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Hausdorff Metric, the Construction of a Hausdorff Quotient Space,
and Boundaries of Symmetric Spaces*

Yu. A. Neretin UDC 512.54

As is known, in many interesting cases, the quotient space of a metric space (topological space, algebraic
variety) turns out to be non-Hausdorff, In algebraic geometry, a number of methods are known for
constructing a Hausdorff quotient space from a non-Hausdorff one (the closure in the Chow scheme, blow-
up of singularities, and the spectrum of an algebra of invariant functions; see [11]). The objective of
the present note is to suggest a very simple construction (in essence, of general topological nature) for a
Hausdorff quotient space and to discuss some of its applications.

1. Non-Hausdorff quotient space. Let M be a compact metric space and let M = Uaea Ma be
its partition into pairwise disjoint sets. The topology of the quotient space A is defined as follows: B C A4
is closed if and only if Uaen Ma is closed in M. Accordingly, a sequence aj € A convergesto a € A
provided that there exist m;j € My, and me€ M, such that m; converges to m in the topology of the
space M. It is well known that this topology can be non-Hausdorff.

2. Admissible sets. Let S be the set of all subsets of M which are unions of elements of the partition
M, . Let the partition UM, satisfy the following additional condition: if a set Q belongs to S, then its
closure Clos(Q) also belongs to S.

In what follows, we choose an open dense set .# C M such that .# € S. Denote by & the set of all
a € A such that M, C .«.

We will now construct a Hausdorff metric space & from these data.

Take a sequence aj € &. We say that o; is rigidly convergent if any limit point of the sequence aj
in A is a limit of this sequence in A (we stress that the sequence a; can have many limits, see Secs. 4
and 5 below).

A subset T C A is said to be admissible if there exists a rigidly convergent sequence a; € & such that
T is the set of limits of the sequence aj. We stress that the definition of an admissible set depends on
the choice of the subset .# C M.

We define our space & as the set of all admissible subsets of A. A natural question is how a topology
can be defined in .

3. Hausdorff metric. Denote by O,(m) the e-neighborhood of a point m and by 0.(Q) the
¢-neighborhood of a subset Q@ C M. Let [M] be the space of all closed nonempty subsets of M.

The Hausdorff distance (see (1, 2]) between the subsets N;, N, € [M ] is defined as the infimum of the
numbers £ > 0 such that N, C O,(N3) and N, C O.(Ny).

Recall a convergence test for [M]. '

Lemma 1. A sequence N; € [M] converges to N € [M] if and only if, for any € > 0,
(1) for any m € N, beginning with some indez j, the set O.(m) N N; is nonempty;
(2) for any m ¢ N, beginning with some indez 7, the set O.(m) N N; is empty.

Consider the mapping ¥: & — [M] that assigns to a point a € & the closure Clos(M,) of the set M,.
The space & is defined as the closure of the image of the mapping ¥ with respect to the Hausdorff metric.
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Lemma 2. The following conditions are equivalent:
(a) N € [M] is an element of o

(b) there ezists an admissible set T C A such that N = U M,.
a€T

Thus, the above two definitions of the set & are equivalent. Note that it follows from the second
definition that the set & is a compact metric space (since [M] is compact; see [2]).

4. Example: “complete collineations” (see [4, 8, 9]). Denote by Gryn the set of all n-dimensional
subspaces of C"®C".

Example. Let A be an operator C* — C". Then its graph graph(A) is an element of Gry,.

Let V € Gr, and let A € C* (where C* denotes the multiplicative group of the complex field). We

define the subspace AV € Gry, as the set of all (z, Ay) € C"® C" such that (z,y)€V.
Now let M = Gr,. Consider the partition of this space into orbits of the group C* and denote the

corresponding quotient space as Gra/C*.

Remark. If P € Gr, has the form P = (PN (C"®0))® (PN (0®C")), then P is a fixed point of
the group C*. The other orbits are isomorphic to C* as C*-homogeneous spaces. The orbits of the first
type correspond to the closed points of Gr,/C* and the orbits of the second type to the nonclosed points
(i.e., to singletons that are not closed).

Remark. Any sequence graph(4;), where A; are invertible operators, is convergent in Gra /C* and
has at least two limits, namely, C*®0 and 0® C™, i.e., the usual definition of a convergent sequence
turns out to be completely meaningless here.

Now we assume that # C M = Gr,, is the set of the graphs of invertible operators, i.e., # = GLx(C).
Then & = .#/C* = PGL,(C).

Example. Let the subspace P; € Grz consist of the vectors of the form (z,y; z, jy) € C2® C?. Then
the sequence C* - P; is rigidly convergent in Gr,/C*, and the set of its limits is formed by R, : (0,0; z,y),
R;:(0,y;z,y), R3:(z,0;0,9), Re:(z,y;0,y),and Rs:(z,y;0,0).

To describe the compactification & of the space @/, we introduce a definition (see [9]).

Let V:=C"®0 and W := 0@ C". Denote by 7 and =’ the projections onto V and W in the space
CtoC".

Definition. A hinge in C™ is the following collection of data:

(a) two flags of subspaces

V=LsDLiD---DLy=0, O=MoyCM, C---CM; =W

such that dimL; + dim M; = n for any j;
(b) a family of subspaces P, ..., Pk € Gr, defined up to a factor A; € C* and such that P;NV = L;,
7(P;) = Lj—1, «'(P;) = Mj,and P,NW =M;_,.

Theorem. (a) For any hinge Py,..., Py, the set P,... ,Pr, Lo® Mo, L1 ® M, ..., Lk ® M, s
admissible.
(b) Any admissible set has the form indicated in assertion (a) (for some hinge Py, ..., Py).

Remark. The above compactification & of the group PGL,(C) coincides with the variety of “com-
plete collineations;” see {4, 8, 9]. It is known that & is a smooth algebraic variety containing PGL,(C)
as a Zariski open and dense set.

Remark. Natural compactifications of some other symmetric spaces, namely, the Satake-Furstenberg
boundary [5, 7] and complete symmetric varieties (3, 4, 6, 8], can be described in terms of hinges in like
manner (see {10, 12]).



5. Boundary of the Bruhat-Tits building. Let Q, be the field of p-adic numbers, let Z, be the
set of integer p-adic numbers, and let Q; be the multiplicative group of the field Q, . Let M be the space
of all Z,-submodules of Qp (it is natural to regard these modules as subsets of the projective space QP").
In this case M is a compact metric space with respect to the Hausdorff metric in [QP"]. Recall that by a
lattice in Q;‘ we mean a Z,-submodule of the form Zyv @ --- ®Zyv,, where vy, ..., v, is an arbitrary
basis in Qp . Denote by Ens, the space of all lattices defined up to a dilation (i.e., up to the multiplication
by an element of the group Q;). In other words, Ens,, is the set of vertices of the Bruhat—Tits building.

Consider now the space 4 = M/ Q; and take the set Ens, as o/. Then the admissible subsets of M /Q;
have the form

0=Mo, Lo, M), Ly, M;,L,,... My, = Qy,
where Mo C My C -+ C Myy, are linear subspaces of Q, M; CLj C Mjy,1, and L;j/M; are lattices in
Mj [M;.

Thus, the set Ens, can be compactified in a natural way by the space of admissible subsets of A =
M/Q:.

I tfla.nk C. De Concini and S. L. Tregub for the discussion of the subject. I also thank Max-Planck-
Institute (Bonn) for hospitality.
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Integration of Non-Abelian Langmuir Type Lattices
by the Inverse Spectral Problem Method

A. S. Osipov UDC 530.1

We consider the following Cauchy problem for a system of difference-differential equations whose coef-
ficients are bounded operators in an arbitrary Banach space B:

Cn = Eq: Cn+iCn - Cn i Cn—iy qc€ N;
i=1 =1

Ca=Calt)e &B), t€[0,T), 0<T< oo, - =d/dt.
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