the symmetric group Sn. Clearly, this ac-
tion commutes with any operator J..(p)i&>n, where P is a morphism in Op; i.e., each
element g E Sn determines an intertwining transformation u(g): Li&>n -.Li&>n .

Proposition 1.1. a) Any Sn-intertwining operator L(V)i&>n -.L(W)i&>n is a linear com-
bination of operators of the form J..( P), where P E Mor( V, W).

b) Any intertwining transformation Li&>n -.Li&>n is a linear combination ofinter-
twining transformations ofthe form u(g), where gE Sn.

(This is an obvious corollary of the usual Schur-Weyl duality theorem.)

1.3. The classification theorem. It is reasonable to expect that all the representations
of the category Op are weIl known, and that they are an realized in tensors over the
identity representation. This is indeed the tage.

Proposition 1.2. a) The holomorphic representations of the category Op are completely
reducible.

b) All the irreducible holomorphic representations T = (T, T) ofOp can be indexed
by diagrams 0/ the form

a( a2 a) a4
0 0 0 Q

where the markers a j are nonnegative integers, with only finitely many different [rom
O. Let au be the rightmost nonzero marker. 1[ n ~ a -1 (sic!) , then the subordinate
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representation of the group SL(n, C) has the markers a},..., an on the Dynkin
diagram of type An. If n < Q -1, then the subordinate representation of SL(n, C)
is zero-dimensional.

Remark. The representation with the markers aj is contained in the (Eaj)th tensor
power of the identity representation of Op. More precisely, it is realized in the tensors
corresponding to the Young diagram with rows of length a}, a2, ...(see [9]).

Lemma 1.3. Let T = (T, T) and T' = (T', T') be two irreducible representations oJ
the category Op; and suppose thaI Jor same V the corresponding subordinate repre-
sentations oJ the group GL( V) are nonzero and equivalent. Then T = T'.

ProoJ oJ the lemma. Consider the representation T EI:) T'. In T( V) EI:) T' (V) choose
an invariant subspace other than the two direct summands, and consider its cyclic
hüll H c T EI:) T'. Then it is easily seen that für any W the subspace H(W) is
the graph of an operator S w: T (W) -T' (W). This set of operators determines an
equivalence between the representations. 8

Proof of Proposition 1.2. b) Thus, a representation (T, T) is completely determined
by its subordinate representations. To prove Proposition 1.2b) it remains only to
verirr that no other irreducible representations than those realized in tensors over the
identity representation can exist für the category ap. But in fact any representation
of any semigroup r( V) is subordinate to some one of the tensor representations of
ap.

We come now to Proposition 1.2a). Let T be a representation of ap. We show
first that T contains an irreducible subrepresentation. Choose a minimal n such
that the representation of the semigroup r(cn) subordinate to the representation
T is nonzero. In the space T(cn) pick an irreducible subrepresentation M of
r(cn), and consider its "cyclic hull" (S, a) under the action of ap. We show that
the representation S is irreducible. In s(cm), where m > n, consider the set L
of all vectors I such that a(R)1 = 0 für all R E Mor(cm, cn). Suppose L =
s(cm). Anyelement X of the semigroup r(cn) can be written X = YZU, where
U E Mor(cn, cm), Z E Mor(cm, cm), Y = Mor(cm, cn). By our assumption,
a(Y) = 0, so that a(X) = 0 für any XE r(cn). Contradiction.

Thus, L # s(cm). Choose any invariant complement N to L in s(cm), and
consider the cyclic hüll of N with respect to ap. Clearly, this cyclic hüll contains
M = s{cn), and so must coincide with S. Hence N = s(cm). This proves the
existence of irreducible subrepresentations. .

Now let V be aspace of smallest dimension n für which T( V) # o. Let S be
an irreducible subrepresentation in T. In T( V) choose a subspace R( V) comple-
mentary to S( V) and invariant with respect to GL( V). Let R be the cyclic hüll of
R(V). Clearly, für any space W we have R(W)nS(W) = 0 (otherwise S would be
reducible). It may be, however, that R(W) EB S(W) # T(W). Let W be the space
of minimal dimension für which this is so. In T(W) choose a subspace R'(W)
invariant with respect to GL(W), complementary to S(W), and containing R(W).
Consider the cyclic hüll R' of R' (W) , etc. We obtain in this fashion an increasing
sequence R, R' , R", R"', ...of subrepresentations in T. Then their union, by
construction, is an invariant complement to S.

,4. 

Commentary.

Remark 1. This proof of the classification theorem (Proposition 1.2) has three main
elements:

a) We describe all the representations of the semigroup r(cn) (Lemma 1.1).
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b) We provide ourselves with a stock of representations of the category Op such
that any representation of any semigroup r(cn) is subordinate to at least one of the
representations in OUT stock.

c) We show that any one representation of r(Cn) cannot be subordinate to two
different representations of Op (Lemma 1.3).

This scheme will recur repeatedly in what foliows. For now, we note only that in
the case of projective representations the analogues of Lemma 1.3 may not prove to
be so simple.

Remark 2. By the N-kernel of a representation (T, -r) we mean the set of all mor-
phisms A such that -r(A) = 0 (using the letter N to avoid mistakenly thinking that
-r(A) = 1). We call the representation N-faithful ifthe N-kernel consists ofthe zero
operators OnlY' For a representation with markers al, ..., the N -kernel consists of
all operators of rank< a , where a is as defined in the statement of Proposition 1.2.

§2. THE CA TEGORIES CONNECTED WITH THE COMPLEX CLASSICAL GROUPS

2.1. Linear relations. Let V and W be finite-dimensional linear spaces. By a linear
relation P: V ~ W we mean an arbitrary subspace of V Ei) W. Linear relations
can be naturally interpreted as not-everywhere-defined, multivalued linear operators.
Such objects, in the words of Mac Lane [10], "occur more frequently than is usually
realized", and in certain respects behave no worse than ordinary operators. (See [10],
[11], §II.6; [12].)

For any linear relation P: V ~ W we make the following definitions:
1) The kernel Ker(P) is the set of all v E V such that (v, 0) E P.
2) The image Im(P) is the projection of P on W parallel to V.
3) The domain of definition D(P) is the projection of P on V parallel to W.
4) The indefiniteness Indef(P) is the set of all W E W such that (0, w) E P.
5) The rank

rk(P) = dimD(P) -dimKer(P) = dimIm(P) -dimIndef(P).

Finally, given two linear relations P: V ~ Wand Q: W ~ Y, we define their
product QP: V ~ Y; namely, (v, y) E QP if there exists a vector W E W such
that (v, w) E P and (w, y) E Q .

2.2. The category GA. We want to define a category of which the objects are linear
spaces and the morphisms are linear relations. For our purposes the multiplication
defined above fOT linear relations will not quite do. The set m( V, W) of all linear
relations V ~ W hag a natural representation as the disjoint union of the grass-
mannians Grk (V Ei) W), where Grk (V Ei) W) means the set of all k-dimensional
subspaces in V Ei) W. But it is obvious that for two linear relations P: V ~ Wand
Q: W =* Y the number dim(QP) is not determined solely by the numbers dim(P)
and dim( Q). Thus, our multiplication is not even separately continuous.

The objects of the category GA are the finite-dimensional complex linear spaces.
The set Mor( V, W) consists of all linear relations V ~ W, together with a formal
"null" element null = null v , w (not to be identified with any linear relation). If
P: V ~ Wand Q: W ~ Y are nonnull morphisms, with

(2.1) Ker(Q) nIndef(P) = 0,

(2.2) Im(P) + D(Q) = W,

then Q and P multiply like linear relations. Ir one of the equalities (2.1) or (2.2)
fails to hold, we put QP = null. In addition, for any Q and P we put

Q .null = null. P = null. null = null.
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Lemma 2.1. The multiplication so constructed is associative.

Proof. Direct verification. 8
We assign to the set of nonnull morphisms the same topology as before; and in

addition we take nullv w to be contained in the closure of any other point of the
set Mor( V, W). Thu;, we have defined on the set Mor( V, W) a non-Hausdorff
topology .

Lemma 2.2. Suppose P E Mor( V, W) and Q E Mor( W, y:
a) If QP ~ null, then

dirnQP = dirnP + dirnQ -dirn W.

b) The multiplication (P, Q) -+ QP is continuous.

Proof. In Z = V EI;) W EI;) W EI;) Y, consider the subspace H consisting of all vectors
of the form (v, w, w, y). From condition (2.2) it follows thai the sum of the
subspaces Hand P EI;) Q in Z is an of Z, and therefore

dirn(H n (P E9 Q)) = dirnP + dirn Q -dirn w.

Project the space H n (P E9 Q) c Z into the subspace V E9 Y of all vectors of the
form (v, 0, 0, y) parallel to the space X of all vectors of the form (0, w, w, 0) .
If (2.1) holds, this projection mapping is injective. But this projection is precisely
QP. This proves part a). From this argument also follows part b). .

By a projective representation T = (T, t) of the category GA we mean a functor
from GA to the category of finite-dimensional linear spaces andmappings, the latter
being specified up to multiplication by a scalar. To avoid possible ambiguity, we
state this definition a little more carefully. For every object V in GA we must
construct a linear space T( V), and für every morphism A: V -+ V' an operator
t(A): T(V) -+ T(V') such that:

1) For any morphisms A: V -+ V' and B: V' -+ V" we have t(B)t(A) =
c(A, B)t(BA) where c(A, B) is a nonzero complex number.

2) t(null) = O.
3) The mapping t is continuous; i.e., für any convergent sequence of morphisms

An -+ A there exist numbers An such that Ant(An) -+ t(A) .
4) We consider only holomorphic representations; i.e., we require that the operator-

valued functions t on all the spaces Mor(V, V')\null be holomorphic.

Remark. If we bad not "rectified" the multiplication of linear relations, we would
have c(A, B) = 0 at points ofdiscontinuity. Allowing the cocycle c(A, B) to vanish
would give adefinition of representation that would be satisfied by many objects
of little interest. (To see this, it suffices to consider the case when c(A, B) = 0
identically. )

All the remaining definitions of § I carry over to the category GA automatically.
The representation theory für the semigroup rGA(V) does not reduce to that für

the group GL(V), since GL(V) = f'O(V) is not dense in rGA(V), We define the
subsemigroup P ( V) of r GA (V) as consisting of null and all the linear relations
V ~ V of dimension dirn V. In it GL( V) is dense. As a semigroup, r* (V) is
generated by the group GL( V) and two arbitrary relations P and Q subject to the
conditions dirn Ker Q = 0, dirn Indef Q = I, dirn Ker P = I , and dirn Indef P = O.
For any representation T of GL( V) there exist at most four extensions of T to a
projective representation of P(V). Indeed; either T(P) = 0 or T(P) is uniquely
determined from continuity considerations; and similarly für Q.
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Theorem 2.1. a) The projective holomorphic representations of the category GA are
completely reducible.

b) The irreducible projective holomorphic representations (T, -r) of GA can be
indexed by diagrams of the form

a_1 ao al a2

where the markers a j are nonnegative integers, with only finitely many different from
O. Let aQ be the leftmost, and aß the rightmost, nonzero numerical marker. If
ß -a -1 > n, then the subordinate representation ofthe group SL(n + 1, C) is zero-
dimensional. If ß -a -1 ~ n, then the subordinate representation of SL( n + 1 , C) is
the simple direct sum (i.e., each term has multiplicity 1) of all the representations 'l' p;, /I
of SL( n + 1 , C) with markers ap;, ap;+ I , ..., a/l on the Dynkin diagram of type An,
where ,ll and V are subject to the conditions a ~ ,ll + 1 and ß ~ v-I (v -,ll = n -1) .

c) Let P and Q be the same generators in P(V) as above. Then 'l'(P) # 0 if
and only if a < ,ll + 1 , and 'l'( Q) = 0 if and only if ß > v-I.

Remark 1. Essentially, part c) gives a description of the subordinate representations
of the semigroups.
Remark 2. The N-kemelof (T, 'l') (see §1.3) consists of all relations of rank ß-
a-l.

For the proof of the theorem, see §3.

2.3. The categories B, C, D. The objects of the category C are the finite-dimension-
al complex linear spaces, provided with a symplectic (i.e., nondegenerate bilinear
skew-symmetric) form {" .} v. Let V and W be two objects in C. On V $ W
consider the symplectic form

A«VI, WI), (V2, W2)) = {VI, V2}V -{WI, W2}W.

We say that a linear relation P: V ~ W preserves the symplectic form if P is a
Lagrange (i.e., maximal isotropic) subspace in V $ W.

Example. If V = Wand A: V -t V is a symplectic operator, then the graph of A
preserves the bilinear form. If V and W have different dimensions, then P cannot
be the graph of an operator.
Lemma 2.3. Let V, W, and Y be objects in the category C, and let P: V ~ W
and Q: W ~ Y be relations preserving the symplectic form. Then QP: V ~ Y also
preserves the symplectic form.
Proof. Let Z, H, and X be as in Lemma 2.2. Then H is Lagrange, Z is coisotro-
pie, and X = Z 1- is the skew-orthogonal complement to Z. From this it is easily
seen that the image of H in Z / Z 1- is a Lagrange subspace of Z / Z 1- .

This lovely assertion bears within it the elements of a pathology. Namely, as in
§2.2, the multiplication so constructed is not even separately continuous.

So, let V and W be objects in the category C. A morphism from V to W is ei-
ther null or a linear relation P: V ~ W preserving the symplectic form. Morphisms
multiply as in GA. (Note that conditions (2.1) and (2.2) are in this case equivalent.)

It is easily seen that ~(c2n) := Sp(2n, C) .
The categories Band GD are defined in almost the same way. The only difference

is that an object in B (resp. GD) is an odd-dimensional (resp. even-dimensional)
complex orthogonal space (i.e., aspace provided with a nondegenerate bilinear form).
It is easily seen that ~(c2n+l) = O(2n + 1, C) and ~D(C2n) = O(2n, C).

Let H be an even-dimensional orthogonal space. Let Gro (H) be the grassmannian
of all maximal isotropic subspaces in H. It is easily seen that H consists of two
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connected components (two subspaces P and Q lie in the same component if and
only if P n Q has even codimension in P and Q). We would like to construct a
category D such that ~(C2n) = SO(2n, C). To do so, we must canonically select
ODe component from each set Mor( V, W). An object of the category D is an
orthogonal space V with ODe of the two components of the grassmannian Gro ( V)
ftxed. This component we call Gr~ (V). Let V and W be objects in D, and
suppose V + E Gr~ (V), W + E Gr~ (W) , and V -E Gro (V) is transversal to V +. Then
P E Mor GD ( V, W) is called a morphism in D if the dimension of P n (V -$ W + )
is even. Representations of the categories B, C, D, and GD are defined as in §2.2.

For each of the categories B, C, and D the group fi>( V) is dense in the semi-
group r( V). Furthermore, as a semigroup, r( V) is generated by the group fi> (V)
and any ODe element P such that dirn Ker P = dirn Indef P = 1 .Hence a represen-
tation l' of fi>(V) can be extended to r(V) in only two ways:

1) The zero extension: 1'(P) = 0, and consequently 1'(Q) = 0 für any Q E
r(V)\fi>(V) .

2) A maximal extension: 1'(P) ,# O.
Theorem 2.2. a) The holomorphic projective representations ofthe categories B, C, D
and GD are completely reducible.

b) The irreducible holomorphic projective representations of B, C, and D can be
indexed by diagrams of the form

B OI 02 0) 04.0-' -" ", -~ ...
u,

C .~~~---~--~- ....,
0+

D: ~-~--~_.."
0-

where the markers a j are non negative integers, with only finitely many different [rom
o. Consider, e.g., the case of C (the two other cases are similar). Let aa be the
rightmost nonzero marker. If n < a -1, then the subordinate representation of the
group Sp(2n, C) is zero. If n ~ a -1, the subordinate representation of fi>c(c2n) is
the irreducible representation with markers al , ..., an on a Dynkin diagram of type
Cn. If n = a -1, the subordinate representation of the semigroup r c (c2n) is the
zero extension of the representation of Sp(2n, C). If n > a -1, it is the maximal
one.
Remark 1. The N-kemel of an irreducible representation (T, 1') consists of an re-
lations of rank< a -1 .An exception is the case of representations of the category
D that have diagrams of the forms

a+ ~- Q ..., 0 » & ,g--- o~ --0-

These representations take relations of rank 1 into nonzero operators. The set n of
relations V ~ W of rank 0 consists of two connected components. Representations
with diagrams of the first form are zero on ODe of these components of n; and of
the second form, on the other.
Remark 2. We see thai in contrast to the category Op the representations of the cate-
gories .% = B, C, D are not uniquely determined by the subordin~te rep~esentat.ion
of a fixed group fi>.x(V) (or even of the semigroup r ,%(V)). But 1f two lrr~duclble
representations T and T' of the category % are such thai the correspondmg sub-
ordinate representations of some semigroup r,% (V) coincide and are not identically
zero on r,%(V)\fi>,%(V), then T = T'.

Proof. See §3.
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2.4. The categories A(A). The categories defined below will play an ancillary role in
this paper: they are used in the proof of Theorem 2.1.

Let A = (Al, A2, ...) be a sequence of zeros and ones. Let Ck = E~=l Aj. The
objects in the category A(A) are the same as in the category GA. The set Mor(V, W)
consists of null and of all linear relations V ~ W of dimension n + Cm -Cn , where
m = dirn W, n = dirn V. The multiplication mIes are the same as in GA. The basic
virtue of the category A(A) is that the semigroup r(V) is connected (it coincides
with the semigroup r*(V) of §2.2).

Theorem 2.3. a) The holomorphicprojective representations ofthe category A(A) are
completely reducible.

b) Suppose among the numbers Al, A2, ...there are infinitely many zeros and
infinitely many ones. Then the irreducible holomorphic representations of A(A) can
be indexed by diagrams of the form

b)
(2.3)

0 2 3

where the position 01 the marker b1 is fixed, while the marker b2 appears to the left
01 b1 il A.2 = 0 and to the right if A.2 = 1 .11 A.3 = 0, the marker b3 appears to the
left 01 the segment containing b1 and b2; if A.3 = 1, then b3 appears to the right;
etc. All the b j are nonnegative integers, 01 wh ich only finitely many are different Irom
o. To obtain the subordinate representation 01 the group An = SL( n + 1 , C), as we
need to cut outlrom the diagram (2.3) the part containing the markers b1, ..., bn.
11 the piece cut off on the left is not 01 the lorm

0 0 b

or if the one on the right is not of the form

c 0 0
0 0 0

then the subordinate representation 01 SL(n + 1, C) is zero-dimensional. In any
other case we consider the part 01(2.3) ollength n that has been cut out; then the
set 01 markers so obtained is the set tor the subordinate representation 01 the group
SL(n + 1, C).

Remark. If the sequence Al, A2, ...has only finitely many zeros or finitely many
ones, then to every diagram (2.3) correspond two representations of A(A) ; this is be-
cause of the nonuniqueness of the extension of the representation from
SL(n + 1, C) to r*(cn+1).

Remark. In what follows we shall use a different indexing of markers on diagrams
of the A()') type. Namely, instead of (2.3) our diagram will be

§3. CONSTRUCTION OF THE FUNDAMENTAL REPRESENTATIONS OF THE CATEGORIES
GA, B, C, D, A(A.) , AND PROOF OF THE CLASSIFICATION THEOREMS

Let % be ODe of the categories GA, B, C, D, A(J..). By thefundamental v-
resentation P:} of .% will be meant the irreducible representation für which the
marker aQ on the Dynkin diagram is equal to 1 and all other markers are O. We note
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that a can run over the values I, 2, 3, ..., +, -; furthermore, für the category GA
the fundamental representation is unique, and we shall denote it by POA. All the
fundamental representations of all these categories will be constructed in §§3.1-3.4,
and in §3.5 all the remaining representations. In §3.6 we prove Theorems 2.1-2.3.

3.0. Retrospection on the fundamental representation of the classical groups. We de-
note by na(G) the fundamental representation of the classical group G für which
the marker aa is equal to 1 and all the other markers at O. By AkT we denote the
kth exterior power of the representation T. Let ,u =,uG be the identity represen-
tation of one of the groups G = An, Bn, Cn, Dn. We list hefe the fundamental
representations of these groups.

An: nk(An) = Ak,u, k=I,2,...,n.
Bn: nk+I (Bn) = An-k,u, k = I, 2, ..., n -1 .
Cn: To construct a11 the fundamental representations of the groups Cn, consider

the exterior powers AI,u, A 2 ,u, '.. , An,u. Clearly, A 2 ,u has an invariant vector,
which we denote by q (it exists because ,u has an invariant skew-symmetric form).
Exterior multiplication by q is obviously an intertwining operator AS,u -+ As+2,u.
Then nk+I(Cn) isthefactorrepresentation An-k,u/qAn-k-2,u, k= 1,2, ..., n.

Dn: nk+2(Dn) = An-k,u, k=I,2,...,n-2.
The constructions of the "spin representations" nI (Bn) and n:!:(Dn), omitted

from this list, are more complicated. OUT immediate objective is to reinterpret the
constructions of the fundamental representations of all these groups in categorical
terms.

3.1. The spin representation of the category GD. Let C;-I, C;-2 , ..., C;-n be a set of

pairwise anticommuting variables; i.e.,

C;-jC;-j = -C;-jC;-j

für any i and j. Let An be the algebra of functions in the variables C;-j. As is
known, the spin representation of the group O(2n, Ir) is realized in An.

Consider a 2n-dimensional complex linear space V with a basis er, ..., e: , hV ,

..., I[ and symmetric bilinear form

{er, er} = {fiV, Ir} = 0, {er, Ir} = Öjj,

where t5jj = 1 if i = j and 0 if i ~ j. To fach v = Evtej + Evj- fi E V associate
the operator

in A(V).
Let W be a 2m-dimensional complex linear space provided with a similar ba-

sis and similar bilinear form, and let 111, ..., 11m be corresponding anticommuting
variables.

Theorem 3.1. a) For any nonnull TE MorGD(V, W) there is an operator Spin(T
An -+ Am, unique up to proportionality, such that

(3.1) a(v)Spin(T) = Spin(T)a(w)

tor all (v, w) E T.
b) The mapping T -+ Spin( T) is a projective representation of the category GD.

(For details on the spin representation, see [3].

Proof. a) We start from the fact that if W = V, and T E ~(O)(2n, C), then
Spin( T) is the ordinary spin representation operator für the group O(2n, C). Now
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let T: V ~ W be arbitrary, with k = rk T. Write T as a product T = PQR,
where PE O(2m, C), RE O(2n, C), and Q E Mor(V, W) has a basis ofthe form
(er, ejW), (ftv, ftW), (er, 0), (0, fsW), with k < j ~ n, k < s ~ m, 1 ~ i ~ k.
Put

Spin(Q)~al ...~am =
'laI. ..'lam if av ~ k ,

0 otherwise.
It is easily seen that this operator satisfies equality (3.1). Now put Spin(T) =
Spin(P)Spin(Q)Spin(R) .

b) In essence, this follows from a). The only thing that needs verification is the
condition für the product Spin(S)Spin(T) to vanish. This is most easily dealt with
by reducing the pair of relations Sand T to a sufficiently simple canonical form. 8

3.2. Tbe spin representations oftbe categories B and D. The restriction ofthe repre-
sentation Spin to the category D is Pt Ei:) PD .(We observe the formality that by pt
is meant the representation of D such that the corresponding subordinate representa-
tion of SO(2n, C) coincides with n::l:(SO(2n, C)). We have so rar only constructed
P+(D) and P-(D), hut not proved their uniqueness.) Further, nl (SO(2n + 1, C))
is the restriction of n::l:(SO(2n + 2, C)) to the subgroup SO(2n + 1, C). Similarly,
PA is the restriction of pt to the category B.

3.3. Tbe representation PoA. Let V be an object in GA. Let V' be the dual space
to V. In F (V) = V Ei:) V' define the symmetric bilinear form

{(VI, ft), (V2, h)} = ft(V2) + h(vI).

Thus, F(V) E Ob(GD). Now suppose TE MorOA(V, W). Let T' be the annihi-
lator of T in V' $ W'. Then the subspace F(T) = T $ T' in F(V) $ F(W) is a
morphism in the category GD. We also put F(null) = o.

Thus, F is a functor from GA to GD. Restricting the spin representation of GD
to GA, we obtain, as is easily seen, a representation PoA (the same stipulations being
needed hefe as in §3.2).

There is a more direct and more transparent description of PoA = (P, n). Let
A( V) be the exterior algebra on the space V. Then P( V) = A( V). Suppose T E
Mor( V, W). Then n (T) = H QR, where the operators H, Q, Rare defined as
follows.

1. R: A(V) ~ A(D(T)) is the operator of interior multiplication by ft AhA
...A !s , where ft,...,!s is a basis in the space of linear functionals on V that
annihilate D(T) (D(T) hag been defined in §2.1).

2. Q: A( D( T)) ~ A( W jIndef( T)). For any linear relation T there is a natu-
rally constructed operator T': D( T) ~ W jIndef( T). The operator Q is just the
corresponding mapping of exterior algebras.

3. H: A( W jIndef( T)) ~ A( W) is the operator of exterior multiplication by
el A eq , where el, ..., eq is a basis in Indef( T) .

The fact that (P, n) is actually a representation of the category GA is most easily
seen by verifying that n(T) = Spin(F(T)) .

3.4. The remaining fundamental representations. By construction, all the categories
% = B, C, D, A(A.) are contained in GA. All their fundamental representations not
Jet constructed are contained in the restrictions of the representation POA to %.

For each fundamental representation we indicate hefe only the space pa (V) .
1. PC(C2n) = An-a+I(C2n)jqAn-a-I(C2n), a= 1,2, ...;theelement q hasbeen

defined in §3.0.
2. PB (c2n+ I) = A n-a+ I (c2n+ 1), a = 2, 3,
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3. PV(C2n) = An-a+l(c2n), a = 3, 4, 4. PÄ().)(cn) = Aa+hll(cn), -00 < a < 00, hn = ~7=1 (2).; -1).

The description of the operators of the representation is clear from §3.3.

3.5. Construction 01 the remaining representations. We start with the case % =
B, C, D, A(A.). Suppose we want to construct an irreducible representation with
markers a.u. For each .u consider the a.uth tensor power (P~ )l8>a/l of the fundamen-
tal representation p~; take the tensor product of these tensor powers; and in the
representation T so obtained für the category % take in each space T( V) the cyclic
hull S(V) of the vector of highest weight. This gives the desired representation.

The validity of this construction is not entirely obvious and needs verification.

Lemma 3.1. Let P";- be one of the fundamental representations of the category % =
B, C, D, A()"). Let V, W E Ob(%) be such that P";-(V) # 0 and P";-(W) #
0 ; and let h be a vector of highest weight in P";- (V). Then there exists a Q E
Mor(V, W) such that 1C~(Q)h is a vector of highest weight in P";-(W).

Proof. Direct verification. 8
It follows from the lemma that the set of subspaces S(V) c T(V) does indeed

give a subrepresentation in T, and that this subrepresentation is irreducible. It is
clear also that S(V) satisfies all the conditions of Theorems 2.2 and 2.3.

Consider now the category % = GA. The restriction of the fundamental repre-
sentation PGA to SL( n + 1 , C) is EBZ~b A k ,u , where ,u is the identity representation

of SL(n + 1, C). Let vkn) be a vector of highest weight in Ak,u. To construct a
representation of GA with markers (... , 0, 0, ..., au, ..., ap, 0, ...) we take the
(Eaj)th tensor power of PGA, choose n > P, and in the subordinate representation
of SL( n + 1 , C) take the vector h = v 'J!a.. ~ ...~ v;aß .The desired representation is
the cyclic hüll of h with respect to GA. That this is indeed the desired representation,
i.e., that it satisfies part b) of Theorem 2.1, will be proved in §3.6.

3.6. Proof of the classification theorems 2.1-2.3. We start by proving the complete-
ness of the lists of representations für the category C (the proofs für B, D, and
A()') are similar).

Denote by rn the semigroup of morphisms from a 2n-dimensional object in the
category C to itself. Let T = (T, T) be a representation of the category C. Let T n
be the representation of rn subordinate to the representation T.

Lemma 3.2. a) Let T(I) and T(2) be two irreducible holomorphic projective represen-
tations ofthe category c. Iffor same n we have 'f~I) = 'f~2), then also 'f~121 = 'f~221 .

b) If in addition 'f~I) is identically zero on rn \Sp(2n, C), then 'f~~1 is zero-
dimensional.

Proof. a) In the 2n-dimensional object ~n of the category C, choose a basis
el, ..., e2n such that {e2i-l, e2i} = 1 and the remaining pairs of basis vectors
are orthogonal. In the (2n -2)-dimensional object ~n-2 of C choose a sim-
ilar basis e~,..., e2n-2. Consider the linear relation Q: ~n =4 ~n with basis
(ei, ei), (e2n-1 , 0), (0, e2n) , where i = 1, ..., 2n -2. It is easily seen that Q2 =
Q, so that the operator 'f(i) (Q) is a projection. Consider also the linear relation
P: ~n-2 =4 ~n with basis (eI, ei), (0, e2n), where i = 1,2, ..., 2n -2, and the
linear relation R: ~n =4 ~n-2 with basis (ei, eI), (e2n-1 , 0), where i = 1, 2, ...,
2n -2. Now observe that all the relations P, Q, R commute with the elements of
the group Sp(2n -2, C) (more than that, with the elements ofthe semigroup rn-I).
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Furthermore, it is easily seen that

(3.2) QP = P, RQ = R, RP=E.

It follows that the Sp(2n -2, C)-intertwining operators

are inverse to oDe another. But the representations of the semigroup r n-l in the
spaces Im T(l)(Q) and Im T(2)(Q) are equivalent (by hypothesis). Hence, so are 'C~121

and T~221 .
b) By hypothesis, 'C(Q) = o. From (3.2) we fInd 'C(P) = 0, and therefore 0 =

E. 8
We pass directly to the proof of Theorem 2.2. Let T = (T, T) be an irreducible

representation of the category C. By Lemma 3.2b), there exists a sufficiently large
n such that the subordinate representation T n of the semigroup rn is nonzero on
rn \Sp(2n, C); i.e., in the terminology of §2, Tn is a maximal extension of the rep-
resentation of the group Sp(2n, C). Let T' = (T', T') be one of the representations
constructed in §3.5 such that Tn = T~. By Lemma 3.2a), we have für all m < n
the equality Tm = T~. Suppose Tk # T~ für some k > n. Choose a representation
T" = (T", T") out of those constructed in §3.5 such that TZ = Tk. Then by Lemma
3.2a), T~ = Tn = T~. But this implies TZ = T~ (see Remark 2 in §2.3).

Thus, für an I we have Tl = Tl. We must still verify that T(S) = T/(S) für
an morphisms S: Y -+ W für which Y # W. Let Rand P be as in the proof
of Lemma 3.2. Then T(R) and T(P) are operators intertwining two irreducible
representations. They are therefore uniquely reconstructed from T n and T n-l .But
the groupoid of morphisms of the category C is generated by the semigroups rn and
an possible operators of the forms Rand P (recall that Rand P are constructed
für any natural number n). Thus, T = T'. This proves the theorem. 8

It remains to prove the completeness of the lists in the case of the category GA,
and also, to fill the gap left at the end of §3.5. These tasks are both very simple:
we need only restrict the irreducible representation of GA to the category A(J.) and
make use of the classification theorem für A(J.) already proved. We must also verify
complete reducibility. For .% = B, C, D, A(J.) the proof is a verbatim repetition
of the proof of Proposition I.2a). For.% = GA, we can again make use of the

category A(J.).

§4. THE CATEGORY U AND REPRESENTATIONS OF THE GROUPS U(p, q)
WITH HIGHEST WEIGHT

It seems natural to consider categories analogons to the categories GA, B, C, D ,
hut with the complex spaces replaced by real ones (an attempt at this has already been
made, to be sure, hut für other purposes, in, e.g., [13]). The categories so obtained,
however, most likely have no substantive theory of representations. An obstacle, at
least on a heuristic level, is the Howe-Moore theorem [14], which asserts that the
weak closure o( the set of operators für a unitary representation is, as a rule, trivial
(so that the representation cannot be extended by continuity from the group to the
semigroup, since in this case the group is dense in the semigroup). Nevertheless, it
turns out that with any series of real classical simple Lie groups a certain category
can still be associated in a natural fashion. These categories and their representations
are examined in this and the following section.
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4.0. Motivation of the definition. It is known that the unitary representations of
se mi simple Lie groups with highest weight can be extended to the complex domain
[15]. In particular, the representations of U (p, q) with highest weight extend to
the so-called semigroup of J -contractions. This semigroup r p , q consists of the
operators A that "contract" the pseudo-hermitian form A(., .) , i.e., that satisfy the
condition

A(Ax, Ax) ~ A(x, x).
Clearly, U(p, q) c r p,q c GL(p + q, C). It turns out (see [2] für the case of the
groups Sp(2n, JR) L that the representa!-i°ns with highest weight extend to a certain
larger semigroup r p,q :> r p,q, where r p,q {Z: GL(p + q, C). This larger semigroup
is in fact a semigroup of linear relations.

4.1. The category U. An object of the category is a complex linear space V, pro-
vided with a nondegenerate hermitian form Av(., .). The positive and negative
indices of inertia of this form will be denoted by Pv and qv. A morphism from V
to W is a linear relation R: V ~ W satisfying the following conditions:

1) If (v, w) ER, then Av(v, v) ~ Aw(w, w) .
2) If v E Ker(R), then Av(v, v) > 0; if w E Indef(R), then Aw(w, w) < 0

(note that the nonstrict equality already follows from 1).
3) dimR = Pv+qw (i.e., the maximum possible dimensionfor a relation satisfying

1)).
In each V E Ob( U) take a fixed decomposition V = V +$ V -into a direct SUfi

such that the form Av is positive definite on V + and negative definite on V_. Then
a subspace R E Mor( V, W) must, as is easily seen, be the graph of an operator
V + $ W --+ V -$ W +. Its matrix (called a Potapov-Ginzburg transformation in the
terminology of [11])

L
)N

has dimension (Pv + qw) x (Pw + qv) and must satisfy the following conditions:
1*) Ilno-r(R)11 ~ 1, where li-li denotes the Euclidean norm of the matrix (con-

sequence of 1)).
2*) IIKII < 1, IlMli< 1 (consequence of 2)).
Conversely, any matrix, of appropriate dimension, that satisfies conditions 1 *)

and 2*) is the Potapov-Ginzburg transformation für same morphism R: V -.W.
If

~) ~)
then

K+LA(l-NA)-lM L(l-AN)-lB
C(l-NA)-lM D+C(l-NA)-lNB,

(by direct, though not very pleasant, verification).

4.2. Matrix balls and generalized linear-fractional mappings. Consider the functor L
that assigns to each V E Ob(U) the set L(V) = Mor(CO, V), and to each morphism
P: V -t W the mapping lp: L(V) -t L(W) given by the formula Ip(Q) = PQ.

The Potapov-Ginzburg transformation für Q E Mor(CO, V) is a matrix of di-
mension qv x pv with norm< 1 ; i.e., the set L(V) gives rise to a so-called matrix
ball. Furthermore, the mapping lp is specified, at the level of Potapov-Ginzburg
transformations, by the formula (a special case of (4.1))

(4.1) 1l0'f(QR) =

(4.2) Ip(Z) = K + LZ(l -NZ)-l M,
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where 7to-r(P) = ~ ~ '. Such mappings (introduced by M. G. Krein) are called

generalized linear-fractional.

4.3. The representations L(RI, R2, ).). In this section we construct a set of pro-
jective representations L(RI, R2,).) that exhausts all irreducible holomorphic rep-
resentations of the category U. We first define certain auxiliary representations
M(RI' R2, ).). Let (Rl, PI) and (R2, P2) be two irreducible representations ofthe
category Op; and let). E C. In each object V of U take a fixed decomposition
V = V+ Ei) V_; let %(V) be the corresponding matrix ball. We define the space
M(V) = MRl ,R2 ,).(V) as the space of all holomorphic functions on %(V) with val-
ues in R1(CPY) @ R2(CQY) (recall that Pv and qv are the indices of inertia of the
form). We define operators

,uRl,R2,;'(P): MR1,R2,;'(V) -+ MR1,R2,;'(W),

where P E Mor(V, W), as folIows. Suppose 1l01'(P) = (K L) and Z E %(W).
MN

Then
(4.3) ,uR! ,R2,).(P)f(Z) = det[(1 -NZ)-)'/2]PI(L(1 -ZN)-I)

18> P2((1 -NZ)-1 M)f(K + LZ(1 -NZ)-1 M).

Now consider the representation M(RI' R2, )., p, q) of the group U(p, q) sub-
ordinate to the representation M(RI, R2,).) of the category U. By a well-known
theorem of Harish-Chandra (see, e.g., [16]), the representation M(RI' R2, )., p, q)
contains a unique irreducible subrepresentation L(R1, R2, )., p, q). It is important
to observe that L(R1, R2, )., p, q) are precisely all the irreducible representations
of U(p, q) with highest weight. The set of subrepresentations L(R1 , R2, )., p, q) C
M(RI' R2, )., p, q) determines a subrepresentation in M(RI' Ri,).) and it is this
that we denote by L(R1, R2, ).).

4.4. Classification of the holomorphic representations of the category U. We start
with adefinition of the notions of "holomorphic representation" and "equivalent
representations". As in the case ofnonunitary representations ofLie groups, there are
wide possibilities hefe für arbitrariness in the formulations, hut the notions obtained
are in fact independent of this arbitrariness.

We require that the spaces T(V) of the representation T = (T, 'i) be Banach
(a possibly more natural requirement might be local convexity and completeness),
and that .the function 'i be a uniformly holomorphic operator-valued function on
the interior of the domain Mor( V, W) and weakly continuous up to the boundary.
From this it follows rather easily that all the subordinate representations of the groups
U (p , q) have highest weight. (Indeed, consider a compact Cartan subgroup H in
U(p, q); let Hc c GL(P + q, C) be its complexification; and let Ll be the subgroup
consisting of all J -contractions contained in Hc. Then any operator 'i( c5), where
c5 E Ll, must have (in view of its boundedness) a bounded spectrum, wh ich imposes
severe restrictions on the set of weights of the representation 'i.) Finally, we require
that in the equality 'i(PQ) = c(P, Q)'i(P)'i(Q) the function c(P, Q) should not
vanish. Now consider the definition of equivalence. In each space T(V) there is a
distinguished vector ). = ).( V)-the vector of highest weight; and also a distinguished
covector /-the linear functional that annihilates all the weight vectors except the
one of highest weight. This allows us to construct canonical bases in the spaces of
vectors and covectors (distributing ). and / by means of the group U (p, q) or its
enveloping algebra). Two representations T and T' can nowbe called equivalent if
multiplication of 'i1(P) by a suitable scalar function would make the matrices 'i1(P)
and 'i2(P) coincide identically.
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In order für the representations M(R1 , R2, A) to come under the above definition,
the spaces M(V) rollst be provided with a Banach space structure. For this we re-
quire that the spaces M(V) consist ofbounded vector-valued holomorphic functions
with the natural norm (there are many such norms, hut they are an equivalent).

Theorem 4.1. The representations L(Ri, R2, J.) exhaust all the irreducible holomor-
phic representations 01 the cateogry U.

The proof is similar to that of Theorem 2.2.

4.5. Classification of the holomorphic unitary projective representations of the category
U. Let P E Mor( W, V). Consider in V ffi W the forDl

Let P* be the orthogonal complement of P with respect to this form. Then P*,
as is easily verified, is also contained in Mor( W, V). A representation T = (T, T)
of the category U will be called unitary if all the spaces T( V) are Hilbert and
T(P*) = T(P)* für any morphism P. The definition of equivalence für unitary
representations is obvious.

Theorem 4.2. Let Rl and Rz be representations ofthe category Op, with markers
al, az, ...and b1, bz, Then a representation L(Rl, Rz, A.) is unitary ifand
only if the number A. -E a; -E b; is a nonnegative integer.

Proof. Necessity. If a representation of the category U is unitary, then all the sub-
ordinate representations of the groups U (p, q) are unitary. Since all the unitary
representations of the groups U(p, q) with highest weight are known (see [17]),
there is no difficulty in verifying necessity.

Sufficiency. In §5 below we define the category Sp(JR). In [2] (see also [1]), a
construction is given für the Weil representation of this category. If we enclose the
category U into Sp(JR) and restrict the Weil representation to U, we obtain a rep-
resentation of U, which we denote by T. It can be shown that all the unitary holo-
morphic representations of U are realized in the tensor powers of the representation
T, and we are therefore provided with explicit models für all such representations.
(The tensor powers of the Weil representations of the groups U(p, q) are examined
in detail in, e.g., [16]. Knowing how they decompose into irreducibles, we can easily
decompose also the tensor powers of the representation of the category.) .

Theorem 4.3. Any unitary projective representation 0/ the category U is the tensor
product 0/ a holomorphic unitary representation and an antiholomorphic unitary rep-
resentation.

Proo/. The theorem is essentially a corollary of a similar assertion proved in [15] für
the semigroups r p,q(V) (see §4.0). We need only duplicate the proof of Theorem
2.2. Lemma 3.2 is also proved analogously, hut in addition to the argument of §2
we need to "skim out" those representations of the semigroups r p, q that cannot
be subordinate to representations of the category U. If we know the subordinate
representation PP, q of the semigroup r p, q , then we know all the subordinate repre-
sentations Pr,s of the semigroups r r,s für r < p, s < q; i.e., Pr,s is a function of
Pp,q (notation Pr,s:= F(pp,q) = F(p, q, r, s, Pp,q)). But it can happen that für a
given Pr,s there is no Pp,q such that Pr,s = F(pp,q) is "skimmed out". .
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§5. MORPHISMS OF SYMMETRIC SPACES

In this section we give adefinition für a morphism of (Riemannian noncompact)
symmetrie spaces (the author regards this geometrie subject as being of interest in-
dependent of the theory of representations; see also the Appendix) and carry over
the results of §4 to arbitrary real classical Lie groups. Proofs are omitted. We note
analogies with work of Krein and Shmul'yan (see, e.g., [12], [18], [19]), Ol'shanskii
(properly speaking, this section is the category interpretation of [15] and [20]), and
Howe [21].
5.1. Martix balls. Let G be one ofthe real classical groups G = GL(n , JR), GL(n, C) ,

GL(n, JHI), SO*(2n), O(p, q), U(p, q), Sp(p, q), O(n, C), Sp(2n, JR), Sp(2n, C);
and let % be a maximal compact subgroup. It can be shown that all the sym-
metric spaces of the form G / K can be realized as matrix balls; more precisely, as
the set of all matrices of a fixed dimension (they may be real, complex or quaternion,
and may in addition satisfy other conditions-of being symmetrie, skew-symmetric,
Hermitian, or anti-Hermitian) with norm< 1 .Table llists these matrix balls. The
first column indicates the symmetrie space G / K; the second, the division ring K
to which the matrix elements belong; the third, the dimensions of the matrices; the
fourth, any additional condition that the matrices Z must satisfy (zt means the
transposed matrix, Z* the Hermitian conjugate).
5.2. Generalized linear-fractional mappings. We consider a category % (its name is
listed in the sixth column of the table) whose objects are the matrix balls of a fixed
type. Suppose Zt, Z2 E Ob(%) and the dimensions of the matrices in these balls
are Pt x ql and P2 x q2 , respectively. Then by a morphism from ZI to Z2 we mean
a matrix S = (~~) of dimension (PI + q2) x (P2 + ql) , whose elements belong to

the division ring K (second column) and that satisfies the following conditions:
1) 11811 ~ 1 (as above, we use the Euclidean norm).
2) IIKII< 1, IINII < 1.
3) 8 satisfies the same conditions as Z (fourth column).
Morphisms multiply in accordance with formula (4.1).
To every morphism S: Zt -+ Z2 corresponds a generalized linear-fractional map-

ping Zt -+ Z2 of the form
(5.1) IsZ = K + LZ(l -NZ)-I M.

It is easily verified that ISH = Is 0 IH .
The group G is isomorphie to the automorphism group of the ball, and K is the

stabilizer of zero. T~e injective mappings of the form (5.1) form an open subsemi-

group in the group G (fifth column).
5.3. Theory of representations. The theory of projective representations of the cate-
gories Sp(JR) and SO* is similar to that of the category U: the representations are
given by the same formulas as in §4.3, only RI = R2; and the unitary conditions
are written in the same way. For the remaining cases the notion of holomorphic
representation is undefined, and any irreducible projective unitary representation of
the category % is the restriction of a holomorphic unitary representation of the
category %c (last column; the explicit form of the imbedding % -+ %c is clear in
each individual case). Thus, there exists a bijection between the unitary projective
representations of % and the unitary projective holomorphic representations of %c
(analogue of the Weyl trick; für the case of semigroups, see [15]).
5.4. Categories of linear relations. We give hefe an independent description of the
above-constructed categories. In all the cases listed below, morphisms multiply like

linear relations.
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a) The categories U, O(IR), Sp(H). An object of the category is, respectively, a
cornplex, real or quaternion space, provided with a nondegenerate Hermitian form
Av(', .) having indices of inertia pv, qv. A rnorphisrn frorn V to W is a linear
relation L: V =* W satisfying the following conditions:

1) If (v, w) E L, then Av(v, v) ~ Aw(w, w).
2) If v E Ker L, then Av(v, v) > 0; if w E Indef(L), then Aw(w, w) < o.
3) dirn L = Pv + qw .
Such linear relations will be called contractions.
b) The categories GL(IR), GL(C), GL(H) .An object is, respectively, areal, com-

plex, or quaternion space V. Let V* be the space of antilinear functionals (f(AV) =
If( v)) on V. Consider on V EI:) V* the forms

A((Vl, ft), (V2, /2)) = ft(V2) + /2(Vl),

M((Vl, ft), (V2, /2)) = ft (V2) -/2(Vl).

The elements of Mor(V, W) are the linear relations V$V. =4 W$W. that preserve
the form M and contract the form A.

c) The category Sp(JR). lts objects are the real spaces, provided with a nondegen-
erate symplectic form {.,.}. Let V be an object in Sp(JR). Extending the form
{" .} by bilinearity to the complexification Vc of the space V, we obtain on Vc a
symplectic form M. Extending the form {" .} by sesquilinearity, we obtain on Vc
a Hermitian form A. An element of Mor(V, W) is a linear relation Vc ~ Wc that
preserves M and contracts A.

d) The category SO'. An object is a quaternion space V, provided with a non-
degenerate anti-Hermitian form L(., .) , i.e., L( v , w) = -L( w , v). Write L in the
form

L(v, w) = iA(v, w) + jM(v, w)

where M and Aare complex-valued forms. Let VC be the space V regarded as
complex. An element of Mor( V, W) is a linear relation VC ~ WC that preserves
the symmetric bilinear form M and contracts the hermitian form A.

e) The categories O( C) , Sp( C). An object of the category is a complex linear
space V, provided respectively with an orthogonal or a symplectic form L(., .) .
Let V be the same space, hut wi~ the conjugate complex structure (if v --+ V is,the
identity mapping V --+ V, then AV = Iv) and with the same, hut no longer bilinear,
form L. Let VO C V Ei:) V be the real subspace consisting of an vectors of the form
(v , iv). The set Mor( V, W) consists of the (real) linear relations VO ~ WO that
preserve the form M = Re(L Ei:) L) and contract the form A = Im(L EI) L) .

Equivalence of the definitions of categories in §§5.2 and 5.4 can be verified in the
same way as in §4. For the subspaces V + and V -we must take maximal isotropic
subspaces relative to the form M, on which the form A is respectively positive
definite and negative definite.

§6. DISCRETE ANALOGS

We confine ourselves hefe just to listing certain categories on which to one degree
or another our results can be carried over.

6.1. Algebraic groups. Let JF be an algebraically closed field of finite characteristic
p .The categories GA, B, C, GD are defined similarly to the categories in §2, with
C replaced by JF. Representations are taken over the field JF.
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6.2. Matrix groups over a finite field: modular representations. Categories are de-
fined in the same way as in § 1, with the field JF replaced by the finite field JF pn .
Representations are laken over the algebraic closure of JF pn .

6.3. Matrix groups over a finite field: complex representations. Same categories as in
§6.2, with complex representations.

6.4. Representations. In §§6.1 and 6.2, existence of representations is obvious: the
constructions of the fundamental representations in §3 are independent of the char-
acteristic of the field. As für §6.3, the construction of the Weil representation für
the symplectic group over JF pn (see [22]) can be reinterpreted in categorical terms (as
with the spin representation in §2.1).

6.5. The category of partial bijections. The objects of the category are finite sets; the
morphisms are partially defined relations. The constructions of the representations of
semigroups in [5] can be easily reinterpreted in categorical terms. The classification
theorem für representations of this category is a corollary of the classification theorem
für semigroups; see [5].

6.6. The Brauer category. An object is a finite set with an even (for definiteness)
number of elements. A morphism (J: M -.N is an arbitrary partition of the set
M u N into pairs (we assume M and N are disjoint). If kl, k2 EMu N lie in the
same pair, we write kl "'(J k2. Let (J: M -.N and lf/: N -.K be two morphisms.
Their product lf/(J: M -.K is defined as folIows: /1 "'1p(J h (/1, h EMu K) if
there exist PI = /1, P2, P3, ..., Pa = h such that für any i either Pi "'(J Pi+1 or
Pi "'Ip Pi+1 .

The Brauer duality theorem [23] easily carries over from the Brauer semigroup to
the Brauer category. Also easily carried over are the construction and the classification
theorem of Kerov [24].

6.7. The braid category. The author would like to call attention to the existence of
an obvious "hybrid" of the braid group and the Brauer category.

ApPENDIX. GEOMETRY OF SYMMETRIC SPACES
AND GENERALIZED LINEAR-FRACTIONAL MAPPINGS

Here we examine the question, somewhat to the side of the maiD theme of the
paper, of the connection between generalized linear-fractional mappings and the rich
geometry of symmetric spaces. So as not to overload the discussion, we take up only
the case of the spaces G / K = U (p, q) / ( U (P) x U (q)) ~f ~ .q .

A.I. Geometry of matrix balls. In §4.2 we described two realizations of ~. q as a
matrix ball and as an open set Lp. q in the Grassmannian of p-dimensional subspaces
in Cp+q. We can define on ~.q the following geometric structures:

a) The composite distance (E. Cartan) between matrices ZI, Z2 E ~.q. This is
the set of eigenvalues AI :?: A2 :?: ...of the matrix

(I -ZiZI)-I(1 -ZiZ2)(1 -Z2Z2)-I(1 -Z2ZI).
It will be convenient to add to the sequence AI, A2, ...an infinite number of

ones. It is known that the set of Aj is a complete set of invariants of pairs of points
with respect to the isometry group U (p, q) of the domain ~. q. If we interpret
~.q as a domain in the Grassmannian, then Ai = cosh-2 'Pi, where the 'Pi are the
hyperbolic angles between the subspaces in the sense of the indefinite metric in cp+q .
As is known [25], the Riemannian distance in ~. q is computed by the formula

1 ~ 2 1 + V'k Ak -1P(ZI, Z2) = "4 L.., In 1-=-~' rk = 4-.
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b) Projective structure. Consider the Plücker imbedding of the Grassmannian in
Cp+q into a cg+q -dimensional projective space JP. It is found that the image of
the Grassmannian in ]pi contains a certain family of lines. The inverse images of
these lines in ~,q are called the Chow fines; Chow hirnself, in [26], was considering
compact Hermitian symmetric spaces. The Chow lines are I-dimensional complex
submanifolds in ~,q, conformally equivalent to the disk Izl < 1 in the complex
plane.

The Chow lines can be represented in a more visual fashion. Suppose Vt, ~ E
Lp , q and the codimension of Vt n ~ in Vt is 1. Then the set of all subspaces
V E Lp,q such that

(A.l) (Vt n ~) c V c (Vt + ~)

constitutes a Chow line; and any Chow line is of this form.
It is important to observe that the set C(Vt, ~) of all subspaces satisfying (A.l)

is provided in a natural fashion with the structure of a projective line. The Chow
line is an open subset in C(Vt, ~) projectively equivalent to the disk Izl < 1 in the
augmented complex plane. Thus, the notion of projective mapping of a Chow line
into a Chow line is wen defined.

c) The integral distance (in the case of compact symmetric spaces a similar, hut not
directly analogous, definition can be found in [27]) n(Zl, Z2) between two points
Zl, Z2 E Yp,q is the minimallength n of a chain Zl = Xo, Xl, ..., Xn = Z2 such
that X J and X J+l lie on the same Chow line. We note that n(Zl, Z2) is equal to
the number of non-ones in the composite distance and also equal to the rank of the
matrix (ZI -Z2) .

A.2. Geometric properties of morphisms. Let Q be a morphism in the category U,
and IQ the corresponding generalized linear-fractional mapping of matrix balls.

Proposition. a) P(IQ(Zl) , IQ(Z2)) :S: P(Zl , Z2).
b) Aj(IQ(Zl) , IQ(Z2)) :S: Aj(Zl' Z2).
c) n(IQ(Zl), IQ(Z2)) :S: n(Zl , Z2).

A.3. Geometric characterization of morphisms. We call a mapping f of a matrix ball
Yp,q into a matrix ball %"s projective if:

1°) for any Chow line C c Yp,q the image f(C) is contained in some Chow
line D c %"s;

2°) the mapping f: C -D is projective.
Of course, it would be desirable to be ahle to drop the laUer requirement. But the

same difficulty arises hefe as in the "fundamental theorem of projective geometry"
in dimension 1. Namely, if f(Yp,q) is already contained in a single Chow line, then
the requirement 1° is automatically satisfied.

Theorem. Any projective mapping of matrix balls is either of the form Z -+ IQ(Z) or
ofthe form Z -+ IQ(Zt), where Q is a morphism in the category U.

The proof is in the spirit of [28], Chapter 111.
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