## Differential operators on Lie groups

## Yu.A. Neretin

In this note we study the structure of the algebra of differential operators on a Lie group generated by all left and right Lie derivations.

1. Let G be a Lie group,  $\mathfrak G$  its Lie algebra,  $U(\mathfrak G)$  a universal enveloping algebra for  $\mathfrak G, Z$  the centre of  $U(\mathfrak{G}),\ U(\mathfrak{G})^T$  the opposite algebra to  $U(\mathfrak{G}),\ \mathcal{C}^{\infty}(G)$  the space of smooth functions on G, and C(G, e) the space of generalized functions on G with carrier e (e is the identity of G). The algebra  $\circlearrowleft$  acts on  $C^{\infty}(G)$  by left and right Lie derivations, which we denote by  $L_X$  and  $R_X$ , respectively  $(x \in \mathfrak{G})$ 

$$(L_x f)(g) = \frac{d}{dt} f(\exp(tx) g) |_{t=0} 5(R_x f)(g) = \frac{d}{dt} f(g \exp(tx)) |_{t=0}.$$

We consider the algebra S of differential operators on G generated by all the operators of the form  $L_X$  and  $R_X$ . The algebra generated by  $R_X$  alone is isomorphic to  $U(\mathfrak{G})$  and that generated by  $L_X$  to  $U(\mathfrak{G})^T$  (since L acts on the right). Because the left and right Lie derivations commute, S is a homomorphic image of  $U(\mathfrak{G})^{T} \otimes U(\mathfrak{G})$ . Let us find the kernel of this homomorphism.

2. Now  $U(\mathfrak{G})^T \otimes U(\mathfrak{G})$  acts on  $C^{\infty}(G)$ .

us

it.

t s

ıré

ous

27

168.

1980

**Lemma.** The annihilators of  $C^{\infty}(G)$  and C(G, e) in  $U(\mathfrak{G})^T \otimes U(\mathfrak{G})$  are the same.

Thus, it suffices to find the annihilator of C(G, e). As is known (see, for example, [2]), there is an isomorphism between  $U(\mathfrak{G})$  and C(G, e). Let  $x_1, \ldots, x_k \in \mathfrak{G}$ . Then to the element  $x_1x_2 \dots x_k$  of  $U(\mathfrak{G})$  there corresponds the generalized function  $\theta(x_1 \dots x_k)$  defined by the formula

$$\langle \theta(x_1 \ldots x_h), f \rangle = (R_{x_1} \ldots R_{x_h} f)(e).$$

We transfer the action of  $U(\mathfrak{G})^T \otimes U(\mathfrak{G})$  from C(G, e) to  $U(\mathfrak{G})$ . It can be verified directly that  $U(\mathfrak{G})^T \otimes U(\mathfrak{G})$  acts on  $U(\mathfrak{G})$  by left and right multiplication. Since left and right multiplications by central elements are the same, our action is, in effect, an action of the algebra  $U(\mathfrak{G})^T \otimes_Z U(\mathfrak{G})$ , which is a factor algebra of  $U(\mathfrak{G})^T \bigotimes U(\mathfrak{G})$ .

The mapping from  $U(\mathfrak{G})^{\mathbf{T}} \otimes_Z U(\mathfrak{G})$  into S may have a non-zero kernel. The simplest example of this is the 3-dimensional soluble Lie algebra with basis x, y, z satisfying [x, y] = y, [x, z] = z, and [y, z] = 0. It can easily be verified that  $y \otimes z$  and  $z \otimes y$  act on  $U(\mathfrak{G})$  in the same way, whereas the centre of  $U(\mathfrak{G})$  is trivial.

3. Let K be the field of fractions of  $U(\mathfrak{G})$  (see, for example, [1]), C the centre of K, and  $K^T$ the opposite field to K. We extend the action of  $U\left(\mathfrak{G}\right)^T\otimes U\left(\mathfrak{G}\right)$  on  $U\left(\mathfrak{G}\right)$  to an action of  $K^T \otimes K$  on K. The resulting action is, in fact, an action of  $K^T \otimes_C K$ .

**Theorem 1.** The annihilator U ( $\mathfrak{G}$ ) in  $K^T \otimes_C K$  is zero.

*Proof.* It is easy to see that 1) the annihilator is a right ideal in  $K^T \otimes_C K$ ; 2) it is closed under left multiplication by elements of the form  $u \otimes_C v$ , where  $u \in U(\mathfrak{G})^T$ , and  $v \in U(\mathfrak{G})$ .

Let us assume that there is a set  $I \subset K^T \otimes_C K$  having the properties 1) and 2), other than 0 and the whole algebra  $K^T \otimes_C K$ . Let  $v \in \widetilde{K^T} \otimes_C K$ . We consider all of its representations in the form  $\sum_{i=1}^{n} a_i \otimes b_i$ . The smallest possible n is called the length of v. We take in I a non-zero element l of smallest possible length k (k>1, for otherwise  $I=K^T\otimes_{\mathcal{C}} K$  ). Let  $\sum a_i\otimes_{\mathcal{C}} h_i$ be its shortest form. We multiply l on the right by  $a_1^{-1} \otimes c^1$  and obtain an element of the form

$$\mathbf{1} \otimes_{\mathcal{C}} b_1 + c_2 \otimes_{\mathcal{C}} b_2 + \cdots + c_k \otimes_{\mathcal{C}} b_k \in I.$$

Using 1) and 2) we find that for any h in  $U(\mathfrak{G})$ 

$$[h, c_2] \otimes_C b_2 + \ldots + [h, c_k] \otimes_C b_k \in I.$$

But the length of this element is less than k. Consequently, it is zero. But the  $b_i$  are linearly independent over C, and so all  $[h, c_i] = 0$  for any h in  $U(\mathfrak{G})$ , that is, all the  $c_i$  are in C. But then l has length 1, which is a contradiction and proves the theorem.

Hence, it is sufficient to find the kernel of the natural composition mapping  $\gamma$ 

$$U(\mathfrak{G})^T \otimes U(\mathfrak{G}) \xrightarrow{\alpha} K^T \otimes K \xrightarrow{\beta} K^T \otimes_C K.$$

It is obvious that  $\alpha$  is an embedding. Then, we have to find Im  $\alpha \cap \text{Ker } \beta$ .

Definition. Let  $\lambda \in \mathfrak{G}^*$  ( $\mathfrak{G}^*$  is the conjugate space to  $\mathfrak{G}$ ). By  $U(\mathfrak{G})_{\lambda}$  we denote the set consisting of all  $v \in U(\mathfrak{G})$  such that  $[v, x] = \lambda(x)v$  for any  $x \in \mathfrak{G}$ . The union of all subspaces  $U(\mathfrak{G})_{\lambda}$  is called the semicentre of  $U(\mathfrak{G})$ .

The kernel of  $\beta$  is the two-sided ideal in  $K^T \otimes K$ , generated by all the elements of the form  $C \otimes 1 - 1 \otimes C$ , where  $C \in c$ . It is known that for any C in c there are a  $\lambda \in \mathfrak{G}^*$  and  $u, v \in U(\mathfrak{G})_{\lambda}$ , such that  $c = uv^1$  (see [3]). Then  $u \otimes v - v \otimes u \in \operatorname{Im} \alpha \cap \operatorname{Ker} \beta$ . Let us consider the two-sided ideal N in  $U(\mathfrak{G})^T \otimes U(\mathfrak{G})$  generated by all the elements of this form. It is not hard to show that  $\operatorname{Ker} \gamma$  consists of all  $p \in U(\mathfrak{G})^T \otimes U(\mathfrak{G})$  for which there is a  $\mu \in \mathfrak{G}^*$  and an  $\omega \neq 0$  in  $U(\mathfrak{G})_{\mu}$  for which  $p(\omega \otimes \omega) \in N$ . Obviously, the multiplication by  $\omega \otimes \omega$  is superfluous, that is,  $\operatorname{Ker} \gamma = N$ .

**Theorem 2.** If  $\mathfrak G$  is semisimple, then the algebra S is isomorphic to  $U(\mathfrak G) \otimes_{\mathbb Z} U(\mathfrak G)$ .

**Proof.** In this case C coincides with the field of fractions of Z (see [1]). Now the injectivity of the mapping  $U(\mathfrak{G})^T \otimes_Z U(\mathfrak{G}) \to K^T \otimes_C K$  follows easily from the theorem of Kostant (that  $U(\mathfrak{G})$  is a free Z-module for semisimple  $\mathfrak{G}$ ; see [1], 8.2).

In conclusion, I should like to thank A.A. Kirillov for posing this problem and also V.A. Ginzburg for useful discussion and advice.

## References

- J. Dixmier, Enveloping Algebras, North Holland Publ. Co., Amsterdam-New York-Oxford 1977.
  MR 58 # 16803a, b, c.
  Translation: Universal nye obertyvayushchie algebry, Mir, Moscow 1978.
- [2] A.A. Kirillov, Elementy teorii predstavlenii, Nauka, Moscow 1972. MR 53 # 10985. Translation: Elements of the theory of representations, Springer-Verlag, Berlin-Heidelberg-New York 1976. MR 54 # 447.
- [3] R. Rentshler and M. Vergne, Sur le semi-centre du corps enveloppant d'une algèbre de Lie, Ann. Sci. École Norm. Sup. (4) 6 (1973), 380-405. MR 50 # 13177.

Moscow State University

Received by the Editors 30 May 1980