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In conclusion. the author conveys thanks to V. T. Arnol'd tor a useful discussion.

1.2.3.4.

LITERATURE CITEDV. 

I. Arnol'd, Mathematical Methods of Classical Mechanics [in RussianJ, Nauka, Mos-
cow (1974).
H. Lamb, Hydrodynamics, Cambridge University Press, Cambridge (1932).
V. E. Zakharov and E. A. Kuznettsov, "Hamiltonian formalism for systems of hydrodynam-
ic types," Soviet Scientific Reviews, S. P. Novikov (ed.), 4, 167-219 (1984).
V. E. Zakharov and A. B. Shabat, "Integration of nonlinear ;quations of mathematical
physics by the method of inverse-scattering. 11," Funkts. Anal. Prilozhen., 13, No.3, 13-21 (1979). -

A SPINOR REPRESENTATION OF AN INFINITE-DIMENSIONAL ORTHOGONAL SEMIGROUP

AND THE VIRASORO ALGEBRA

Yu. 

A. Neretin UDC 519.

Most infinite-4imensional representations of Lie groups can be easily realized by
means of operators which are products of the change in variables and the multiplication by
a function. In the case of infinite-diminsional groups. two very special classes of oper-ators. 

acting in the boson and fermion Fock space are almost as importantj this means that
representations of infinite-dimensional groups have ahabit of "passing through" the Weyl
representation and the spinor representation (see. e.g.. [3. 8. 9. 14]).

A spinor representation of the automorphism group of the canonical anticommutation re-
lations (CAR) hag been constructed by Berezin in [1]. The aim of our paper is to extend
this representation onto as large a domain as possiblej this domain is a semigroup (which
is not surprising. cf. [11]). containing some linear transformations of CAT. in general
unbounded (there are many more bounded transformation CAR than bad been usually assumed.
see Sec. 2.3). Speaking of unbounded operators. it is natural to use the language of
graphs. in other words. o~r semigroup consists of linear relations between CAR. Notice
even in the finite-dimensional case our construction does not coincide with the standard
sources on spinor representations [4. 1. 15. 2].

The considered construction (a part of it hag been announced in [8]) implies a number
of corollaries tor the theory of representations of infinite-dimensional groups. In Sec.
3. we show that any irreducible representation of the Virasoro algebra-with the highest-
er weight. no necessarily unitary. can be integrated to a projective representation of the
group Diff of diffeomorphisms of the circle which. in turn. extends onto the complex
sionofthe group Diff constructed in [10]. Further. we consider a problem arising in con-
formal quantum field theory concerning the construction of an operator with respect to an
arbitrary Riemannian surface in such a way that the operators should multiply by each
when the Riemannian surfaces are patched together (notice that recently there appeared a
number of articles in which the patching of Riemannian surfaces and the Virasoro algebra
are considered. cf. [5-7. 10. 16]). Same other applications of the construction (in which
only the group part of our subgroup hag been used) have been consideredin[8]and[9.Sec.

The author is very grateful to G. 'T. Ol'shanskii für numerous and very useful discus-
sions on the semigroup extensions in the theory of representations of infinite-dimensional
groups. The author is also grateful to M. L. Koltsevich. who hag informed hirn about the
Shtan category (cf. Sec. 3) and a construction of the complex hull of group Diff. much
simpler than that in [10].
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We will introduce
Let Ac be the space of polynomials of the variables ~l. ~2. the left differentiation as

<I (6), g (6» = S 1 (6) ~) d6 d~.

The creation-annihilation operatore 2,2 .2,2.

, K(H).
Let (a, b) = (al' az bl. b2, ...
b) in A is defined by the formula

Then

(1.4)

-
GI
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I
,d
Q.
~ I
0 GI

.-
&1'\""

.~
.~.

~.

variables:
~";I = -~I~k' ~II~I = -~I~k' ~k~1 = -~1~Jr' MI = ~l~'"

This formula, actually, is a formal notation of the fact that vectors of the form ~i '
., ~ik' where i1 < ...< ik, form an orthonormal basis in A. Notice that A is a Hilbeit

sum of subspaces Ak, where Ak is the space of homogeneous forms of degree k, k ~ O.
f e A, f = ~k , where fk e Ak. Denote by A the set of all f e A, such that für any
0, there exists a number A = A(f, C), such that UfkB < A exp(-Gk). We will introduce

A a family of seminorms IIfBc = Slip ("fk" exp(Ck». Then A becomes a Frechet space (a
-, countably normed space). k

Definition. The space A will be called the Hilbert fermion Fock space and the space

the polvnormed fermion Fock space.
Example. The space A contains all the vectors of the form exp (~aiJ ~ i ~ j ), where

In..., 12 < ~ (this is a special case of Lemma 1.4). "
\

Denote now by {P, Q} = PQ + QP the anticommutator of operators.

{A (a, b), A (a', b')} = ~ (ajbj + ajbv E. (1.2)
1.2. Symbols. We will consider a polynormed Fock space A~ of functions of the var-

~l' ~2' ...and the space A~ of functions of ~l' ~2' an operator R from A~

A~ can be convenient1y written in the form

ßf (6) = SK (~I 1"i) f (TJ) dTJ dTj,

the symbol K(~, ~) of the operator R is a formal series in ~, ~.

It is easy to verify that the symbol of .((a, b)R equals

integral of the remaining terms is equal to O. Let A be the completion of Ao with

to the scalar product
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:) (~;)}, (1.7)
and where A, B, C are the same as in a), and A E C.

Proposition 1.1. Conditions a and ß are equivalent.

LEMMA 1.1. Let ~ have the symbol of the form (1.5). Then Til~' ..., Tik~~Tjl~' ...,

Tjl~ has the symbol of the form (1.5) too.

Proof. We will verify, for example, that the symbol of T1~~ has the form (1.5).
the help of (1.3) we obtain that this symbol is equal to

I[ \l' iJj j iJK ] - j. sJl...fl+{=r(-1)'~fl...lj-Jj+l'..fl+h...fl~ e~p(K(6,T))),

Iwhere K(~, ii) = 1/2(~ii) AI B) (~t ).
-B C TI

Otherwise, the expression

With

If 

all (afj/a~l) = O. then our result is obvious.

expands iota a product of t -1 linear forms of the form 2 Xifi, and f1, ..., ft can be

divided by N, i.e., there e~sts a linear form g of the form ~ 8ifi, such that f1, ...,

ft = gN. Thus, the expression in (1.8) in square brackets is reduced to the form N(l + gx
(~l + (aK/a~l» = N exp(g(~l + (aK/a~l»). The lemma hag been proved.

Proof of Propo~ition 1.1. From Lemma 1.1, it immediately follows that a Berezin oper-
ator in the sense ß) is a Berezin operator in the sense of a). Let now the formal series
of th: form (1.5) for the symbol of operator 0 contain the components ~il~ ..., ~ik~jl'

..., ~jt. Then, 0' = fi1~' ..., tik~Ofjl~' ..., fjt~ by Lemma 1.1 is a Berezin operator

in the sense of a). But in the formal series for the symbol of 0' the free term is not
null and, therefore, in (1.5) we have t = 0, i.e., the symbol 0' hag the form of (1.7);
consequently, 0' and, that is also 0, is a Berezin operator in the sense of ß).

Remark. The representation of a Berezin operator in the form a) as weIl as in the
sense ß) is not unique. We will discuss this nonuniqueness in detail.

C»

a. Let Q be the symbol of a Berezin operator 0, let Q = ~ Qk, where Qk are
"'=0

eous forms of the degree k in ~,~. Let Qr be the first nonnull component of this sense.
Then Af1, ..., ft = Qr. Thus, although A, f1, ..., ft can be chosen in various manners,
their product is uniquely determined. Moreover, the quadratic form Q(~, ~), occurring in
(1.5) in braces, is determined uniquely up to the transformations Q(~, ~) ~ Q(~, ~) +

~fj(~ aij~i + ~ ßij~j).
1

ß. It is clear tram the proof of Lemma 1.1 that operator 0 can be represented in the
form (1.6) with given i1, ..., ik, jl' ..., jt if and only if <~i1' ..., ~ik' O~jl' ...,
~j1> ~ O.
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a) The symbol of Q has the form:
I

l.(glfj(~.ij»)exp +(~ij)(-;t B) (~:)}. (1.5)
where fj has the form f!A.ij~i+~Vij'iii. ~(I~ijI2 + IVij12) < m. A = -At. C = -ct. Bis a
bounderl operator. and A and C are Hilbert-Schmidt operators. A e C.

ß) Q = rt ...r:kflf~ ...r~,

where ~ is an operator with the symbol

I. exp { + (~ Ti)



ön

b =~b4...i.Si Si.EA..
Then

P~)b = ~:!: bi iBj,~1 ...j,~rSi, ...Si, II (Szai-I~2~i)"

~r.
among the indices il, ..., is, 2al' ..., 2art 2al -I, ..., 2ar

.Using the inequality
-1 there are no re-

(Xl + ...+ Xn)2 < n (X~ + ...+ x:.).
obtain

tram the desired estimation.

LEMMA 1.4. Operator L of mu1tiplication by exp I (~aij ,

E;iE;j), where~ I aij \2< f» isin A.

Proof. Let f = ~ fk, Lf = ~ (Lf)k, where fk e Ak, (LF)k e Ak.
Pr(s) and a be such as in Lemma 1.3. Then

Let IIfjll < exp (-Cj)

/I (Lf)n /12 = ~ /1 p~n-2j)fn-2j 112 -< ~ /I P j /12 11 /n-2j /12-< \"1 ~ an/2e-C(n-2j) = e-Cnan/2 ~ ~ < e-Cnan/2ee2C.
~ ~ ~ I! L-.I /!

21~11 21';;n 21~n 2j~n

Hence. IIfIlC-l/2ln~ < IIfHc.const. and from this the lemma follows.

LEMMA 1.5. Let B be a bounded operator tram a Hilbert space H into a Hilbert space
.Then the operator A[B]: A(H) ~ A(K)s acting on Ak(H) as the k-th outer power of Bs is

bounded.

The proof is obvious.

LEMMA 1.6. Let~laijl2 < 00. ~'-"- ~

fj

Then the operator N = exp (~aij * * is bounded in A

~!:9..2I-:. Let us consider operator Qr{S+2r). acting from As+2r into As. as *(}2aij~)r. 

It is easy to see that Qr{S+2r) = Pr{s»*. where Pr{s) hag been introduced in

1.3. Let f = ~fk .where fk E Ak. Let Nf = ~ {Nnk .where {NF)k e Ak. Then
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!.4. THEOREM !. a) All Berezin operators from A(H) into A(K) are bounded.

b) A product of Berezin operators is a Berezin operator.

The proof is completely standard.

LEMMA 1.3. Let A = ~laijl2 < 00. Let Pr(s) be an operator from As into As+2r mapping

*(.Eaij~i~j)r f. Then nPr(s)II2 ~ (l/r!) ar+s/2, where a = 2max (A. 1).
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(1.
11 (Nf)n /12 = L /I Q~n+2r)fn+2r 112-< L /I Qf,n+2r) Ir /I fn+2r /12 =

r;;'O
n

= L 11 p~n) /1211 fn+2r /12 -< }.2 + a 2 +r e-C(n+2;) = an/2e-Cn exp (ae-Cn).

r;;'O r;;'o
Hence UNfIlC-l!2lnlJ ~Ufllc'constt tram which the boundedness of n follows.

Proof of Theorem 1a). We will apply the definition ß of a Berezin operator.
enough to verify the boundedness of an operator with the symbol of the form (1.7).
this operator is equal to

It is
But

8

(1.

~Cij*~
where ~ e C, and A[B] have been introduced in Lemma 1.5.

1.5. Berezin Operators in the Hilbert Space K.

THEOREM 2. Let Q be a Berezin operator from A(H) to A(K).

a) The necessary condition for the boundedness of Q is that the matrix B have the
form 1(1 + S), where "111 ~ 1 and S is a Hilbert-Schmidt operator.

b) The sufficient condition tor the boundedness of the operator Q is the B have the
form 1(1 + S), where 11111 < 1 and S is a nuclear operator.

c) If A and C are nuclear operators, then Q is bounded if and only if B is of the
1(1 -S), where 0111 ~ 1 and operator S is nuclear.

LEMMA 1.7. a) Let K be the operator of multiplication by exp(A~1~2) or the operator
exp(A(a/a~1)(a/a~2» inA(C2). Then there exists a constant 8, such that

1-1i1- 91).[2 -< (Kx.Kx) -< 1 + ~ + 91).j2 for 11 xII = 1.

b) Let L be an operator in A(C2) with the symbol exp(lJ~11l1 + ].t~21l2 + X~1E;2)' where
].t is a constant number. 0 < ].t < 1. Then tor lAI -+ O. IILH = 1 + c(].t)IAI2 + o(IA2l) holds.

Proof.. It is an easy calculation.

Proof of the Theorem. Without lass of generality. we can assume that Hand K are in-
finite-dimensional. H = K = 12, the operator Q has the symbol of the form (1.7). and that

the matrices A and C are r1presented as in Lemma 1.2. Finally. in the computations of
Darms we should take into ~count that H -+ A(H) is a functional mapping direct sums into
tensor products.

c) From Lemma 1.7a and the nuclearity of A and C it follows that the operator of

plicity by exp (Lai} ~iE;j) and the operator exp (}2C;;-1r;*) are bounded together with

their inverses. Therefore. ODe can assume that A = C = 0 [see (1.9)]. ~~rther. tor self-
adjoint BIs the problem of boundedness is easy to salve (this is the problem of uniform
boundedness of out~r powers of B) and. in the general case. we will take the polar decomp-
osition of B.

b) It is enough to show the result tor the obvious case A = C = 0 and tor operators
with symbols of the form

exp {~Xk~2k-l~2k + (1 -E)~~"ij,,},
k

exp {(1- E)}j~kijk + }jXtiJ2"-1T]2"} ,
k

where E > 0, which can be easily clone with the help of Lemma 1.7b.

LEMMA 1.8.. Let M be a subset of N. Let H be a subspace in 12, spanned by ei, i E M.
Let PH be the projection in A = A(12) onto A(H). Let f(~, ~) be the symbol of theQ. 

then the symbol of operator PHÖPH can be obtained if in f(~, ~) we put ~j = 0, ~j = 0
tor all j ;; M.

Proof. A direct verification.

j , Mar,"&m.,.O".:
~ R.."""."..
"~~~~~!~:tL1"""~::..z.Q~ --'.. ~

"-9t. ,.~---;;..) "~/i.":;II~"" ;.~
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cannot diminish the length of a vector more than TI (1 + IAil/2 + elAil2) times, where A'

.1.'=1are the eigenvalues of the matrix A (see Lemma l.la), and the third factor cannot shorten
n

the length of a vector more than !I (1 + l~il/2 + el~iI2) times, where ~i are the eigen-
'=1

of the matrix C. Letting n tend to infinity, we obtain that the number HPH~PHI/ can

be arbitrarily great. A contradiction.

Thus, B -1 is a positive compact operator. It remains to show that it is of the Hil-
type. For this e~d, we have to repeat only the just-presented reasoning, hut

H should be spanned by a e1genvectors of B -1 with the greatest eigenvalues.

Spinor Representati2!!

~.1. ~n ~biect of.the Categorv O~ is a complex Hilbert space V of the dimension 2n
n = 0, I, ..., ~), in which:

1. There are fixed vector subspaces V+ and V_, with V = V+ .v_.

2. There is given an antilinear invertible isometry 1: V- ~ V+.

3. There is given a symmetric bilinear form

{(v+, v_), (w+, w_)} = <v+, Lv_> + <w+, Lv_),

<', .> is a scalar product in V+. "

\Notice that Vt are maximal isotropic with respect to the form {', .} subspaces in V.
us fix an orthonormal basis ejV in V+, and an orthonormal basis fjV = LejV and an ortho-

basis fjV = LejV in V_. Then {eu fj} = Oij'

By VR we will denote areal subspace in V = V+ .V- consisting of all vectors of the
(Lv, v).

~.2. Ortho2onal Relations. Let V, W be objects of the category Or. We will intro-
in V .W an orthogonal form {(Vi' w), (v2' W2)}' = {Vi' V2} -{Wi' W2}' An orthogonal

P: V ~ W will be called the maximal isotropic with respect to the form {', .}I
of V .W.

Example. Let V = W, and let A be an orthogonal operator tram V into itself. Then the
of pairs of the form (v, Av) is a maximal orthogonal relation V ~ V.

Let P: Vi ~ V2 and Q: V2 ~ V3 be orthogonal relations. Then their superposition QP:
~ V3 is the set of all pairs (Vi' V3) e Vi .V3, tor which there exists a V2' such that

c' V2) e P, (V2' v3) e Q.

2.3. _Morphisms of the Categorv Or. Let V and W be objects of the category Or. We
gay that an orthogonal relation T lies in set mora (V, W), if T is a graph of an oper-

K L )from V+ .W- into V- .W+, while the matrix of this operator QT = -L' M satisfies

conditions:

1. I/gL" < ~.
2. K = -Kt, M = -Mt (it follows tram the fact that the relation T is orthogonal).

3. K and Mare Hilbert-Schmidt operators.

We will gay that matrix gT is the Potapov-Ginzburg transformation of relation T.

We will define now the subset mor(V, W) of the set of all orthogonal relations from
into W. Namely, 1 e mor(V, W) if there exists a relation LI E mor(V, W), such that the

of the subspace 1 n LI in 1 is finite. Finally, the set Mor(V, W) of all
tram V into W will be defined as the set mor(V, W), to which the formal "null"

nullV,W hag been adjoined.



-:1 ~ (~)}.
Let now PE mor(V, W). Let S = P n (V- .W+), and let pI E mora (V, W) be such that

P n pI is the complementary subspace to the subspace S in P. Let (-:1 ~f) be the Potapov-

Ginzburg transformation of pi. Let SI' ..., sk be a basis in S, with sm = ~p;e~+~q;fr.
a ß Then the operator Spin (p): A(V+) ~ A(W+) has the symbol

K L

-[,' 111

~G ~~ ~- ~TiSpin (P) = Ti.. ..T '" Spin (Po) T7.. ..T j/

(for the definition of T(. see Sec. 1.3).
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At last Spin (nullV,W) = O.

THEOREM 3.. a) Spin (QP) = c(Q. p) Spin (Q) Spin (p). where c(Q. p) e C \0.
b) Let (v. w) e P. Let v = (v+. v_) e V+ .V-. w = (w+. w_) e W+ .W_. Then

A (w) Spin (P) = Spin (P) A (v).

c) Any Berezin operator T tram A(V+) into A(W+) hag the form T = Spin (Q).

Proof. The statement c) is obvious; the statement b) can be verified by a direct
compu~; the statement a) follows tram b). except tor the fact that c(Q. p) ~ O. The
easiest way to verify the latter is to compute the vectors Spin (Q)Spin (P)h and Spin (QP)h.
where h runs over all simple spinors (see Sec. 2.8).

2.7. Another Form tor SpinP. Let V be an object of the category Or. Let DjV be an

operator in V. defined by the equalities

vv v vv v Dvv- v D i r- I r D; e; = I;, D; I; = ej , ; ei -ei , j. -.

tor i ~ j. Let P e mor(V. W) and let ia and jß be such that Pa = DilV, ..DikVpDj~ e
mora (V. W). Then

,"~:i~i.;"lr,,",:1t~:, ,::";":'(;;':'\O"(~";~."';:",:,:':~~::;:';",'
,~"".,,~"", c'M 0"""'" ortoo,,".' O'"~'ro". ro' '00'° ..""
I!:) '.' ,- .'. ., ,.li",., ,~ O"",'U"" .-00 C .," "'~rt~OM"O "",",O"
(. ',roo, """.M",'~"' 'M, .'"", "0. ,.," 'O"",~"",oo ro "" 'rooU, 'M "."

kO""'_~,W~.",","""",.",",O""UOO_"'",,"""""'ro"""".;",,"'o,.,oro"'.'M"".."","""","",.,.,,
,. 'O,"O" '.0'.'..',".. ,.". ,",(, "'.' .00 "'.' ~ 'O'~"_o

'""",.,"" '"""""".'°"""'00 ., ~'".'o,.,o~'.""""".",
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~ f(eiq»~dcp.<J (z) (dz)1., g (z) (dz)1.) =

203

1. The codimensions of Q n R in q and R are finite (and they might not coincide).

2. R is the graph of the bounded operator (~ g): VI. W2 ~ V2 .Wl. with A and D

being Hilbert-Schmidt operators. We will define the product of morphisms. The product of
the null morphism with any other morphism is the null morphism. Let P: V ~ W. Q: W ~ Y
be nonnull morphisms. Then P and Q are multiplied as linear relations with the exception
of the following two cases. when their product is the null morphism: 1) the subspaces
P n Wand Q n W in W bave a nonempty intersection; 2) the sum (no matter which. algebraic
or topological) of the projection P onto W parallel to V and the projection Q onto W par-
allel to Y does not coincide with W.

3.2.~~edding_of Categorv fA in Categorv Or. Let H' denote the space adjoint to H.
Let V e Ob(fA). let V = V .VI. We will introduce on V the structure of an object of cat-
-~ j Ort putting (see Sec. 2.1) V+ = V. V- = VI. {(Xl' fl). X2' f~)} = fl(X2) + f2(Xl).

Let V. We Ob(fA). Q c V .W be a morphism of category fA. Let R c (V .W)' = V' .
" be the annihilator of Q. Then Q .R c (V .V') .(W .WI) = V .W is a morphism tram

V into W in category Or.

Hence. we have embedded fA into Or. Restricting the spinor representation of Or to
.we get a representation of rAt which we will also call a spinor representation.

3.3. Categorv Shtan. An object of category Shtan is a nonnegative integer. A morph-
~ from m to n is the collection (R. rj+. rj-). where

1. R is a compact complex Riemann surface with a boundary. such that the boundary con-
: of m + n enumerated components.

2. rl+' rm+. rl-' rn-: [0. 2~] ~ Rare fixed analytic parametrization oft
'. 1. 2. m + n components of the boundary. so directed that going along

~ the surface remains on the left. and along ri-( ~) on the right side of the contour.

Let (R. ri+. rj-). (Q. qi+' qi-) be morphisms tram m to n. We will+conside~ them to
J if there exists a biholomorphic mapping T: R ~ Q. such that qa- = 'rora-.

Let (R. ri+. r'-) be a morphism tram m to n. and (p. p.+. Pt-) a morphism from n to t.

their product ls the collection (S. ri+. Pk-). where the Riemannian surface S hag been

~ tram a nonconnected union of Rand P. and pasting of the points rj-(~)andpj+(~).
j = 1. n; ~ e [0. 2~].

3.4. Embeddin of Gate or Shtan fA. Let AA be the space of forms of
weight A e Z on the circle SI: z scalar product
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Let (R. ri+. rj-) E MorShtan(m, n). We will construct tor it the subspace L = LA x
(R. ri+, rj-) C Bm .Bn' Namely, (b1+, ..., ~+, b1-, ..., bn-) e L. if there exists a
holomorphic form F of the weight A on R, such that the boundary va lues of F on the Curve
ri:t( cp.) is the direct image of the form bi:t under the mapping eiQJ -r (cp) tram S 1 into R.

WEOREM i:- L = LA(R, ri+. rj-) e Morf6(Bm, Bn).

Now, restricting the spinor representation of fA to Shtan, we obtain aseries of re-

presentations of Shtan depending on n. It turns out that the representation operators are

bounded not only in the sense of the polynormed Fock space A. hut also in the sense of the

Hilbert space A.

3.5. Gom lexification f of the Grou Diff of Anal tic Diffeomor hisms of the Gircle
~~r~~~~- the ~~i~~ta;ion ~cf.=l~ Semigroup f consists of all elements of (R. r .
r-) E MorShtan (1.1). tor which R is homeomorphic to a ring. The limit elements of f cor-
respond to the group Diff: one needs to take a ring degenerating to a circle, then (r+)-l
r- E Diff.

Remark~ The group Diff does not have any group complexification [because there are
no complexifications of n-fold enveloping groups of SL2(R) contained in it]. Let us ex-
plaiD why f is an existing subsemigroup in a nonexisting group Diffc. It is natural to
take as a neighborhood of Diff in Diffc a local group. consisting of mappings p of th~ cir-
cle SI: Izl = 1 into its small neighborhood. Let us consider in this local group a local
subsemigroup of all p, tor which I p( eicr ) I < 1. Then R is a ring between the contours S 1

and p(Sl). and r+(cp) = eiQJ, r- (qJ) = p (eiClO).

~6. -~~oo~ 2f Theorem i:- Any object of category Shtan can be "cut" into elementary
objects of the following 4 types:

I, 2. 3. A domain on the plane bordered by oDe. two, or three circles with paramet-
rizations of the form cp -a + bt:ti'P.

4. Elements of Diff.

The conditions of Sec. 3.1 can be easily verified tor 1. 2. and 3, and they have been

verified tor Diff in [9. Secs. 4.3. 9.4].

,
~7. Representations of f:.

THEOREM 5. Any irreducible (not necessarily unitary) representation of the Virasoro
algebra with older weight (cf. [10]) is integrable to a projective representation of f by
bounded operators in a Hilbert space.

Remark. It is interesting that extending this representation onto the "skeleton" Diff
of th;semlgroup f we obtain operators which are, generally speaking, unbounded in the
sense of Hilbert space.

Proof. Among the subfactors of representations of f, constructed in Sec. 3.8. are all

repre;;mt;tions of the Virasoro algebra with highest-order weight.

3.8. Embeddin s of f into Mor hisms of the Gate or fA. Let us consider enveloping
f over f, which is a set of quadruples of the form (R. 8. r .r-), where

1. R is a domain, holomorphically equivalent to a circle;

2. e is a hyperbolic automorphism of R;

3. r:t are analytic diffeomorphisms from R into R, such that r:t(x +.2u) = e(r!(x».
By approach along the curve r+(x) the domain should remain on the left slde, and along
r-(x) on the right side.

Remark. It is convenient to assume that R is a strip, and e is a shift.



Any nondegenerate (Sec. [9]) representation of the Virasoro algebra (= of semigroup
with highest-order weight can be realized in cross sections of same holomorphic linear

over K.
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1. K 1s a compact Riemannian surface (without boundary);

2. F is a principle bundle over R;

~3. rki are morphisms of the principle G-bundles D+ x G ~ F. With this the corre-
-mappings of hages Di ~ Rare onefold and holomorphic up to the border and their

do not intersect. \

The morphisms (R. F. ri+. rj-). (Q. H. qi+. q'-): m ~ n are e~~ivalent if there
a morphism of priniciple G-bundles T: (R.~) ~ (Q. H). such that qkt = Torki.

Let (R. F. ri+. rj-) e Mor(m. n). (p. H. Pj+. Pt-) e Mor(n. k). Then their product
the quadruple (Q. Z. ri+. Pt-). where the bundle is obtained tram the nonconnected un-

of (R. F)\ U rj-(D_O x G) and (p, H)\ lJ Pj+(D+o x G) by pasting together points
-(x) with Pj+(~)' where j = 1, n and i e Sl x G.

Example 1. If G consists of Olle unity. then G -Shtan coincides with Shtan. In this
it is evident that there exists on MorShtan(m. n) a natural complex structure.

Example 2. Let m = n = 1. let R be the Riemann sphere. where r+(D+o x G) does not in-
with r-(D_O x G). and r+(D+o x G) U r-(D_O x G) = F. We will denote the set of

objects by rG. Formally rG does not enter the set of morphisms tram 1 to 1. hut it
be considered as apart of the border of this set. The multiplication by rG is intro-

in an obvious war. and we obtain a group which is isomorphic to the semidirect prod-
of Diff and the group of analytic mappings of the circle into the group G. that is Olle

the essential objects of the representation theory tor infinite-dimensional groups (cf.
.Sec. 7. 8.1]). (The author gives thanks to A. G. Reinman tor discussion this point).

3.10. Embeddin s of the Gate or SO n)-Shtan into Gate or rA. The considerations
3.4-3.8 can be carried over onto SO(n)-Shtan almost literally. One needs to take an n-

vector bundle. associated with the principle bundle Fand. instead of the ward
" we will alway!? use "form with values in the bundle.'1 To obtain another represent-

of the category G-Shtan, it is enough to embed G into O(n).

~.11. Zigel-Krilov Domain K (see [6]) will be defined as the set of triples (R. r+.
where R is holomorphically equivalent to the circle, (R. r+) e MorShtan(1. 0). zeR.
triples (R. r+, z) and (Q. q+. u) are equivalent if there exists a biholomorphic map-
T: R ~ Q. such that q+ = Tor+. T(Z) = u. The semigroup r acts on K in an obvious
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a- 0--1

where aj are nonnegative integers, among which only a finite number differs tram null. Let
aa be the right ulmost nonnull index. If n ~ ~ -1, then the corresponding representation
of SO(2n) is the irreducible representation of SO(2n) with the numerical indices a+, a_, aa,
..., an on the Dynkin diagram Dn. If n < ~ -I, then the space H(V2n) is ~ull-dimensional.

Analogous results are valid tor categories connected also with other classical groups.

After this work bad been already submitted to the editor, there appeared a preprint
of Gr. Segal, in which independently tram M. L. Kontsevich adefinition of the Shtan cat-
egory hag been given. Moreover, there appeared [17], where operators have been construct-
ed, the same as in our paper in Sec. 3.4 (the authors, however, are interested neither in
the existence problem tor the operators, nor in their multiplicative properties).

1.2.

3.
4.5.

6.

LITERATURE CITED

F. A. Berezin, The Method of Second Quantization [in Russian], Nauka, Moscow (1965).
A. M. Vershik, "Metaplectic and metagonal infinite-dimensional groups. 1. General

notions and the metagonal group," Zapiski Nauchnykh Semin. LOMI, ill, 3-35 (1983).A. 
M. Vershik and S. V. Kerov. "Characters and factor-representations of the infinite;

dimensional unitary group," Dokl. Akad. Nauk SSSR, 267, No. 2, 272-276 (1982).
H. Cartan, Theory of Spinors [Russian translation].~scow (1947).A. 

A. Krillov, "Keller structure on the K-orbits of the diffeomorphism group of the
circle," Funkts. Anal. Prilozhen., 21, No. 2,42-45 (1987).M. 

L. Kontsevich, "Virasoro algebra ~nd Teichmuller spaces," Funkts. Anal. Prilozhen.
~, No. 2, 78-79 (1987).

~



B

CJ

101

111

121

131

14

151

16J

17

c , '",°'0'0' '"' , , 'O""O, ""'."" " ". ",..", "". "_"0'0" '"nO".,

(;:";~~"ct"'., w ". ,..", w "Uwo, " '""", MO; 'ct'",." 1!. " , ",'

" , '"ct'" '" ","" ,.".""""O" w 0(-. C)" 00" ~,' ,,"' "". lli. '"

'. ,."" ""'!fu' '.""'. '.""0""""., W ". "','"'" """""'w"'o ""',",," '"'
"",-"",, ,"oWo., '" ",..."", ,-,"-"", ",.ct"",, "", '""" , '.""""

"",.,. ..",," ,""ti, M" ,"0o,'.". 11. '" " ",. """
0 '- m",""", ""w"" ,.".,.ct"ctO". w 'W,""."-",,"",, ,"U, (0 ,) ""'
".'M" Mm.U," "',ti ""' ,,""'" M' '0" n" ""'), ,~, , ""00 "00' "," oow.o"" """,- """'" ,. 'OW"=" w,",-
""', "",""" U"",,"W") , ,~o , 'woo. '00 C ",", ""- '°'°0" ""'). w

rO:;J:::':Q:";;~"i:;,:.::;;,;;.::;~";:;;;';";':::;;"" O"".,," Co_- """

~~';i;,~'o::;.:,:':;:::(t..:;;" "00 C "W" """.,. ,. ",","W" 'o~U..."
'"cl ~'" "". '"" """ ",.."

SKI

A. V. Odesskii and B. L. Feigin
UDC 517.9

by
fan

Ci~
ra~

by
The
spa

us
sub
crv
is

In [2, 3] Sklyanin has constructed the family of the algebras A(~ , T), parametrized:he 
set of pairs ('cE, T), where ~ is an elliptic curve and T is a point on it. Thislly 
hag the following properties:

.1. The algebra A(c%', T) is graded, dimA(:f;, T)i = 0 tor i < 0, and dimA(.%' , T)i =11. 
The algebra A(c%', T) is generated by the tour-dimensional space A('<8 , T)l and quad-

LC relations: the six-dimensional space

Ker (A ('cS, T)l (g) A ('<8, T)l- A (ES, T)2).

The algebra A(~, 0) is isomorphic to the algebra of polynomials in tour variables.

2. Let the symbol rn denote the finite Heisenberg group, i.e., the group genera ted~lements 
x, y, and E and the relations xn = yn = En = I, XE = EX, YE = EY, xy = EYX.

group r~ acts by graduation-preserving automorphisms on the algebra A(~ , T). The
A ('cS, T)l is an irreducible representation r~.

3. Let C [V] be the ring of polynomials generated by the space V and a e End V. Let
orm the semidirect product of C [t] and C [V]. This is the algebra generated by its
1gebra C [V] and the element t and the relations tv = (av)t, where v runs over V. Let
al denote the sub algebra of C [tl tx C [V] generated by the subspace C.t 8 tV; C IV, a] ; it

alled the algebra of skew polynomials.

Let T be a point of fourth order on '<8. Let us identify the group of points of fourthr 
on '<8 with the quotient of r~ modulo the center. Let X(1) be a lifting of T in r~.algebra 

A ('<8, T) is isomorphic to the algebra C [A ('<8 , T) l' X( T) ] .
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