Commun. Math. Phys. 164, 599-626 (1994) COmmunications in
Mathematical
Physics

© Springer-Verlag 1994

Some Remarks on Quasi-Invariant Actions
of Loop Groups and the Group of Diffeomorphisms
of the Circle

Yurii A. Neretin

Chair of Analysis, MIEM (Moscow Institate of Electronis and Mathematics),
Bolskoy Vuzovskii 3/12, Moscow 109028, Russia

Received: 15 September 1993

Abstract: We construct the series of quasi-invariant actions of the group Diff of
diffeomorphisms of the circle and loop groups on the functional spaces provided by
non-Wiener Gauss measures. We construct some measures which can be considered
as analogues of Haar measure for loop groups and the group Diff. These constructions
allow us to construct series of representations of these groups including all known
types of representations (highest weight representations, energy representations,
almost invariant structures, etc.)

Introdution

In [N1, N2] there were constructed some series of quasi-invariant actions of the group
of diffeomorphisms of the circle and loop groups on functional spaces with (non-
Wiener) Gauss measures. In this paper we use results of [N1, N2J for constructing
some “new” dynamical systems for loop groups and the group of diffeomorphisms of
the circle. The paper also contains some results which are interesting for representation
theory and the theory stochastic processes.

Let Diff>* denote the group of C'>-smooth preserving orientation diffeomorphisms
of the circle S! = R/27Z. Let K be compact Lie group. We denote by L>(K)
the group of C>-smooth functions S ! — K. We also define the groups Diff' of
orientation preserving diffeomorphisms of class ! and the groups LY(K) of functions
S!' — K of class C°.

In this paper we construct the following dynamical systems:

_ the series of Diff*-quasi-invariant measures on the space Diff'/T, where T is the
group of rotations of the circle,

_ the series of Diff ™ -quasi-invariant measures on Diff!,
— Diff*-quasi-invariant measures on the space of Cantor subsets of the circle.

— L>(SO(n))-quasi-invariant measures on LY%SO(n)). These measures are also
Diff> -quasi-invariant
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— L*°(SO(n))-quasi-invariant measures on spaces of maps S! to homogeneous spaces
SO(n)/H.

Now we will briefly discuss the influence of these constructions to representation
theory. Since 1970 there were the following attempts to construct representation theory
for the groups Diff* and L>(K).

1. The most well-known is highest weight representation theory (see [Ka, PS)).

2. Representations of Diff> of finite functional dimension and the attempts to apply
the orbit method (see for instance [Ki]).

3. Ismagilov’s paper [I].

4. “Energy representations” of L>°(K) connected with the Wiener measure (Ismag-
ilov, Vershik, Gelfand, Graev, Albeverio, Testard, Hoegh-Krohn, I. Frenkel, Malliavin,
Gross, see [AHTV]).

5. “Almost invariant structures” (Neretin, see [N1-N6]).

None of the specialists (including the author) believed that it is possible to unite
these five theories, it seemed that here we had the objects of essentially different
nature. This paper doesn’t contain much representation theory. But as the result of
this paper there is union of all approaches 1)-5).

1. Invariant Measure on Hilbert Space
This section contains brief survey of classical results (I. Segal, Feldman, Hajek,

Prokhorov, Sazonov, L. Gross, etc.) on measures in Hilbert spaces (for details see the
books of Kuo [Kuo] or Shilov, Fan Dyk Tin [ShF]).

1.1. The Canonical Extension for 4,

- . . 2
Let us consider the real line R with the Gauss measure dp = e " /2dz. Denote

27
by R> the product of infinite (countable) number of copies of R provided by the

product v of the measures dy.
Propesition 1.1. ¢, has zero measure in R™.

Theorem 1.1. Let (t1, by, .. ) €4y, (2),2,, ...) € R™, Then for fixed (t,,t,, ...) the
series 3 t;; converges almost everywhere on R,

Now let us consider infinite real orthogonal matrix A. By Theorem 1.1 for almost
all z = (x|, z,, ...) the vector

ay ... z, AT+ AT, + ...
Ar = Q3 Qyy... Ty | = anz) + ez, + ... (1.1)

is well-defined.

Theorem 1.2. For each real orthogonal matrix A the map z — Az preserves the
measure v on R>,

Let us denote by O(oc) the group of all infinite real orthogonal matrixes.

Remark. We saw that the group O(co) acts on the space R> with the measure v.
Here R is the space with measure, the group O(oc) doesn’t act on the ser R°!
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Theorem 1.3. Ler b, ¢ ¢,. Then the measure v is quasi-invariant with respect to
H transformations x — x 4 h.

1.2. The Canonical Extension Jor Arbitrary Hilbert Space

Let H be real Hilbert space. Let e, ¢,, ... be orthogonal basis in H . Then we
can identify H and ¢,, the space ¢, is a subset in H , and so we have embedding
H = ¢, — R°. Extension H of H is, by definition R> > H.

It seems that the construction depends on a basis in H. Let e,¢,, ... and
fis 5 - .. be two orthogonal bases in H, let us denote the corresponding extensions
| by I:I(e,,ez, ...) and I?(fl,fz, ...). Let A be an orthogonal operator in H such
that Ae; = f,. Then the map r — Ar from I:I(el,ez, ...) to I:I(fl,fz, e,
is the isomorphism of the spaces with measures. We see that fJ (€;,€,5, ...) and
A( fi>fas o) are canonically isomorphic and hence our construction doesn’t depend
on choice of a basis.

1.3. Gross Construction of the Canonical Extension

Theorem 1.4. Ler A = (A1s Ay, ..) be a sequence of real positive numbers and
3 )\§ < 00. Let (24 be the set of all x = (@), 1,5, ...) € R™ such that 3 /\ixf < 0.
Then the measure of the set R*\2, equals zero.

Embedding 2, — R is an isomorphism of spaces with measure and so we
can replace the space R with £2 4- Thus £2, can be looked upon as the canonical

extension #, of ¢,. It is important to notice that the space §2, is the Hilbert space,
the scalar product in {2 4 18 given by the formula

{(1‘1,12, .- ')7(.7/17?/27 . )} = Z/\Jz‘rjy] .

Let us describe the same construction on invariant language. Let H be real Hilbert
space with scalar products (-,-), let A: H — H be the Hilbert-Schmidt operator, let
A*h £ 0, if h # 0. We define in H a new scalar product

{z,y} = (Az, Ay) .

| Let K be the completion of H relative to the norm Izl = {z,2}'/2 It is easy
to see that the operator A:H — H extends to the well-defined (unitary) operator
A:K — H. The probabilistic measure v in K is defined by the equality

[ exptita,uh o) = exp(—{ e, Az,

K
Then it turns out to be K = H. To see this let us consider the orthogonal bases
€1,€y, ...and f,, f,, ... in H such that Ae, = A fi(A; > 0). Let us identify H and
¢, using the basis €1,€), ... and embed ¢, to R>. Then the space K is identified
with the space 2,

K> zxifi = (@),1y, .. )R,
The space K is named Hilbert-Schmidt extension of H.

Proposition 1.2. Ler h € H. Then the measure v on K is quasi-invariant with respect
to the translation © — z + h.
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1.4. The Feldman-Hajek Theorem

Let H be real Hilbert space. Let us denote by GLO(H) the group of all operators
A:H — H of the form A = B(1 + T'), where B is the orthogonal operator and T is
a Hilbert-Schmidt operator.

Lemma 1.1. Let A be an operator in H. Then the following conditions are equivalent:
1. Ae GLO(H),

2. A*A — E is Hilbert-Schmidt operator.

Now let A be bounded operator in H. Let us identify H and £,. Then the map
x — Az [see (1.1)] is defined almost everywhere.

Theorem 1.5. Let A € GLO(H). Then the canonical measure in H is quasi-invariant
with respect to the map r +— Ax.

Remark. Of course, the group GLO(H) doesn’t act on the set /, it acts on the space
H with measure.

| Let H be a real Hilbert space, A: H — H be a Hilbert-Schmidt operator, let K
be the corresponding Hilbert-Schmidt extension of H. Let GLO(H | K) be the group
of bounded invertible linear operators A in K such that

a) h € H implies Ah € H.

b) The restriction of A to (dense) subspace H is the element of the group GLO(H)
(with respect to scalar product in H!)

The group GLO(H | K) acts on the Hilbert space K (z + Awz, it is the usual
linear operator and so A: K — K is the map of sets!) and the canonical measure on
K is quasi-invariant with respect to this action.

1.5. Space L*(H) as Bosonic Fock Space

Let O(H) be the group of all orthogonal operators in the space H. Define the
representation

T(A) f(z) = f(Az)

of O(H) in LZ(I:I ). We want to describe the decomposition of this representation.
Let H = /,. Let us consider the Hermite polynomials ho(z), hi(x), hy(z), .. .:

1
E /hj(x)hk(z)e_zz/zdx = 6ij

(degree of hj(x) equals j).
Let Ry, C L*(R™) be the set of linear combinations of all polynomials

hi@phy(x)...; 4 +i+...=K.
Proposition 1.3. a) L2(R>) is the orthogonal sum
2 Xy
L*®R*) =(PR,.
Jj20

b) The restriction of the representation T on Rj is irreducible and equivalent to the
J-th symmetric power of the identical representation of O(x) in ¢,.
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Remark. The direct sum of all symmetric powers of a Hilbert space is named the
bosonic Fock space and hence L?(H) is one of the models of the bosonic Fock space.

2. The Basic Construction

This section contains an account of the results of the papers [N1, N2] (see also [N5,
N6)).

2.1. Sobolev Spaces on the Circle

Let us denote by W* the Sobolev space, i.e. the space of all (generalized) real
functions f(p) = > ¢, '™¥ on the circle such that

‘ Z(nz+l)s|cnl2 < 00.

The scalar products in W* is given by the formula

<chei"‘f’72dneimp> = Z(nz + l)scnd_n' (21)
Remarks. 1. The space W7 is the usual L%(S").
2. If s < 0 then elements of W* are generalized functions.
3. If 5 > 1/2 then functions f € W* are continuous.
4. If s > 1 then functions f € W* are differentiable almost everywhere.

2.2. The Basic Construction for Diff>

Let Diff™ act in W¢ by transformations

T (q) f(0) = flale)d () /7. (2.2)
Theorem 2.1. T,(q) € GLO(W?).

This theorem gives us the series of quasi-invariant actions of Diff™ on the
canonical extensions of W*. The case s = 1 corresponds to the usual Wiener measure
(see p. 2.4).

2.3. The Basic Construction for IL.>°(SO(m))

Let SO(m) be the group of real orthogonal operators in R™. Let L>(SO(m)) be the
group of smooth functions S' — SO(m). Denote by W3 the space of real-valued
functions F = (f, f5, ..., f,,): S' — R™ such that f; € W* provided by the scalar
product
(FOF) =3 (£ 53,
J
The group L>(SO(m))’ acts in W3

m

QAL F(p) = A(p) F(y). (2.3)
where A(p) € L>(SO(m)).

by the transformations
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Theorem 2.2. Q(A(p)) € GLO(W?).
Proofs of Theorems. See Sects. 2.5-2.10.

Now let us notice that the group Diff>* acts on L>°(SO(m)) by automorphisms

A(p) — Alglo)),

where ¢ € Diff™, A() € L>°(SO(m)). So we can consider the semidirect product
Diff>™ xIL>°(SO0(m)).

Let us construct the action of the group Diff™ xIL.°°(SO(m)) in the space W7 .
The group L>°(SO(m)) acts by the formula (2.3) and the group Diff*™ acts by
transformations

T@F() = ¢(©"*°F(p).
Corollary. We obtained the embedding
Diff>* x L=(SO(m)) — GLO(W}).

2.4. The Canonical Extension of W*

Lemma 2.1. Let s; — s, > 1/2. Then the identical embedding W*! to W2(f — f)
is the Hilbert-Schmidt operator.

Proof. Evident.

Hence W*~!/2=¢ can be looked upon as the canonical extension W* of W* (where
€ >0).

Corollary 1. Let g € Diff™. Then
T,(q) € GLOW?® | W*~1/2-¢)

Proof is evident, the operator T,(q) is bounded in each space W*.

Corollary 2. Let A(y) € L*(SO(m)). Then
Q(A(p)) € GLOWS | W3 1/2—ey,

Let us discuss the case s = 1. The space W'/2~¢ can be looked upon as the
canonical extension of W!. For instance L2(S') 2 W° can be looked upon as the
canonical extension W' of W!. It is well. known (see [Ku]) that the canonical measure
on L%(S"y = WY is the usual Wiener measure. The support of the Wiener measure
is contained in the space C(S') of continuous functions on S and so C(S') can be
looked upon as the space 1.

Corollary. The Wiener measure in C(S') is quasi-invariant with respect to transfor-
mations

) = fpeny' ()12,
where p € Diff™,
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2.5. Strongly Equivalent Scalar Products

Let H be Hilbert space with scalar product (-, - ). Let { -, - } be another scalar product
in H. We say that (-,-) and {-,-} are strongly equivalent if there exist C > 0 and
a Hilbert-Schmidt operator T in H such that

{z.y} =C- (1 +Dx,y).

Now we want to replace the scalar products (2.1) in the spaces W* to strongly
equivalent scalar products which are more convinient.

A) Let s be nonnegative integer, s = n. Suppose

n—1 2
B0 = 2 17050+ [ 170g" @rde. @4
3=0 5

Lemma 2.2. The scalar products (- ,-),, and B, (f, g) in W" are strongly equivalent.
Proof. Evident.
B) s =k + 1/2, where k is nonnegative integer. Let

K
BK+1/2(fv g) = Z f(])(o)g(])(o)

=0
27 2w

+/ /Ctg <(p—;ﬂ> fP) g% V) depdy .
0 0

Lemma23. a) B, (-, ") is the scalar product in W*+1/2,
b) Scalar products By, /(- ,-) and (-, ), are strongly equivalent.

Proof. It is easy to see that

2

/ctg (%1’0) eV dy = sgn(n)e"¥ .

0

-

Now the lemma is evident.

¢) 2s ¢ Z. Let us consider the following bilinear form in the space C'>(S") of real
smooth functions

2r 2m
Bs(f,g)=//
0 0

It is a well-known invariant form in the representation theory of SL,(R) (see
{GGV]) and we will discuss some of its properties.

a) The integral (2.5) is convergent if s < 0. In this case

Bs(einyc7 e—im,:) — Cn(S)(S

) —1-2s
sin (“9 > "’>’ F@) gw)dpdy . 2.5)

n.m?

where
w28

B(-s—n+1/2,-s+n+1/2)"

c,(8) = (2.6)
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b) The bilinear form-valued functlon S = B <(f,9) is meromorphic on C. The poles
of this function are the points s = 0, /2, , /27 R

¢) In the case —~1/2 < s < 1/2, s # 0 the form B, is positively defined. In the case
2s € R\Z the form B, is nondegenerate and its negative inertia index is finite.

d) Let us fix 2s € R\Z. Then the Stirling formula for I'-function gives

c,(8)=C-|n|* (1 +0 <%>) N Q.7

Hence the form B,(-,-) is well-defined on the Sobolev space W%,

Corollary. Let 2s ¢ Z. a) There exist the positive defined bilinear form B on W,
such that the form ~
Y =B, — B, (2.8)

has finite rank (y(e'™?, e~"™%) = 0 if |n| of |m| are sufficiently large).
b) The scalar product B, is strongly equivalent to the scalar product (2.1).

Proof. a) see the property d),
b) see the formula (2.7).

2.6. The Proof of Theorem 2.1 in the Case s < 0, 25 ¢ Z
We have to prove that T*(q) T (g) — E is a Hilbert-Schmidt operator in the scalar

product BS( )

B(T*()T(q) — E) f.9) = B(T(q) {, T(9)9) — B,(f.9).

Let BS = B, + vy [see (2.8)]. The rank of the form v is finite. Hence the rank
of v(T(q) f.T(q)g) also is finite. So it is sufficient to prove that the operator R(q)
defined by the equality

BT f. T(@9 - B(f,9)=(R@f,g),
is a Hilbert-Schmidt operator.

B (T(q)f T(q)g) - B,(f.9)

—1-2s
( ”)‘ F@Nd "% glgw) ¢ W) * % dody

n( 2=
2

y —1-2s
) l fp)gW)dpdy . (2.9

Let p be the diffeomorphism inverse to gq. We replace the variable in the first
summand: § = g(2), & = q(x»). Then (2.9) equals

2r 2w

0)1/7+~. / )l/"+< 1
/ / PO TP = | FO) 900 do

. (1)(9)~p(h)> . ((9—h>
sin sin
2 2
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Let us denote the expression in square brackets by K(6, k). Then

1
()
sin

_ 1/2+s
P(0)p/ () sin® ( i : ”)

sin? (P(ﬁ’) - :D(f‘i))
2

K@, k)= A0, %),

2s+1

where

A0, k) = —1.

It is easy to see that A(9, k) is the smooth function on the torus S' x S, 9,6y =0,
A8, k) = Ak, 0) and hence in a neighbourhood of the diagonal § = x we have

O, k) = (0 ~ k)’ (@, K),

where the function (6, ) is smooth in a neighbourhood of the diagonal § = x. Hence
A8, k) can be represented in the form

0—k

M6, K) = sin? ( > 7(6. %) .

where 7(8, k) is the smooth function on the torus S' x S'. Thus

1—2s
K@, k) = | sin (‘t")’ 7(0,K). (2.10)

Lemma 2.4. Let L{p,,9,) be a function of the torus.

Ly = 3 ay, et e=ines.
Then the operator Q defined by equality

2n 2n

<Qfl'f2>s ://L(9917992)f1(p1)f2(992)d59|d‘pz
0 0

is a Hilbert-Schmidt operator in W, iff

D0 DT+ 1), < o (2.11)

n.m

Proof. Consider the orthogonal (in the scalar product (- .-} ), basis h, (o) = (h* +
1)~*/2¢in¢ in W Then

<Rhm' hn> = (nl + 1)7S/2(7712 + l)‘s/zﬂ O

mn
Now let us represent the function A'(6. x) in the form
k—1

K@) =) "Li(0.5) + L(0.r),

J=0



608
where
. 0—k 1-2s+7
L;0,k) = |sin ( > )i (0,
. 90—k 1-2s+k
Lk(07 K‘) = |sin ( 2 ) ,uk(ev H)v
where functions p(9), ..., p,_;(0), 11.(0, k) are smooth.

Y. A. Neretin

It is quite clear that for sufficiently large k the function IL,(6, k) satisfies the

condition (2.11).
Let us prove that

Ly0, k) = Z Gy, el gmine

satisfies the condition (2.11) (the cases of L,, ..., L, _, are analogous. Let us replace

variables
Y, =0, Y,=-0+k.

Then
Lo(y, ¥,) = |sin(¥,/2)]' 7% po(@)) -
Let
i) =Y ot
) 11)2 1—-2s .
sin 5 = Z Bye i3

Now we can rewrite (2.11) in the form
SN+ + D@+ D) ay 18,2 < .

It is easy to see that
k+0P+1<2(*+ D2+ 1).

Hence the left side of (2.12) is less than

2P+ B (0 + 1) ey ).

(2.12)

But «, rapidly decrease and hence the second multiplier is finite. Recall [see (2.7)]

that
By=C- €20 +031/8), |t - oo,

and hence the second multiplier is finite.
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2.7. The Proof of Theorem 2.2 in the Case s < 0,2s¢ 7

Let us calculate

By (QUA(p) Fy, QUA(p) Fy) — B(F\, F)

2 27 ot
()
sin<¢;¢>

2r 27
where (-, -) denote the usual scalar product in R™. The expression (2.13) equals

—2s5—1
(AP Fi(9), AW) Fy(v)) dip dip

—25—1
(Fi(p), K@) dody , (2.13)

!

2w 2w

AW A(p) ~ E
[ [ [0 R mw doas,
0 0 sin <g0—1/))

2

where A* denote the transposed matrix.
Let L(p, 1) be the term in the square brackets. Then

sin L o
2

T(p, ),
where 7(g, 9) is smooth operator-valued function. Now we can repeat the estimates
from 2.6.

Lp,¥) =

2.8. Duality

Let f € W*, g € W2, Let us consider the pairing o: W* x W% — R given by the
formula

2w
o(f.9) = /fgd¢~ (2.14)
0

Let f € W*. Then the function
Le(g)=o(f,9)
is linear functional on W ~*. Following lemma is evident.

Lemma 2.5. The norm of the functional ¢ on W72 equals to the norm of the function
S in W¢. Thus the map f — g is isometry of W* and the space dual 10 W~*.

Furthermore the pairing o is Diff™-invariant:
(T f.T_(@)g) = a(f,g)

for each ¢ € Diff>. Hence the dual operator to TAq)is T_ (™.
Thus the two following conditions are equivalent:

T(p) e GLOW®) & T_(q)"" e GLOW ™).
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Now Theorem 2.1 is proved for all s such that 2s ¢ Z.
Analogously the pairing W° x W ° — R given by

27

o (F\ Fy) = / (F\(0), Fy() dp
0

is L2°(SO(n))-invariant:
Un(A(‘P)Fl(‘P)’ A(<,9)F2(<p) =0,(F|,F).

Thus Theorem 2.2 is proved for all s such that 2s ¢ Z.

2.9. The Proof of Theorem 2.1 in the Case s € N

Let us calculate

B,T.(f T, (@9 - B,(f,9

2n
- / (F@@)d (@)™ (glg(e) ¢ (@) /™)™ dyp
0

2w

- /f‘”’(cp)g‘")(w)dso +..
0
(other summands have finite rank and we don’t write them)

2n
= / F™ ) d (@) ¢ g ()2 dy
0

2
+ > / R (@) [ () 9" (gD dy
0<i<n. 0< <n.i+j>0 §
2
- /f("’('@)g‘"’(w)dw+-~- =
0
(where R;; are some smooth functions)
2

= > /RU(c;)f("‘”(q(w)g‘"‘j’(q(cp))dcp +o

0<i<n.0<j<n, i+j>0 §

Let us consider the form

27 27

/R,_I(s:)f”’“”(q(s:))g‘"""(q(so))dso= /Ru(s«”)f""i’(sS)g‘""j’(w)dv-

0 0
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where Rij(cp) = Ri]-(q(gp))q'(’p)_l. This form is the continuous map Wn—% x
Wn=J — R. Hence the operator ;; defined by the equality

2
B.(%;f,9) = /Rij(cp)f‘"““(cp)g‘"“j)(cp)dw
0

is the pseudodifferential operator of the order —(@+j). But i + j > 1, and thus <
is Hilbert-Schmidt operator (see [T).

Remark. In the case n = 1 (the Wiener measure) the following nice formula
containing Schwartz derivative is obtained:
27{ 1 p/// 3 (pn)z
B\(T\( . T\()9) — B,(f,9) = /f(p(w))g(p(w)) 3 T de+. L.
) 29 4 @)
2.10. The Proof of Theorem 2.2 in the Case s =n € N
Let us calculate
B, (A@) Fy(9). A(p) Fy(9)) — B, (F\ (), Fy(¢))
27 2m
= / (A Fi (o)™, (A(p) Fy(0))™) dip — / (A, B () dg + ...
0 0

(we omit terms of finite rank)
2w

_ / (A FI™ (), Alp) FX™ () dip
0
27

27
Y [N @R R G - JERCEUErS
0

i20.5>0.i4j>0 0

The first summand and the last summand are equal. For other summands valid
arguments are in 2.9.

2.11. We Omit the Proof in the Case s = k + 1/2

3. Decompositions of Dynamical Systems (the Case of the Group Diff>)

In Sect. 2 we constructed a series of embeddings Diff> to the groups
GLO(W*® | Ws~1/27¢) and hence the series of quasi-invariant actions of Diff> on the
spaces with Gauss measures. Recall that the group Diff> acts on the space W™*~1/2-*
by the formula

T (@) f(©) = Flg() g (p)/2—* (3.1

and T,(¢q) € GLO(W* | W*~1/2=5) We want to discuss ergodic properties of these
actions for different s > 0.
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o. The Case s =0

3.1. This Case is Not Interesting

The space WP is the usual L?(S'). The group Diff> acts in L*(S') by orthogonal
operators

Ty f(p ) = flaleNd )2,

and thus we have the embedding Diff* — O(W?° c GLO(W?Y).
The representation of Diff> in L2(WW°) is the direct sum of symmetric powers of
representation T(g) (see 1.5).

B. The Case 0 < s < 1/2

3.2. The Scalar Product

Let us consider the following scalar product

27 27
B(f.9= / /
0 0

in W*. We have seen that this scalar product is strongly equivalent to the scalar
product (2.1).
The group Diff*™ acts in W* by the formula

T(@ f(®) = f(alp)g' () /*~° .
Now let us consider Mobius transformations of the disk |z| < 1 on the complex plane:
( o ﬁ) az+ (3
M| 5 _ )iz < ,
08 & dz+ &

where |a]* — |3]? = 1. The group of all Mébius transormations is isomorphic to the
group PSL,(R). Mobius transformations map the circle |z| = 1 to itself. Hence we
obtained the canonical embedding

PSL,(R) — Diff*

—1l-s
sin(£52)| rorawrdody ¢2)

and we can identiy PSL,(R) with the subgroup in Diff>.
Proposition 3.1. Let ¢ € PSL,(R). Then the operator T (q) is orthogonal.

This proposition is a well-known fact (Bargmann (1948), see [GGV]). The rep-
resentations T', of the group PSL,(R) are called “representations of complementary
series” (0 < s < 1).

Remark. Of course all strongly equivalent scalar products in W*° are equivalent for
our purposes. But in the case 0 < s < 1 the scalar product (3.2) is the best (it is the
only PSL,(R)-invariant scalar product in ).

In particular transformations from PS5 L,(IR) preserve the measure on Ww..
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3.3. Ergodicity

Proposition 3.2. Let 0 < s < 1. Then the action T, of PSL,(R) on the space Ws is
ergodic.

Proof. We have to show that there exist unique PSL,(R)-invariant vectors in LZ(WS).
The representation of PSL,(R) in Lz(WS) is the direct sum of the symmetric powers
S*T, of representation T, (see Sect. 1.5). The symmetric power ST, is the one-
dimensional representation. Decompositions of tensor products of representations of
PSL,(R) are known (see [Re]), and it is known that a one-dimensional representation
cannot appear in decompositions of tensor products of representations of PSL,(R).

Thus there are no PSL,(R)-invariant vectors in the symmetric powers S*T. for
k>0 0O

Y. The Case s = 1/2 (Highest Weight Case)
3.4. The Scalar Product

The case s = 1/2 is exceptional. In this case the representation T, = T, /2

T, /2(@) f(©) = fg(p))

of the group Diff> is reducible. It is evident that the subspace R - 1 of all constants
as Diff**-invariant. By this reason it is more natural to consider the action of Diff™
in the factor-space W1/2 = w1/2 /R,

Let us provide W'/2 by the scalar product

27 2nm

(f,9) = / /ctg (%p) f@) g Wydody . (3.3)
0 0

The usual considerations show that T}(q) € GLO(W') (see [N2, N6]).

Proposition 3.3. The action of PSLy(R) in W2 s ergodic.

Proof. Let g € PSL,(R). The operators T, /,(q) are orthogonal in the scalar product
(3.3). Now we can repeat the proof of Proposition 3.2.

Remark. This action allows us to construct highest weight representations of Diff>,
see Sect. 6.1.

8. The Case s = 1 (The Wiener Measure)
3.5. Invariant Subsets

Let us consider the following subsets in the space of all Wiener trajectories:

2, - the set of positiye functions [i.e. f(¢) > 0 for each ]

£2_ — the set of negative functions.

{2 — the set of functions which have zeroes.

It is evident that subsets (2,, £2_, (2 are Diff*-invariant and it is evident that
they have nonzero measures.
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3.6. Integrals

Let f € £2,. Let us consider the following functional on (2, :

2w
de
A
0

I(f)= (3.4)

Proposition 3.4. I(T\(¢) f) = I(f).
Proof. Evident.
Thus the functional I(f) is Diff°*°-invariant and the subsets

2P = {feR,:a<I(f)< B}
also are invariant.

Hypothesis. a) The conditional measures ;- on the “surfaces” I(f) = C exist for
all ¢ > 0.

b) The measures fi are Diff™"-quasi-invariant.

3.7. Imprimitivity Systems

Let a group G actonaset M. Let M = |J M, be a partition of M (i.e. M, NMgz =10
a€A
if @ # (). The partition {M_} is called an imprimitivity system if for arbitrary
g € G and a € A the set gM,, is one of the subsets M,. Let M = |J M, be the
acA

imprimitivity system. Then we have the action of the group G on the factor set A
(by definition ga = b if gM , = M,).

Now let the set M be the space with probabilitic measure p. Let M = |J M,

acA

be a partition. We define the measure « on the factorspace A. By definition a subset
E C A is measurable if the subset |J M, is measurable in M. Let £ C A be

acE
the measurable subset. Then a(F) = ,u( U A'Ia).
acE
Remark. For some partitions M = |J M, the measure & on A has pathological
a€A

properties. In fact it is necessary to control measurability of the partition (see [Ro]).
Lower measurability of partitions in all cases is quite evident.

Proposition 3.5. Let us consider quasi-invariant action of the group G on space M
with a measure p. Let M = |J M, be an imprimitivity system. Then the canonical

a€A
measure o on A is G-quasi-invariant.
Proof. Let E C A, a(E) # 0. We have to prove that a(gFE) # 0. Indeed

agE) = ,1( U Mb> = u( U M_qa>

hegFE acE

() = (Y))
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But u( UE Ma) = a(E) # 0, and hence (by a quasi-invariance)
ag
uglJMO>¢U
( (aeE‘

3.8. Projectivization of 12 .

The following lemma is evident.

Lemma 3.1. Let us define for each f ¢ 12, the subset MY = {g £2,:9/f = const}.
Then the system of subsets MY is an imprimitivity system.

Let S be the set of all substs M/ (in other words S is the space of positive
functions defined up to a multiplier). Let o be the projection of the Wiener measure
on {2, to S. By Proposition 3.5 the measure o on S is Diff™® -quasi-invariant.

Let Diff' be the group of C'-diffeomorphisms of the circle preserving orientation
and let T be the group of rotations of the circle.

Let p be an element of the homogeneous space T\Diff', this means that pisa
diffeomorphism defined up to equivalence p ~ Tg o p, where 7, € T is a rotation of
the circle. Let us define a map R:T\Diff’" — § given by

Rp)=p'(p)~'.
Lemma 3.2. The map R is bijection.

Proof. Let f € S. We can think that f is a fucntion normed by the conditon I(f) = 1,
see (3.4). Let
@

dyp

qﬁzoﬂwf

Then the map Q is inverse to the map R. [J

We se that it is possible to identify the space S and the space T\Diff'", and thus
we constructed a Diff* -quasi-invariant measure on the homogeneous space T\Diff(".

3.9. The Measure on the Space of Cantor Subsets of the Circle

It is well-known that the set of zeroes of the “general” Wiener path f(p) € £ is a
nowhere dense closed subset (see [L]).

Let ./ be the space of closed subsets of the circle (provided by natural borel
structure [I]). Let us consider the projection w: {2, — ./ defined by the following
rule: the set 7(f) is the set of zeroes of a function f. It is evident that the map
7 commutes with the action of the group Diff>. Let the measure o on .# be the
image of the Wiener measure on (2,. Then by Proposition 3.5 the measure oon .7 is
quasi-invariant.
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€ The Case 1 <s8<?2

3.10. Let s > 1

Then the space WW* consists of continuous functions and we can repeat all consider-
ations of Sects. 3.5-3.8 (and Sect. 3.9 if s < 3/2).
The invariant integral on {2, in this case is given by the formula

2m
dy
I(f) :0/ FED

€ The Case s > 2

311 Lett > 3/2

~

Then elements of the space W' are C'-smooth functions. Thus the space W* =~
W#=1/2=¢ in this case consists of functions with continuous derivatives.

Again we have three invariant subsets: the set {2, of positive functions, the set
£2_ of negative functions and the set {2, of functions which have zero.

For the case (2, it is possible to repeat all considerations of Sects. 3.5, 3.8.

3.12. Set 2,

“General” function f € (2, has a finite even number of zeroes ¢, ..., t,, and
F1(t) # 0.

Let .Qg” be the set of functions f € {2, which have 2p zeroes. It is evident that
the sets .Qép are invariant, it is easy to show that measure of !?gp is not zero.

For each f € .Qg” we construct the following collections of numbers

t t
2 2
Isl(f):/|f(90)| 25"1d¢7713p(f)=/|f«0)i 2S—ld(p.
t) t

2p

It is evident that the collection

INH B, ..., IP(f)

defined up to cyclic permutations of type

1 2 3 4
2m 2m+1 2m+2 2m+3°"7

is invariant of the function f.
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4. Decomposition of Dynamical Systems (Loop Groups)
4.1. Invariants

Let us consider the action of the group L*°(SO(m)) in W,fl constructed in Sect. 2.3.

Let s > 1/2. Then the canonical extension W of W, can be looked upon as the
subspace in L%(S!,R™).
The following statement is evident.

Proposition4.1. Let s > 1/2. For each arc(a, 8) C S! the functional
B8

Jo o) = / (f. Fde

is L>°(SO(m))-invariant.

Let s > 1. Then W,ﬁl can be looked upon as some space of continuous functions

(for s = 1 we have Wiener measure, for s > 1| elements of the space Wi \3E
are continuous functions (for small € > 0)). It is evident that for each g, € S ! the

functional
']sao(f) = <f(900), f(SO()))
is L*°(S0(m))-invariant.

4.2. Remark Random Walking on Random Sphere

Let s > 1. Here we again have the question of conditional measures:

a) Let r(p) be a nonnegative continuous function. For which T(y) does there exist a
conditional measure on the set of functions f € W3 satisfying

T, () = r(pp)
(for each ;)?
b) Is this measure L>(SO(m))-quasi-invariant?
Remark. 1 don’t know the answers to these questions. Of course conditional measures

exist almost everywhere, but there are no general theorems which provide quasi-
invariance.

Remark. Inthe case s = 1 it is possible to interpret such measures as random walking
on spheres of random radius.

4.3. Non-Wiener Walkings on the Sphere

Let s > 1 (and m > 1). Let £2 C W2, be the set of paths f € W which don’t pass
zero. It is simple to show that the measure of an\() is zero (for our purposes it is
sufficient to know that the measure of {2 is not zero).

Let 5! be an (n— 1)-dimensional sphere. Let L%(S™~!) be the set of continuous
functions S' — S™~!. The group L*>(SO(m)) acts on LO(S™~1) by evident way.
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Let us consider the equivariant map 7 from 2 C W,il to Lo(S™~1) defined by
formula
_ v

4.1
o) @b

Tf(@)
where r(9) = \/{f(¢), f(p)).

Let v, be the projection of the canonical measure in W,f. By Proposition 3.5. The
measure v, on LY%(S™~) is L°°(SO(m))-quasi-invariant.

Remark. The measure v, is not a Wiener measure on paths on the sphere.

4.4. Diff> -quasi-invariance of the Measures v,

The group Diff*™ acts on L%(S™~!) by replacing the variable:

9(p) = g(q(¥)),
where ¢(y) € Diff*°.
Proposition 4.1. The measures v, are Diff™ -quasi-invariant.

Proof. Let Diff™ act in W2, by the transformations

T,(9) f() = ¢’ () f(@)/*72..

It is easy to see that T (q) € GLO(W™) (it is an evident variation of Theorem 2.1).
Thus the group Diff> acts on the space Wnsl. It is evident that the map 7 given by
the formula (4.1) is Diff™ -equivariant. Now we can apply Proposition 3.5.

5. Comments (Dynamical Systems)
5.1. Quasi-Invariant Measures on Diff'

Let Diff! be the group of C'-smooth diffeomorphisms of the circle. In Sect. 3 we
constructed some series of Diff*-quasi-invariant measures on T\Diff! depending on
parameter s > 1. Let us denote these measures by p,.

Let us consider the map

A: Diff' — S! x (T\Diff")

defined by the formula
AMp) =p0) x B,

where p € T\Diff' is the projection of p € Diff'. It is easy to see that A is a
topological isomorphism.
Now let us provide the space S' x (T\Diff') by the product fi, of the Lebesgue

measure dp on S' and the measure H, on T\Diff!. The measure ft, is Diff*°-quasi-
invariant. But

s' x (T\Diff') = Diff' ,

and thus we can consider ji, as a Diff>*-right-quasi-invariant measure on Diff’.
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5.2. Quasi-Invariant Measures on Loop Groups

Let s > 1. Our purpose is to construct L*°(SO(n))-quasi-invariant measures on the
group LY%(SO(n)) of continuous functions S' — SO(n).

Let us denote by ILg(SO(n)) the group of continuous functions g:S! — S0(n)
satisfying the condition g(0) = F. Let L3(SO(n)) = L>(SO(n)) N Lg(SO(n)).

Step 1. The canonical embedding .°(SO(n)) — L>(SOm(n+1)/2)). Let us denote
by M,, the space of real symmetric n x n matrices.
The space M,, is a n(n + 1)/2)-dimensional real Euclidean space provided by the
scalar product
(X,Y) = tr(XY).

Thus we can identify the spaces M, and RV, where N = n(n +1)/2.
The group SO(n) acts in M, = R by the transformations

K(9): X — g'Xg.

It is evident that such transformations are orthogonal, i.e. k(g) € SO(N). Hence the
group Lg°(SO(n)) acts in WX by the transformations

w(g(@): X () = g () X () g(v) . (5.1
We have £(g(¢)) € L§(SO(N)), and hence

K(g()) € GLOWS, | Wi '27y.

Let v € M, = R"™. Let us denote by Wx[v] the set of functions f € Wi [v]
satisfying the condition f(0) = v. It is easy to see that the sets Wi,_'/ 275[1)] are
L§°(SO(n))-invariant.

Step 2. The construction of the conditional measures on ij,"/ >"“[v]. Let us notice
that W,f,_l/ 27€10] is linear space and WT{,?O) = W;,_l/ 27E[0]. It is quite evident that

w(g(p)) € GLOWXI01| Wi~ "/*~*[0]).

Let f() € WL[O]. Then v+ f(p) € W3 [v], and hence we can identify the spaces
W [0] and W [v]. The action (5.1) of L&E(SO(n)) in W#=1/2=¢[y] corresponds to
the affine action

9@): X(p) =~ g"(0) X () + g () vg(y) — v
in W;,_l/ 2_E[O] & Wﬁ, [0]. The functions 9 (@)vg() — v are smooth, hence
91 (Pvglp) — p € W5 0].
Hence (see Sect. 1.3) the canonical measure in Wf{,“l/ 2_6[0] o~ W,‘@[O] is quasi-
invariant with respect to transformations (5.2). But we have identified Vv",‘z._l/ 2_5[0]

and W,s;,']/ *~*[v] and thus we obtained L§°(SO(n))-quasi-invariant measure on the
set Wi/ ol

Step 3. Imprimitivity system on Wl‘:,—l/ ly]. Let L M, be the set of matrices
with pairly different eigenvalues. Let v € L. It is easy to see that the manifold

M, \L has codimension 2. Hence the “general path” f(y) ¢ Wy 22141 doesn’t
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intersect M, \ L (we omit the simple proof of this fact). Let 2 be the set of paths
f(p) € W*1/2=¢[y] which don’t intersect M, \ L.

Let us denote by A, the set of all collections (¢, ..., ¢,) of pairly orthogonal
lines in R™. The group SO(n) acts on A, by the evident way. It is clear that the space
A, is SO(n)-homogeneous and the stabilizer of a point is some finite subgroup I’
(I, is the semidirect product of the symmetric group S,, and Abel group (Z/ ZZ)"_P,
ie. I, =S, x (Z/2Z)"").

Define the canonical SO(n)-equivariant map 7:L — A,. Let X € L, then m(X)
is the set of eigenlines of X.

Denote by L%A,,), the set of continuous functions g:S! — A, satisfying the
condition g(0) = v. Let f € 2. Then ©(f(p)) € ILO(An)W(U). So we constructed
Lg°(SO(n))-equivariant map 2¥v — L(A,),> and hence (by Proposition 3.5) we

obtained L§°(SO(n))-quasi-invariant measure on ]LO(An),r(U).

Step 4. Lifting to L%(SO(n)). The space A, is not simply connected, the fundamental
group of A, is the finite group I',. Let us denote by JLO(An)fr(U) the set of paths

p(p) € ILO(An)8 homotopical to constant path. It is easy to show that the measure

(v)

of L%A4,)%,,, is not zero.
Let A:SO(n) — A, be the canonical SO(n)-equivariant projection such that
A(E) = w(v). This projection identifies the spaces ]Lg(SO(n)) and ILO(An)e , and

(v
hence we obtained left L3°(SO(n))-quasi-invariant measure on ]Lg(SO(n)).

Step 5. We identify the spaces L(SO(n)) and SO(n) x LYSO(n)) by the following
way:
9() = (£(0), g7 (0)g(¢)) € SO(n) x LUSO(n)).

Consider the product p, of the Haar measure on SO(n) and the measure on Lo%(SO(n))
constructed above.

Lemma 5.1. The measure i, is left L°(SO(n))-quasi-invariant.
Proof. Let h(t) € Lg°(SO(n)), b € SO(n), g(t) € Lg(SO(n)). Then

h(£)bg(t) = b[b~'h(t)bl g(t)

and for each fixed b € SO(n) the conditional measure on the fibre q(0) = b in
Lo%SOm)) is Lg°(SO(n))-quasi-invariant. Hence i, is Lg°(SO(n))-quasi-invariant.
The quasi-invariance with respect to SO(n) C L>®(SO(n)) is evident.

Remark. In fact the support of the measure y, is contained in the group
LE=121(8O(n)) of all loops of the class Cls—1/2],

5.3. Diff>-Quasi-Invariance

Let us denote by Diffy” the group of smooth diffeomorphisms ¢ of the circle satisfying
the condition ¢(0) = 0. It is quite evident (see 4.4) that the measures u, on LY(SO(n))
are Diff;"-quasi-invariant.

T'think that p is Diff**-quasi-invariant, but I couldn’t prove it. In any case there is
no problem to construct Diff*°-quasi-invariant measure on LY%SO(n)). Let us consider
the automorphism r4:g(¢) — g(i0 +0) of the group L%(SO(n)). Let uf be the image
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of the measure 41, with respect to the automorphism 7. It is easy to see that the
measure
2

o= [ utao

0

is Diff>* xIL>°(SO(n))-quasi-invariant.

5.4. Two-Side Quasi-Invariant Measures on Groups

Proposition 5.1. Let G be a group and H be a subgroup. Let us consider a left
G-quasi-invariant measure u(g) on G. Then the convolution of the measures 11(g)* u(g)
is two-side H-quasi-invariant.

Proof. Evident.
(I'am grateful to A. M. Vershik who told me this remark.)

For this reason we have the possibility to obtain two-side Diff* -quasi-invariant
measures on the group Diff* and two-side L>°(50(n))-quasi-invariant measures on
Lo(SO(n)).

5.5. Measures on Loops on Homogeneous Spaces

Let i be a two-side L*°(SO(n))-quasi-invariant measure on LY%SOm)). Let H be
a subgroup in SO(n). Consider the projection SO(n) — SO(n)/H. Then we have
the projection LY(SO(n)) to LOY(SO(N }/H and hence we have a L>(SO(n))-quasi-
invariant measure on L(SO(n)/ H).

5.6. On Shavgulidze Measures

Shavgulidze constructed a family of quasiinvariant measures on the groups of
diffeomorphisms (see [N6], [Kh], [Sha]). The relations of Shavgulidze measures and
our constructions are not known,

6. Comments (Representation Theory)

6.1. Highest Weight Representations of Diff>

Let H be complex Hilbert space. Let us consider H as a real Hilbert space Hp.
By definition the group SPU(H) consist of real-linear operators in Hp, of the form
A = U(1+T) where U is unitary (complex-linear) operator and T is Hilbert-Schmidt
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operator. It is clear that SPU(H) is the subgroup in GLO(Hy). Let us consider the
space W'/2 constructed in Sect. 3.4. Let us consider Hilbert transformation in W!/2
given by formula

27
1 o—9
Ifp)=— /Ctg (T) f@)dy.
0
It is easy to see that [ is orthogonal operator in real space W~! and I> = —1. Let

us introduce complex structure to W', by definition the operator I is multiplication
on imagine unite.

Theorem 6.1 (see [PS], [N2, N6]). Let q € Diff™. Then T\(g) € SPUW/?).

The group SPU(-) is the classical group of automorphisms of the canonical
commutation relation; this group has well-known representation in the bosonic Fock
space (so-called “Weil representation” (see, for instance [N6])). The restriction of
“Weil representation” to Diff> gives highest weight representations of the group
Diff>. Small variation of this construction gives all highest weight representations of
Diff™, see [N6].

Remark. Let p be the highest weight representation of Diff™ constructed above. Let
7 be the natural representation of Diff> in L*(W'/2). Then

T=0®0",

where o* is a contragradient representation.

6.2. Almost Invariant Structures

The constructions of Sect. 2 and construction 6.1 are special cases of “almost invariant
structures” [N1-N6].

Olshanskii [O1, O2] discovered some natural family of infinite dimensional ana-
logues of classical groups (so-called “(G, K)-pairs”) and constructed many represen-
tations of such groups.

As was shown in [N1-N6] there exist many embedding of the groups Diff™
and L.>°(K) to Olshanskii’s (G, K)-pairs, those embeddings allow to construct many
representations of Diff™ and IL°°(K) in bosonic and fermionic Fock spaces.

For some examples of “almost invariant structures,” see Sect. 7.

6.3. Representations of Finite Functional Dimension

The group Diff*™ has actions on finite dimensional spaces (for instance on S', on
S' % S, on tangent bundle T*S', etc.), and hence it has unitary representations
in functional spaces on finite dimensional manifolds (for a description of such
constructions, see [Ki]). In some exceptional points “almost invariant structures” give
direct sums of representations of finite functional dimension (see, for instance the
case s = 0 in Sect. 3).

It is interesting to notice that “almost invariant structures” Sects.2—3 connect
highest weight constructions (s = 1/2) and “trivial” construction (s = 0).
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6.4. Ismagilov’s Construction

Section 3.9 gives untrivial examples for the theory developed in the paper [I].

6.5. Energy Representations

It is quite clear that the “energy representations” of loop groups (see [AHTV]) are
related to our construction in the point s = 1.

7. Actions of Diff*° and L°>°(SO(n)) on White Noise

7.1. The Group UO(H @ iH)

Let H be a real Hilbert space. Let H. = H @ iH be the complexification of H.
Denote by UO(H ® iH) the group of operators

g= (]\ij ]{}) ‘H&iH - H®iH
satisfying the conditions
1. g is complex linear (ie. K = N, M = —I).
2. L = —M is Hilbert-Schmidt operator.
The group UO(H @ iH) contains the subgroup O(H). This subgroup consist of

i K 0
matrices o K/

7.2. Embeddings of Diff™ to UO( -)

Let s € R, s # 0. Let us define the integral operator J, in the complex space L3(S')
by the formula

2
J f(p) = /\/ i(w)z¢ 14265 ° 7.1
0 |sin < 2 >
where A is defined by the condition
J,-1=1.
It is easy to check that
Ji=1.
Let us define real subspaces H si C L*(S'):
feH & J f=xf. 1.2)

The condition J? = 1 implies L2(S') = H} & H. Observe next that
J@f) = —iJ f.
Hence f € HZ¥ implies if € HF. Thus the space L2(S') can be looked upon
as the complexification (H[). of the space H}. Now let the group Diff> acts in
L3(SYY = (H}): = H} @ iH/ by the transformations
To() f(2) = flaleD g/ (2) /37
Theorem 7.1 (see [N6]).
T,.(q) € UOH} < iH?).
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7.3. Embeddings of the Group 1L>°(SO(n)) to UO( - )

Let L*(S',C™) be the space of L2-functions S' — C™. Let us define operator J, in
L*(S',C™) by the same formula (7.1). Let us define real subspaces HE, c L¥(S',CM
by

feH!, & J f=2+f.

Let the group L>=(SO(n)) acts in L*(S!,C") = (H})c by the usual way

Qg(v)) f(@) = g(p) f(v) -

Theorem 7.2.
Qg e UOH],, ®iH],).

7.4. Embeddings UO(H ® iH) to GLO(H & iH)

Now we want to construct series of embeddings UO(H @ iH) to the group
GLO(H & iH) of space H & 1H (the space H @ iH is looked upon as real Hilbert
space). Thus we will obtain quasi-invariant actions of the group UO(H & iH) in

H & iH, and hence we will obtain quasi-invariant actions of the groups Diff> and

L>*(50(n)).
Let K L
. - |:H®tH—- H®iH
< _I K) B D
be an element of UO(H ¢ iH).
Fix k € R, let

K LY (coshk sinhs\' /(K L
T"(—L K)."(sinhﬁ coshn) (—E f()
coshx sinhk
X (sinhn COShK,) )
It is easy to see that 7, is the embedding UO(H ©iH) to the group GLO(H ®iH). In
the case k = 0 we have the non-interesting embedding UO(H $iH) — O(H®iH) C

GLO(H & iH), but in other cases this construction give untrivial representations of
UO( ).

7.5. Affine Action of UO(H & iH)
Let Z be the space of self-adjoint real-linear Hilbert-Schmidt operators

A B . .
T:(C £/):H@zH—»H@zH.

The space Z is the Hilbert space with respect to the scalar product
(1. T,) = (1| Ty).
Let the group UO(H % iH) act on the space Z by the affine transformations

o()T =g¢'Tg+g'g— F,
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where g € UO(H @ iH), T € Z. The transformations T — g'Tg are orthogonal in Z
and g'g— F € Z. Hence (see Sect. 1.3) the Gauss measure in the canonical extension
Zof Zis quasi-invariant with respect to transformations o(g).

Thus we obtained the quasi-invariant action of the group UO(H &1¢H) (and hence
Diff>* and L>(SO(n)) in 2.

7.6. Comments

A. By definition white noise is the space 12 Thus we constructed in Sects. 7.2-7.4
the series of quasi-invariant actions of Diff* and L>(SO(n)) on the sum of two
copies of white noise.

B. Analogous constructions exist for all “compact” almost invariant structures, see
[N6, O2]. Compact almost invariant structures also give actions of Diff> and L>=(K)
in fermionic Fock spaces.

Acknowledgements. 1 am very grateful to A.M. Vershik, P. Malliavin, R.S. Ismagilov, G.L
Olshanskii for discussions of this subject.
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