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Supercomplete Bases in the Space of Symmetric Functions *

Yu. A. Neretin UDC 517.9
As is known, various inner products are of importance in the theory of symmetric functions [3]. In

particular, in Macdonald's book [3], a two-parameter family of inner products is considered (this family
includes, as special cases, the classical inner product and the Hall-Littlewood and Jack inner products).
A more general family of inner products that depends on countably many parameters was introduced by
Kerov in [2]. In all these cases, the products p~ of the Newton sums form an orthogonal basis, and the
various inner products of this form differ in the normalization of the basis p~.

It was noted in [6] that, in connection with the Poisson measures, in the space of symmetric functions
there arise inner products that differ from the Kerov products. In this case, the functions p~ can be
nonorthogonal, and the simplest orthogonal (nonnormalized) basis is formed by the monomial symmetric
functions m~ (the symmetrized monomials).

In all these situations, there exists a natural unitary isomorphism between the space Symm of symmetric
functions and the boson Fock space (for a discussion of this isomorphism in the case of theclassical inner
product, see [8]). This raises the quest ion of transferring the natural structures from the boson Fock space
to the space Symm and vice verBa.

The main objective of the paper is to find out what are the images of the Gaussian vectors of the boson
Fock space in the space Symm. The answer to this question is given by Theorem 1 in the case of the
Kerov inner products and by formula (21) in the situation related to the Po~n measures.

We salve, in fact, a more general problem and consider a family of inner products (" .) K,w in Symm
that contains all the above inner products. These inner products are parametrized by a sequence w =
(Wl, W2, ...) of positive numbers and by a formal series K(h) = 1 + Lj>O xjhj and are defined as follows.
We write

L OkX~
k>O

\lfa(Xl,X2,.

set
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and thus define uniquely an inner product in Symm. The Kerov inner products are obtained here für
K(h) = exp(h) (in particular, the classical case corresponds to (AI; = j), and K(h) = 1 + h relates to the
Poisson measures.

In this more general situation, the formula für the Gaussian vectors is given by Theorems 2 and V.
Hence, in the space Symm (more exactly, in its Hilbert completion), we obtain some supercomplete bases
that consist of Gaussian vectors. Recall that by an supercomplete basis in a Hilbert space we mean a total
system of vectors that depends holomorphically on a parameter (ranging over a complex variety), and
admits an explicit formula für the pairwise inner products. As is known, it is orten convenient to develop
the analysis in Hilbert spaces using supercomplete bases (or, which is the same, "systems of coherent
states") instead of ordinary orthogonal bases.

The quest ion arises as to how the supercomplete bases can be expanded with respect to the various
standard bases in Symm. Since there are numerous standard bases [3], we present only some of these
expansions (Theorem 3).

Finally, in §3 we discuss the space ASymm of skew-symmetric functions and the problem of transferring
the Gaussian fermion vectors to the spaces ASymm and Symm.



§1. Multiplicative Boson-Symmetric Correspondences

1.1. The spaces '2("') and 1;(",). Let us choose a sequence

(&1 = ((&11, (&12, ..

) satisfying the conditionof positive numbers. Denote by l2 (C.&J) the space of sequences 0 = (01, 02,
E; 10;12C.&J; < 00. The inner product in l2(C.&J) is given by the formula

Denote by l2(W) the space ofsequences a = (al, a2,".) satisfying the condition E; lajl2/Wj < 00.
inner product in l2(W) is given by the formula

00 -

(a,ß)=L~ .
j=1 UJj

It is natural to regard l~(UJ) as the dual space of l2(UJ), where the pairing l~(UJ) x l2(UJ) ~ C is given by
the formula {a, ß} = E ajßj .

1.2. Tbe spaces 1P(IAJ). Let a sequence UJ be of at most exponential growth, i.e., let there exist
numbers C and 0" such that UJj ~ Cexp(O"j) for al1 j. Suppose that a E l2(W). Then the series

j(z) = Lajzj (1)
j>O

is convergent in the circle Izl < p := exp( -0"). Here we have 1(0) = O. Thus, the space 12(tü) is
interpreted as the Hilbert space of the functions (1), which are holomorphic in the circle Izl < p, that is
endowed with the inner product

= }: (t;ßjUJ; .
;>0

La.;z;, Lß;z;
;>0 ;>0

We denote this space by H2(f.I)).
The reproducing kernel of the space H2(f.I)) is expressed by the formula

zjuj
K(z,u)=L-.. 0 f.l)jJ>

(2)

This means that, für an arbitrary function f E H2(w) and any a belonging to the circle of convergence,
the following reproducing propeTty holds:

(/(z) , K(z, a))H2(W) = f(a)

Example 1. Let 1.1); = j. Then

j'(z)9l(Z) dz dZ

and K(z, u) = -In(! -zu)

Then the innerExample 2. Let (Al; = j(l- qj)j(l- tj) for some q, 0< q < 1, and t, 0< t < 1
product in H2((Al) is given by the formula

(3)!' (z) g'(-;) dz dZ,
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and the reproducing kernel of the space H2(UJ) is

K(z,u).=ln (4)
n .1 -~ut~
n~O 1 -zuqn

Formula (3) für the inner product in the space of holomorphic functions is somewhat unusual. For some
other inner products of a similar type, see [7].

1.3. Boson Fock space. Let H be a Hilbert space. A boson Fock space F(H) is a Hilbert Space in
which a system of vectors (an "supercomplete basis") <I>h indexed by the vectors h E Hischosen such
that

(a) «I>h,<I>h')F(H) = exp(h', h)H);
(b) the linear span of the vectors <I>h is dense in F(H).
With each vector q E F(12(w)) we associate a function / = /q on '2(W) that depends holomorphically

on Z = (Zl, Z2, ...) according to the formula

/q(Zl,Z2,"') = (q,<lI(Zl/loIl,Z2/1oI2 »)F(12(1oI»' (5)

For example, to an element <lI(al,a2 ) ofthe supercomplete basis, the function exp(Ezjäj) corresponds.
We identify the boson Fock space F(12(UJ)) with the space of holomorphic functions /q(Zl, Z2,... I on

12(UJ) .
hf .k1k2' "'~, .."~'

T e unctlons Zl Z2 .-'--- .".~".- --, ;..form an orthogonal basis In F(l2(CU)). and we have

Ilz~lZ;3.. .112 = II(cu;; .k;!). (6)

1.4. The space of symmetric functions. Let Xl, X2, ...be a countable set of formal variables.

By a symmetric fonnal series we mean a formal series in the variables Xl, X2, ...that is not changed

under arbitrary permutations of the variables. A symmetric polynomial (a "symmetric function" in the

sense of [3]) is a symmetric formal series such that the degrees of the monomials X~l X~3 ...it involves

are bounded; note that the number of terms in a (nonconstant) symmetric polynomial is infinite. We

denote the space of symmetric polynomials by Symm or by Symm(x) if it is important to stress that the

polynomials in quest ion are symmetric with respect to the variables Xl, X2, Recall the following standard notation (see [3, §I.2]):

Pk = Pk(X) = x~ + x~ +..., m~(x) = m~l."~'(x) = Lx;: ...xJ:,

where A; > O. In the second sum, the monomial X~lX~3... and all (different) monomials that can

be obtained from it by permutations of factors are added together. It is convenient to assume that

AI~A2~ 1.5. Boson-symmetric correspondences. Let cu = (CUI, CU2, ...) be a chosen sequence. Following

Kerov [2], we introduce an inner product (. , .)", in the space Symm by means of the condition that the

vectors p~l ...P~o form an orthogonal basis and

IIp~l...p~all~=llkj!lAJ:j. (7)

Remark. (a) The classical inner product in Symm [3, §I.4] corresponds to the sequence IAJj = j.
(b) For the inner products corresponding to IAJj = j (1 -qj)j(l -tj) (in Sec. 1.2), see [3, §§1II.5, VI.6].

Consider the completion Symm(.l of the space Symm with respect to the norm defined by the inner
product (" .)(.1' We introduce the unitary operator I: F(12(1AJ)) -+ SYmffiw under which to any holo-
morphic function f(Zl, Z2, ...) E F(h(IAJ)) (where Z = (Zl, Z2, ...) E l2(1AJ)) the formal symmetric series
f(Pl(X), P2(X), ...) corresponds. In other words, we simply perform the substitution Zj = Pj(x) (by

formulas (6)-(7), this operator is, in fact, unitary).
For example, to an element

exp
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of the supercomplete basis, the symmetric formal se ries

exp E Symmc.J

corresponds.

1.6. Gaussian vectors. The supercomplete basis <I>h E F(12(fJJ)) can be included in a broader
supercomplete basis consisting of the Gaussian vectors b[Qlr]. These vectors (or functions on '2(fJJ)) are
defined by the formula

exp
1
"2 LqijZiZj + LrjZj E F(12(w)) , (8)

where qij = qji. Denote by n the diagonal matrix with diagonal elements wI, w2, A vector b[Qlr]
is contained in F(12(n)) if and only if the following conditions hold:

(i) rE '2(w) ,
(ii) R:= n-l/2Qn-l/2 is a Hilbert-Schmidt matrix (that is, the trace of the matrix R* -is finite),

(iii) the norm of the matrix R (in the sense of the operator norm in the (ordinary) spate l2) is less than
unity.

The inner products of the vectors b[Qlr] (provided that they actua11y belong to F(12(w))) can readily be
calculated; for instance, see [5, §6.2].

However, from the viewpoint of the present paper, it is more natural to interpret expression (8) as a
formal series, disregarding the above conditions (i)-(iii).

Let us find out what symmetric functions correspond to the Gaussian vectors b[Qlr].

Theorem 1. The element 0/ SyDlInw that con-esponds to a vector b[Qlr] is given by the formula

rn + ~ L qa.8)xi
a+.8=n

The proof is obvious. The symmetric formal series corresponding to b[Qlr] is

~ LqmnPm(X)Pn(X) + LrnPn(X)}

1 ~ ( m m )( n n ) ~ ( n n -
"2L..1qmn Xl +X2 +... Xl +X2 +... +L..Irn Xl +X2 +...

The i further transformations are quite clear.

Remark. Thus, to the Gaussian formal series b[Qlr] of the form (8) precisely a11 possible products of
the form

exp

=exp

fIS(Xi, Xj) .fIT(xi)
i>j i

T(x) = 1 + L tnxn
n>O

1.7. Example: the Virasoro algebra and the images of the Gaussian vectors. Let W; = j.
Choose 0, ß E C. Let us consider the representations of the Virasoro algebra in the Fock space F(H2(W»
by means of the operators Ln (where n E Z) that are given by the following standard formulas (e.g.,
see [4, 5]):

+~ L
k+m=n

k>O, m>O

(9)ZmZk + (a + ißn) Zn für n > 0,

~ 8 1La = L.., zkk -8 + -(02 + ß2).
Zk 2Lk:=L~k für k < 0, (10)

13

correspond, where the formal series Sand T have the form

S(x, y) = 1 + L smnxmyn, Smn = Snm,
m>O,n>O



In this case, the relation

38(X) = II ~..-=~
"> .Xi -X ,'I ,

where 6(z) ranges over the functions of the form
.llO'(Xi)l+O .II

i i

L( ) -~ l;1;2... il i2 -;1-;2
Z,U -L., ili2...Z1 Z2 ",Ul U2 Set lz(u) := L(z, u). Fu:rthermore, let L: F(l2(CU» ~ F(l2(V» be the operator deflned by the formula

Lf(z) = (J, lz)P(12(w».

Recall (e.g., see [5, §6.1]) that any bounded operator from F(l2(CU» into F(l2(V» can, in fact, be repre-

sented in this form.

We now describe how the corresponding operator

2: Sy~(y) ~ SYmm.,(x)

can be defined. Consider a formal series 2(XI, X2, ..., YI, Y2, ...I (a bisymmetric kemel) that is symmet-
ric with respect to the set of variables Xl, x2, ...and also with respect to the set of variables YI, Y2, ...

and is given by the formula

2(x, y) = L(PI(X) , P2(x),... ; PI(Y),P2(Y),...) = Ll{:I: pl(x)ilP2(x)i2 ..'PI(y)jlP2(y)j2 '" .

In this case, we have

Zg(x) = (g, ~Y))Symm",(y) .
1.9. Gaussian operators. A Gaussian operator from F(12(w)) to F(12(v)) is an operator with a

kernel of the form

L(z, u) = exp {~(z u) (~

llexp
Q>ß

II exp
0,.8

L kijX~xip
i,j

.I1 

exp
o>ß

x llexp
0

L lijX~~
i,j

14

fJ(z) = z + fJ2z2 + fJ3z3 + ...
that are one-sheeted in the circle Izl < 1 + e (where e = e(fJ) > 0).

L mijY~~
i,j



1.10. Example: the bisymmetric kernel of the identity operator. The kernel of the identity
operator in F(l2(U;)) is given by the formula

~~
L." f.A) i

L(z, u) = exp

Note that the argument of the exponential function is the reproducing kernet of the space H2(1AJ) (see
Sec. 1.2). The corresponding bisymmetric kernet Z is

L~w.I
2(x, y) = IIexp

0./3
(11

In particular, in the classical case Wj = j

~(x,y) = II(I-xoY.8)-l
0..8

and, by (4), far "'j = j(l- qi)/(l- V) we have

~(x, y) = n n 1- XaYßtqn
a.ß n:?;O 1 -XaYßqn

.We can now compare what has been said with same known theorems. Given an inner product (. , .) in
the space Symm such that the subspaces of homogeneous polynomials are pairwise orthogonal, consider a
homogeneous orthonormal basis U{(x) in the space Symm. The reproducing kernel für the inner product
( " .) is defined by the formula

We can readily see that the operator in SYInInw that corresponds to the bisymmetric kernel (14) is exactly
the identity operator (in particular, this means that expression (14) does not depend on the choice of the
basis u~). Therefore, (11)-(13) are formulas for the reproducing kernels. Formula (12) is classical [3, 1.4].
Formula (13) belangs to Macdonald [3, VI.2] (also see [3, §III.4] i the formula for the reproducing kernel
in the case of the Jack polynomials can be derived in a similar war (see [3, VI.10])). Formula (11) was
discovered by Kerov [2].

§2. Nonmultiplicative Boson-Symmetric Correspondences

2.1. The hages q(x). Choose a formal series

K(h) = 1 + Lx;h;,
;>0

(15)

where Xl # o. Consider the symmetric formal series

lIta(x) = IIK(Laj~
( j>O

(16)

where the product is taken over all variables X~ = XII X21 Let us expand the expression W Q in aseries with respect to the variables all 02 I .

L
nl,n2,

anlan21 2Wa(X) = .(x)Qnl,n2'

We can readily see that the symmetric polynomials Qnl,n2 (X) = Q~.n2.

in Symm.
(x) form a homogeneous basis
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Example. If K(h) = exp(h), then

If K(h) = 1 + h (see Sec. 2.3), then the basis q consists of the monomial symmetric functions m~; see
Sec. 1.4.

2.2. Boson-symmetric correspondences. Let us choose a formal series K(x) (see (15)) and a
sequence (A) (see 1.1). Introduce the inner product (" .)K,IAI in Symm by means of the condition that
the polynomials q~.n2 (x) form an orthogonal basis and

nJ

K 2 - n Wj
IIqnl,n2,...1I -~. n"

We also give an equivalent (but more convenient) definition of the inner product (" .)K,w by introducing
it on the elements of the supercomplete basis \1f 0 in the following way:

Lß;~
;>0

llK
~

La;~
;>0

(17)=exp(wo, W,B}K,IAI =
K,III

Denote by SymmK,1II the completion of the space Symm with respect to this inner product (it is clear
that the elements of SymmK,1II can be realized as formal symmetric series).

A unitary isomorphism between F(l2(!.AJ)) and SymmK,1II is established as foliows: with an element
ibo E F(l2(!.AJ)) (see 1.3) we associate the element Wo E SymmK,III. By condition (a) in Sec. 1.3 and
formula (17), this correspondence defines, in fact, a unitary operator.

Consider an arbitrary function
nz.'

II~/(Z1, Z2,.

in F(l2(i.AJ)). We can readily see that the symmetric formal series corresponding to this function is

We now state this assertion in a somewhat different manner. Consider the set Jl/[M1, ..., Mk; PI, ...I Pk]
consisting of all ( = {(I, (2 I ...} E n such that the intersection of ( and M j is comprised of exactly
j points. Then the measure 1I(Jl/[M11... I Mk ; PI, ...I Pk]) of this set is given by formula (19). If
jJ.(C*) < 00, then the measure 11 is supported by the set of finite subsets in C*. If jJ.(C*) = 00 I then the

support of 11 is the space of sequences convergent to o.
With a symmetric polynomial f(X11 X2, ...) we associate an ordinary function (defined almost every-

where) on n according to the following rule. Let ( = {(lI (21 ...} E n. Then the function in question

16

$(x) = LCnl.n2,...q~.n2""(X).

2.3. Example: K(h) = 1 + h (see [6]). Consider a measure J1. on C' = C \ 0 that is invariant with
respect to the rotations. We assume that J1. satisfies the following condition: an the express ions

1 2' UJj= IzIJdJ1.(z), ;=1,2,..., (18)
c.

are finite. In particular, the measure of any disk Izl ? E: is finite (however, the measure of the entire space

C' can be infinite).
Denote by n the set of all at most countable subsets of C'. Let us introduce the Poisson measure

11 on n. Recall its definition. Suppose that MI,"" Mk are pairwise disjoint subsets of finite measure
in C'. Then the probability that Mj contains exactly Pj points (for all ;) is



is obtained by the substitution Xl = (1, X2 = (2, The resulting series are, in fact, convergent in

L2(n, LI).
Thus, the space of symmetric polynomials can be embedded in the space L2(n, LI), and hence an inner

product is induced on the space Symm (note that Symm is not dense in L2). It turns out that this inner
product corresponds to the function K(h) = 1 + hand the sequence w; in formula (18).

Theorem 2. To the vector b[Qlr] E F(12(IAJ» there corresponds an element ~K[Qlr] of the spare
SymmK,1oI that is defined by the formula

II
'YEedge(r)

where the summation extends ouer all rigged graphs r.

The factorial coefficient in this formula can be deleted by means of a linguistic transformation that is
performed in Secs. 2.5-2.6.

Example. Let K(h) = 1 + h. Denote by ~ the set of all partitions of the set 1,2,3,... of positive
integers into two- and one-point subsets among which there are only finitely many two-point subsets. Then
relation (20) can be rewritten in the form

L ( II Q(Xa,Xp). II (l+f(Xu)))
seIN; {a.P}es {u}es

where the summation extends over all partitions of the set of positive integers (or, equivalently, over all
partitions of the set of variables Xl, X2, ...) satisfying the above condition and {a, ß} and q ranges over
all two-point and one-point subsets of the partition S E ~, respectively.

2.5. Tangles. Let N be a countable set. In what folIows, N will coincide with the set N of positive
integers or with the set ..2:" of symmetric variables Xl, X2, With every element a E N we associate a
nonnegative integer La so that alt the numbers La, except for finitely many of them, are equal to o. This
set of data will be called a configuration over N. It is convenient to imagine that we choose points flom
the set N, and La is the number of occurrences of the point a. To avoid any possible ambiguity below,
we state a more formal definition.

Bya configuration over N we mean a pair (L, 11"), where L is a finite set and 11": L --+ N is a mapping.
Two configurations (L, 11") and (L', 11"') over N are said to coincide if there exists a bijection (): L --+ L'
such that 11" = 11"' 0 () .

2.4. The images of the Gaussian vectors. By a graph we mean a nonoriented graph with finitely
many edges (the set of vertices is assumed to be infinite), and we admit multiple edges (i.e., there can
be several edges flom ODe vertex to another) and loops (i.e., edges flom a vertex to itself). By a rigged
graph we mean a graph whose vertices are same variables Xl, X2, ...and to each of whose vertices Xi, a
nonnegative integer Wi is assigned (we call it a makeweight), and all makeweights Wi, except for finitely
many of them, must be equal to O.

For a rigged graph r we introduce the following notation:
.Sij is the number of edges flom Xi to X j ; in particular, Sii is the number of loops with the beginning

and end at Xi j
.mi (the weight of a vertex) is the number of edges issuing flom Xi plus the makeweight Wi; in other

words, mi = Wi + 2Sii + Ej~i Sij;

.edge (r) is the set of edges of the graph r;
.u('Y) and v('Y) are the endpoints of an edge 'Y.
We next consider a Gaussian vector b[Qlr] E F(12(f.IJ)). Set



-~ A qK-L., nl.n2 nl,n2.
nl,n2 where the coefficients Anl,n2 are calculated by the fonnula

A -'"'n"n, -"T-

In th", formnln, th, 'nmmotion nnd multipli"'tion "'md 0", 01/ row 'ul, ond nll row, of th, d;ngrom

E = (In, 2"' J, """",,1., ond th, ft,ndiona '" n" d,ftn'" ;n th, P",,;ona """dion

Proof, Th. proof;g redu,oo to th. dir"" "',ula'ion of 'h, "P""'on

8' 8
-+ L'i a;;;

(26)

L qij aai~

§3. Space of Skew-Symmetric Functions
3.1. Fermion Fock space. Let..., f.-l, f.o, f.I, f.2, ...be a set of anticommuting variables (i.e.,

f.if.j = -f.jf.i). Consider the space A whose basis is formed by all monomials

19

1"IJIfIn other words, to make a row cut means to take an ordered partition for each row of the diagram.
With every piece of a rO-w cut we associate a positive integer equal to the length of this piece. Then

the set of pieces of a row cut T can be regarded as a configuration over N. We denote this configuration
by 'YJI'T. Furthermore, für a given row cut T, denote by (. = (. (T) the number of pieces into which the
row with index s is cut.

Theorem 3. Let M(h) = K(Lj>O O"jhj). Then

I.BM[Qlr

{
We can write down the factor exp { } using formula (24) and then directly calculate the derivatives,

after which the numerous factorials are canceled out.

Remark. In particular, we obtain formulas for the expansion of the functions i:BK with respect to the
monomial symmetric functions m~ and also with respect to the functions p~lp~2 ...(which makes sense
in the case of K(h) = exp(h) or K(h) = 1 + h). Curiously, the form of the expansions relative to the
other standard bases (e,\, h,\, and the Schur functionsj see [3J) closely resembles that of (26) (we omit
these formulas).

Remark. Consider two operators /1: F(12(cu) -+ SymmM,... and /2: F(12(V) -+ SymmK,u. We have

nl n2 -I
J ( ) """" ZI Z2 ".(/2 /lb[Q/r) Z = L.,Anl.n2,... '-'--'

nl.n2.. "



Consider a configuration (L, 'Ir) over N. For any a E N, we denote by La the number of points in the
preimage of the point a. This number is called the multiplicity of the point a in the configuration (L, 'Ir) .
Obviously, two configurations coincide provided that the multiplicities of all points in the set N coincide.
Thus, we return to the definition of a configuration in the beginning of this subsection.

Let (L, 'Ir) be a configuration over N. By a tangle on (L, 'Ir) we mean a partition of the set L into

two- and one-point subsets: ! I I I I I I

~ @~: NI : b: : ~~~

I I I I I I
@ @N: '" '" '" '" '" '" ..'

The asterisks, the heavy points, and the points in the circles in the figure mark the elements of the set N ,
the elements of L, and the one-point sets, respectively, and the arcs join the elements of the two-point

sets.
Denote by tng(L,'Ir) the set of all tangles on a configuration (L, 'Ir), by one(S) the set of an one-point

subsets of a tangle SE tng(L, 'Ir), and by two(S) the set of its two-point subsets.

2.6. Another formula for Gaussian vectors. Denote by !J: the set of all variables Xl, X2, ...and
by Conf (:J:) the set of all configurations over !J:. Then Theorem 2 can be stated as follows.

Theorem 2'. To a Gaussian vector b[Qlr] E F(l2(/JJ» there corresponds an element ~K[Qlr] of

SymmK,1oI that is detennined by the fonnula

n "I.
i

r(XT;) ):}:
LeConf( :1:)

Q(XOi' Xßi)'BK [Qlr](x) = II
{ZTj } Eone(S)

L n
SEtng(L) {ZQi.Z~i}EtwO(S)

where li is the multiplicity oJ the variable Xi in the configumtion L.

Proof. We must prove that the coeflicients of the expansion of the right-hand side of formula (22) with
respect to the functions m~ coincide with those in formula (26) below. The equivalence of Theorems 2

and 2' follows frorn formula (25).
2.7. The functions 9t[Qlr]. Let Q = Q(n,n) = qnn be a function on N x N such that Q(n,n) =

Q(n, n) and let r = r(n) = rn be a function on N. Define a function 9\[Qlr] on the set of configurations

by the formula

L 9t[Qlr] (lI , h,
11.12,'"

-exp

and, second,

(25)
Si; S- t-II q-" q .. r . " ii i

-:;-:-:i ll2siiS:-:"i ll- t "'
-> " "." ". -,., " ,

where the summation extends over all sets of nonnegative integers Si; and ri such that Si; = Sji and

für all j

18

SEtng(L..-) {a,,6,}Etwo(:i)

where Ln is the multiplicity of the point nE N in the configuration (L,1r).
We state two more definitions of 9\[Qlr](L1,L2, ...). First,

I
z!

.) I:I 1;'
1



3.2. The standard supercomplete basis. Nonformally speaking, the standard supercomplete basis
in A consists of the products ll(~)l2(~)... , where l;(~). are linear forms. Since these products can be
divergent, this definition must be stated more accurately.

First method. Let C = {Cij} , i = 1, 2, ..., j = 0, 1, 2, ..., be a Hilbert-Schmidt matrix (that is,
trC.C < 00). We set

(28)

Then
(3(C), 3(D))A = det(1 + CD.)

(and, in particular, the norm 113(C)IIA is finite).
Second method. Let R = {Ti;} be a matrix in which i and j range over the integers 0, -I, -2, ...

and over the set Z, respectively, so that Ti; = 0 for j < i. Suppose that Tii = 1 for an i with sufficiently
talge absolute values. We set

:= ~
C7ES~

-1
)17 XOO+QO XOO+Ql

/7(0) /7(1)800,Olt (30)

(where Oj = -j für alllarge j). Bya skew-symmetric polynomial we mean a finite linear combination of
the formal series Sao,01' Denote by ASymm the space of all skew-symmetric polynomials. The inner
product in ASymm is defined by the condition that the polynomials 800,01,... form an orthonormal basis
in ASymm.

Rema,rk. Let us denote by ASy~ the space of polynomials in n variables that are skew-symmetric
with respect to the permutations of the variables. Any of these polynomials has the form

g(xo, ...,Xn-l) .II (Xi -Xj),
O~i<j~n-l

where g(xo,..., Xn-l) is a symmetric polynomial. The canonical projection 1I"n+l: ASymIDn+l -+
ASymIDn is defined by the formula

(7rn+lf)(xo1 ., Xn-l, 0) .(XOXl . Xn-l)-l.Xn-l) = f(xo.

20

,

Ir the parentheses were formally removed, then there would appeal uncountably many terms in this
expression. However, we require that only the first term be taken from eaf.h of the parentheses except für
finitely many of them.

'In any case, expression (29) makes sense as a formal series with respect to the basis (27). However, the
norm 113(R)IIA may happen to be infinite.

Remark. Expression (28) has the form (29). Moreover, it can be represented in this form in many
ways. At the same time, expression (27), which has the form (29), cannot be represented in the form (28).

3.3. The space of skew-symmetric functions. Let us introduce the formal symbol 00. By a
pseudomonomial we mean an expression of the form

X oo+ao X oo+al0 I '" ,

where it is assumed that aj = -j für a11 sufficiently large j. A pseudopolynomial is defined as a (generally,
infinite) formal linear combination of pseudomonomials.

By a skew-symmetric formal series we mean a pseudopolynomial that is skew-symmetric with respect--
to the group 800 of a11 finite permutations of the variables Xl, X2, Denote by ASymm the space of
a11 skew-symmetric formal series.

Consider the skew-symmetric formal series



In this case, ASymm is the inverse limit of the spaces ASym~ in the category of Z-graded spaces (we
assume that the degree of homogeneity of the series 500,01,... is equal to L;(O; + j)).

Remark. Let f(x) be a skew-symmetric formal series. Then

f(x) = (XÖXr'-lX,:-2 .)g(x) ,

where g(x) is an ordinary formal series in positive and negative powers of Xi (i.e., an infinite linear
combination of monomials of the form X:OX~l ...X~', where ßj E Z). Let Pijg(x) be the expression
obtained flom g(x) by transposing Xi and Xj (where i > j). Then

Conversely, if g(x) satisfies this condition, then expression (31) is a skew-symmetric Reries.

3.4. The fermion-skew-symmetric correspondence. The natural isomorphism between the space
of skew-symmetric functions and the fermion Fock space is defined as folIows: to a vector f.oof.o1 ...we
put into correspondence the skew-symmetric function 800,01,... defined by formula (30).

3.5. The supercomplete basis in the space of skew-symmetric functions. Consider the system
of functions

qj(X) = ~ a(j}xkL.., k ,
k?;O

j = 0, 1,2,...,

where a~) = 1 ror a1l sufficiently talge j, and the skew-symmetric function

qo(xo) xl1qO(Xl) X22qO(X2)

XOql(XO) ql(Xl) X21ql(X2)

xäq2(XO) Xlq2(Xl) q2(X2)

- (X ~ X ~-l X~-2
-0 1 2 ). det3[QO,Ql,...

(in this determinant, we take products that differ from QO(XO)Ql(Xl)... only in finitely many factors).
We can readily see that the skew-symmetric function S[ql, Q2, ...] corresponds to the vector S{ R} E A

. b fi 1 (29) . h (-i+ 1)glven y ormu a Wlt rij = aj-i+l .

3.6. The correspondence between skew-symmetric and symmetrie functions. Denote by 6-
the skew-symmetric function

~
Xa

1-

il = II (Xi -Xj).

O~i<j<oo

Let f be a symmetric function. Then f. il is a skew-symmetric function and f t-+- f .il is a unitary
operator flom the space Symm of symmetric functions (depending on Xo, Xl, ...) that is endowed with
the classical inner product into the space ASymm of skew-symmetric functions.

Remark. The operator f t-+- f .il is none other than the boson-fermion cofTespondence (see [8]).

3.7. Examples. (a) The functions 801,02". E ASymm correspond to the Schur functions (see [3]) in

Symm (see [8]).
(b) Supercomplete boson basis. Let q(t) = 1+ Lk>O aktk. Consider the symmetric function n~o q(x;).

We can readily see that the related skew-symmetric function is 3[q, q, ...], and the related element of the

21
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It is convenient to imagine or to assume, by definition (this is a kind of normalization für the symbol 00),
that



fermion Fock space is 3(C(q)) (see (28)), where the entries Cij(q) of the matrix C(q) are found from the
relation

q(z)/q(u) -1~ Ci;(q)ZiU; =' ~ --.
L.., z-u

i,;?;O

(c) Images of fermion vectors in the boson space. Let C(~)EA. Then, by (5), the corresponding element
gE F is .

= {c(~),3[C(q%)])A.,g(Zl, Z2, ..

where

qz(t) = exp L~
J ,

In particular, the function corresponding to the vector 3(A) is det(1 + AC(qz». .
(d) The Virosoro algebm. Let (} be the same function as in Sec. 1.7. Then, in the notation of (32), we

have

8{Xi) -8{Xj)

Xi -Xj
6.II

i>;

= ll(6(Xi)'- 6(xj» = :[6,62,03,...
i>j
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