Hausdorff Metric, the Construction of a Hausdorff Quotient Space, and Boundaries of Symmetric Spaces*

Yu. A. Neretin

UDC 512.54

As is known, in many interesting cases, the quotient space of a metric space (topological space, algebraic variety) turns out to be non-Hausdorff. In algebraic geometry, a number of methods are known for constructing a Hausdorff quotient space from a non-Hausdorff one (the closure in the Chow scheme, blow-up of singularities, and the spectrum of an algebra of invariant functions; see [11]). The objective of the present note is to suggest a very simple construction (in essence, of general topological nature) for a Hausdorff quotient space and to discuss some of its applications.

- 1. Non-Hausdorff quotient space. Let M be a compact metric space and let $M = \bigcup_{\alpha \in A} M_{\alpha}$ be its partition into pairwise disjoint sets. The topology of the quotient space A is defined as follows: $B \subset A$ is closed if and only if $\bigcup_{\alpha \in B} M_{\alpha}$ is closed in M. Accordingly, a sequence $\alpha_j \in A$ converges to $\alpha \in A$ provided that there exist $m_j \in M_{\alpha_j}$ and $m \in M_{\alpha}$ such that m_j converges to m in the topology of the space M. It is well known that this topology can be non-Hausdorff.
- 2. Admissible sets. Let S be the set of all subsets of M which are unions of elements of the partition M_{α} . Let the partition $\bigcup M_{\alpha}$ satisfy the following additional condition: if a set Q belongs to S, then its closure $\operatorname{Clos}(Q)$ also belongs to S.

In what follows, we choose an open dense set $\mathcal{M} \subset M$ such that $\mathcal{M} \in S$. Denote by \mathscr{A} the set of all $\alpha \in A$ such that $M_{\alpha} \subset \mathcal{M}$.

We will now construct a Hausdorff metric space A from these data.

Take a sequence $\alpha_j \in \mathscr{A}$. We say that α_j is rigidly convergent if any limit point of the sequence α_j in A is a limit of this sequence in A (we stress that the sequence α_j can have many limits, see Secs. 4 and 5 below).

A subset $T \subset A$ is said to be admissible if there exists a rigidly convergent sequence $\alpha_j \in \mathcal{A}$ such that T is the set of limits of the sequence α_j . We stress that the definition of an admissible set depends on the choice of the subset $\mathcal{M} \subset M$.

We define our space $\overline{\mathcal{A}}$ as the set of all admissible subsets of A. A natural question is how a topology can be defined in $\overline{\mathcal{A}}$.

3. Hausdorff metric. Denote by $O_{\epsilon}(m)$ the ϵ -neighborhood of a point m and by $O_{\epsilon}(Q)$ the ϵ -neighborhood of a subset $Q \subset M$. Let [M] be the space of all closed nonempty subsets of M.

The Hausdorff distance (see [1, 2]) between the subsets $N_1, N_2 \in [M]$ is defined as the infimum of the numbers $\varepsilon > 0$ such that $N_1 \subset O_{\varepsilon}(N_2)$ and $N_2 \subset O_{\varepsilon}(N_1)$.

Recall a convergence test for [M].

Lemma 1. A sequence $N_j \in [M]$ converges to $N \in [M]$ if and only if, for any $\varepsilon > 0$,

- (1) for any $m \in N$, beginning with some index j, the set $O_e(m) \cap N_j$ is nonempty;
- (2) for any $m \notin N$, beginning with some index j, the set $O_{\epsilon}(m) \cap N_j$ is empty.

Consider the mapping $\psi \colon \mathscr{A} \to [M]$ that assigns to a point $\alpha \in \mathscr{A}$ the closure $\operatorname{Clos}(M_{\alpha})$ of the set M_{α} . The space $\overline{\mathscr{A}}$ is defined as the closure of the image of the mapping ψ with respect to the Hausdorff metric.

^{*}Supported in part by the Russian Foundation for Basic Research under grant No. 95-01-00814.

Moscow State Institute of Electronics and Mathematics, Max-Planck-Institut für Mathematik (Bonn). Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 31, No. 1, pp. 83-86, January-March, 1997. Original article submitted April 24, 1996.

Lemma 2. The following conditions are equivalent:

- (a) $N \in [M]$ is an element of $\overline{\mathscr{A}}$;
- (b) there exists an admissible set $T \subset A$ such that $N = \bigcup_{\alpha \in T} M_{\alpha}$.

Thus, the above two definitions of the set $\overline{\mathscr{A}}$ are equivalent. Note that it follows from the second definition that the set $\overline{\mathscr{A}}$ is a compact metric space (since [M] is compact; see [2]).

4. Example: "complete collineations" (see [4, 8, 9]). Denote by Gr_n the set of all *n*-dimensional subspaces of $\mathbb{C}^n \oplus \mathbb{C}^n$.

Example. Let A be an operator $\mathbb{C}^n \to \mathbb{C}^n$. Then its graph graph (A) is an element of Gr_n .

Let $V \in \operatorname{Gr}_n$ and let $\lambda \in \mathbb{C}^*$ (where \mathbb{C}^* denotes the multiplicative group of the complex field). We define the subspace $\lambda V \in \operatorname{Gr}_n$ as the set of all $(x, \lambda y) \in \mathbb{C}^n \oplus \mathbb{C}^n$ such that $(x, y) \in V$.

Now let $M = Gr_n$. Consider the partition of this space into orbits of the group \mathbb{C}^* and denote the corresponding quotient space as Gr_n/\mathbb{C}^* .

Remark. If $P \in Gr_n$ has the form $P = (P \cap (\mathbb{C}^n \oplus 0)) \oplus (P \cap (0 \oplus \mathbb{C}^n))$, then P is a fixed point of the group \mathbb{C}^* . The other orbits are isomorphic to \mathbb{C}^* as \mathbb{C}^* -homogeneous spaces. The orbits of the first type correspond to the closed points of Gr_n/\mathbb{C}^* and the orbits of the second type to the nonclosed points (i.e., to singletons that are not closed).

Remark. Any sequence graph (A_j) , where A_j are invertible operators, is convergent in Gr_n/\mathbb{C}^* and has at least two limits, namely, $\mathbb{C}^n \oplus 0$ and $0 \oplus \mathbb{C}^n$, i.e., the usual definition of a convergent sequence turns out to be completely meaningless here.

Now we assume that $\mathcal{M} \subset M = \operatorname{Gr}_n$ is the set of the graphs of invertible operators, i.e., $\mathcal{M} = GL_n(\mathbb{C})$. Then $\mathcal{A} = \mathcal{M}/\mathbb{C}^* = PGL_n(\mathbb{C})$.

Example. Let the subspace $P_j \in Gr_2$ consist of the vectors of the form $(x, y; x, jy) \in \mathbb{C}^2 \oplus \mathbb{C}^2$. Then the sequence $\mathbb{C}^* \cdot P_j$ is rigidly convergent in Gr_n/\mathbb{C}^* , and the set of its limits is formed by $R_1 : (0, 0; x, y)$, $R_2 : (0, y; x, y), R_3 : (x, 0; 0, y), R_4 : (x, y; 0, y),$ and $R_5 : (x, y; 0, 0)$.

To describe the compactification $\overline{\mathscr{A}}$ of the space \mathscr{A} , we introduce a definition (see [9]).

Let $V := \mathbb{C}^n \oplus 0$ and $W := 0 \oplus \mathbb{C}^n$. Denote by π and π' the projections onto V and W in the space $\mathbb{C}^n \oplus \mathbb{C}^n$.

Definition. A hinge in \mathbb{C}^n is the following collection of data:

(a) two flags of subspaces

$$V = L_0 \supset L_1 \supset \cdots \supset L_k = 0, \qquad 0 = M_0 \subset M_1 \subset \cdots \subset M_k = W$$

such that $\dim L_j + \dim M_j = n$ for any j;

(b) a family of subspaces $P_1, \ldots, P_k \in Gr_n$ defined up to a factor $\lambda_j \in \mathbb{C}^*$ and such that $P_j \cap V = L_j$, $\pi(P_j) = L_{j-1}$, $\pi'(P_j) = M_j$, and $P_j \cap W = M_{j-1}$.

Theorem. (a) For any hinge P_1, \ldots, P_k , the set P_1, \ldots, P_k , $L_0 \oplus M_0, L_1 \oplus M_1, \ldots, L_k \oplus M_k$ is admissible.

(b) Any admissible set has the form indicated in assertion (a) (for some hinge P_1, \ldots, P_k).

Remark. The above compactification $\overline{\mathscr{A}}$ of the group $PGL_n(\mathbb{C})$ coincides with the variety of "complete collineations;" see [4, 8, 9]. It is known that $\overline{\mathscr{A}}$ is a smooth algebraic variety containing $PGL_n(\mathbb{C})$ as a Zariski open and dense set.

Remark. Natural compactifications of some other symmetric spaces, namely, the Satake-Furstenberg boundary [5, 7] and complete symmetric varieties [3, 4, 6, 8], can be described in terms of hinges in like manner (see [10, 12]).

5. Boundary of the Bruhat-Tits building. Let Q_p be the field of p-adic numbers, let Z_p be the set of integer p-adic numbers, and let Q_p^* be the multiplicative group of the field Q_p . Let M be the space of all Z_p -submodules of Q_p^n (it is natural to regard these modules as subsets of the projective space Q_p^n). In this case M is a compact metric space with respect to the Hausdorff metric in $[Q_p^n]$. Recall that by a lattice in Q_p^n we mean a Z_p -submodule of the form $Z_pv_1 \oplus \cdots \oplus Z_pv_n$, where v_1, \ldots, v_n is an arbitrary basis in Q_p^n . Denote by Ens_n the space of all lattices defined up to a dilation (i.e., up to the multiplication by an element of the group Q_p^*). In other words, Ens_n is the set of vertices of the Bruhat-Tits building.

Consider now the space $A = M/\mathbb{Q}_p^*$ and take the set Ens_n as \mathscr{A} . Then the admissible subsets of M/\mathbb{Q}_p^* have the form

$$0 = M_0, L_0, M_1, L_1, M_2, L_2, \ldots, M_{k+1} = \mathbf{Q}_n^n,$$

where $M_0 \subset M_1 \subset \cdots \subset M_{k+1}$ are linear subspaces of \mathbb{Q}_p^n , $M_j \subset L_j \subset M_{j+1}$, and L_j/M_j are lattices in M_{j+1}/M_j .

Thus, the set Ens_n can be compactified in a natural way by the space of admissible subsets of $A = M/\mathbb{Q}_p^*$.

I thank C. De Concini and S. L. Tregub for the discussion of the subject. I also thank Max-Planck-Institute (Bonn) for hospitality.

References

- 1. D. Pompeiu, Ann. Fac. Sci. Toulouse, 7, 265-315 (1905).
- F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914; English transl. in: Set Theory, 4th ed., Chelsea, 1991.
- 3. E. Study, Math. Ann., 27, 51-58 (1886).
- 4. J. G. Semple, Rend. Math. Univ. Roma (5), 10, 201-208 (1951).
- 5. I. Satake, Ann. Math., 71, 77-110 (1960).
- A. R. Alguineid, Proc. Math. Phys. Soc. Egypt, 4, 93-104 (1952).
- 7. H. A. Furstenberg, Ann. Math., 77, 335-386 (1963).
- 8. C. De Concini and C. Procesi, in: Lect. Notes Math., Vol. 996, 1983, pp. 1-44.
- 9. Yu. A. Neretin, Funkts. Anal. Prilozhen., 26, No. 4, 30-44 (1992).
- 10. Yu. A. Neretin, Preprint MPI 96-78.
- 11. M. M. Kapranov, in: Adv. Sov. Math., Vol. 16, Part 2, 1991, pp. 29-110.
- 12. Yu. A. Neretin, in: Kirillov Seminar on Representation Theory, Adv. Sov. Math. (to appear).

Translated by A. I. Shtern

Functional Analysis and Its Applications, Vol. 31, No. 1, 1997

Integration of Non-Abelian Langmuir Type Lattices by the Inverse Spectral Problem Method

A. S. Osipov UDC 530.1

We consider the following Cauchy problem for a system of difference-differential equations whose coefficients are bounded operators in an arbitrary Banach space B:

$$\dot{C}_n = \sum_{i=1}^q C_{n+i} C_n - C_n \sum_{i=1}^q C_{n-i}, \qquad q \in \mathbb{N},$$

$$C_n = C_n(t) \in \mathfrak{L}(B), \quad t \in [0, T), \quad 0 < T \le \infty, \quad \cdot = d/dt.$$
(1)

Institute for System Studies, Russian Academy of Sciences. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 31, No. 1, pp. 86-89, January-March, 1997. Original article submitted November 22, 1995.