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Let p be a representation of a group G in a space H. Consider two sets: the closure p(G) of the
set p(G) of operators p(g), g € G, and the closure C-p(G) of the set C-p(G) of all operators of
the form Ap(g), ¢ € G, X € C. The problem of description of the semigroups 2(G) and C-p(G)
have arisen many times in a number of contexts (in particular, the semigroup C- Spin(O(2n, C)) related
to the spinor representation Spin was considered in detail in [7), the case of unitary representations of
semisimple groups was investigated in [9], and the case of finite dimensional representations was discussed
in [13-15]).

'[I‘he chcia.l role of this problem in representation theory of infinite dimensional groups was perceived by
G. L. OVshanskii (see, e.g., [12]). In the course of investigation of these semigroups some new interesting
algebraical structures were discovered (see [2-6, 10-11]). In particular, it turned out that the semigroup
C- Spin{0(2n, C)) has a nice and clear description in terms of linear relations.

" In a series of articles (see [13-15]), arbitrary semigroups of the form I' = C-p(G) were considered, where
G is a complex semisimple Lie group and p is a finite dimensional representation. These semigroups were
described in terms of canonical forms of elements of I" under the action of the group G X G (v — ¢g1792,
where v €' and g1, g2 € G). It was also discovered that the semigroups related to two representations

p1, p2 (of the same group @) are isomorphic if and only if the weight sets of p; and p; have similar
convex hulls.

So it may seem that different representations of the group G give rise to different semigroups. However,
it is not quite so. The aim of our paper is to construct, for each classical complex group G, an universal
(not separated) semigroup G such that

1) G isdense in G and any irreducible holomorphic representation of the group G can be canonically
extended to a projective representation p of the semigroup G;

2) the sets C-5(G) and C-p(G) coincide for each irreducible p.

The explicit construction of G can be described in much the same terms as for the classical categories
GA, B, C, D of [6]; however, the construction of G itself is less clear.

The semigroups G are described for G = SL,(C) in §2 and for G =SO(n, C), Sp(2n,C) in§3. In
any ‘case, an element of the semigroup is some sequence of linear relations.

Moreover, it turns out that the semigroups thus constructed have certain fairly interesting nonlinear
actions. First, they act on flag spaces (see 2.6), where the term “flag space” denotes the space of all flags
(complete and noncomplete as well) endowed with the natural (not separated) topology.

Further, let o be a holomorphic involutive automorphism of the group G. Let H C G be the subgroup
of all ﬁxed points of o. It turns out that symmetric spaces of the form G/H have some natural (not
separated) completions G/H similar to those of classical groups, therewith the semigroup G acts on
G/H ; in 2.7 we discuss an example of this action.

After this paper had been submitted to the editors, C. de Concini informed the author that the com-
pletions for classical groups, constructed via exact resolving sequences (see §2), are known in algebraic
geometry (see [16-19]). However, the existence of a natural multiplication in the space of resolving se-
quences was not noticed; accordingly, the representations of corresponding semigroups were not considered.
In order to clarify connections of our paper with [16-19), we add Subsection 2.7.

Recently it has been discovered (see [3-6]) that semigroups usually appear in representation theory
because we actually deal not with representations of groups or semigroups, but with representations of
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category LA related to the semigroups SL, (see §3).
I am grateful to G. I. Ol'shanskii, C. de Concini, S. L. Tregub for discussions of these topics.
Throughout this paper, the notion of convergence and continuity can be realized in the sense of usu
topology and Zariski topology as well.

§1. Preliminaries

L.1. Representations of categories. Suppose that K is a category and Morx(V, W) is t]
set of morphisms from V to W. By definition, a projective representation of K is a functor (T, -
which assigns a linear space T(V') to each object V' of K and a linear operator 7(P) to each morphis
P: V — W ; moreover, we have

T(QP) =c(P, Q)7(Q)7(P), ‘
for each P € Mor(V, W) and Q € Mor(W,Y), where ¢(P, @) is a complex number.

1.2. Linear relations. Let V, W be linear spaces. A linear relation is a subspace PCV oW
Informally speaking, these subspaces can be regarded as graphs of linear “operators” V — W which ca
be multivalued and not everywhere defined.

For any linear relation P: V =3 W we define

a) the kernel KerP = {v € V : (v, 0) € P},

b) the image Im P = the projection of P onto W,

¢c) the domain D(P) = the projection of P onto V,

d) the indefiniteness Indef(P) = {w € W: (0, w) € P}.

K P:V3W, QW 3Y are linear relations, then we define their product to be a linear relatio
QP:V 3Y. An element (v,y) € V@Y is contained in QP whenever there exists an element w € ¥
such that (v,w)€e P, (w,y)€Q.

1.3. Category GA (see [4, 6]). Objects of the category GA are finite dimensional complex linea
spaces. Let V', W be objects of GA ; then the set Morga(V, W) of morphisms consists of elements ¢
two kinds:

a) linear relations P: V 3 W ;

b) a formal element null = nully,w (which is not to be identified with any linear relation).

The topology on Mor(V', W) is defined as follows: it is the topology of disjoint union of Grassmannian
on Mor(V, W)\ nully,w and the point nully, i is contained in the closure of any other point.

Define a multiplication of morphisms as follows:

a) the product of the null with any other morphism is the null;

b)if P: V=3W, @Q: W =3Y are linear relations and the conditions

Ker@Q NIndef(P) =0, ImP+D(@Q)=W, (1.1

hold, then QP is the usual product of linear relations; otherwise QP is the null.
Remark. The reasons for introducing this strange element “null” are discussed in [6]; one of them i
that the multiplication of linear relations is discontinuous at the points

(P, Q) € (Mor(V, W)\ null) x (Mor(W, ¥) \ null),
where QP = null.

1.4. The fundamental representation of the category GA. The representations of the cate-
gory GA were classified in [6]. The only (projective) representation of GA we need is the fundamenta’
representation (A, A).

To each object V of GA we assign the exterior algebra A(V).

Any nonzero morphism P: V =3 W of the category GA is decomposed into the product of three
morphisms P = QRT , where the factors are defined as follows:

a) T:V =3 D(P) is the graph of the embedding D(P) - V;



2.1. Fundamental representations of SL,, and their semigroup extensions, Let 0<j<n.
Denote by A; the natural representation of SL, in the jth exterior power AI(C™) of C*. We have
observed t.hat ); can be canonically extended to a projective representation of the semigroup GL};

denote this representation also by A;.

Lemma 2.1. C-);(SL,) =C-X;(GL}).
(This follows easily from assertion of Subsections 1.5-1.6.)
Let P € GLX \ null. We define the domain of action of a linear relation P to be the set of all A; such
that A;(P)#0.
Lemma 2.2. The domain of action of the linear relation P consists of all A satisfying the condilion
dimIndef(P) £ j £ dimIm P. (2.1)

We are especially interested in the behavior of A;(P) on the boundary of the domain of action, i.e., at
those j for which some of inequalities (2.1} become equaljties.

Lemma 2.3. a) Let dimIm P = j. Then A;(P) is a rank one operator and, up to a scelar mulisple, 1t
is determined uniquely by the subspaces InP and Ker P, i.e.,if P, P' € GL;\null and ImP =ImP’,
Ker P = Ker P!, then Xj(P) = :\}(P') .

b) Let dimIndef(Q) = j. Then A;(Q) is a rank one operator and, up to a scalar multiple, it is
determined uniquely by the subspaces Indef @ and D(Q). 5 5

¢) Let dimIndef(P)=j=dimImQ and Indef(P)=Im@Q, KerQ =D(P). Then Aj(P) = A;(Q).

Proof. In the case a) the subspace ImA;(P) is generated by the vector ey A...Ae;j, where {eq} is
a basis in Im P, and the subspace Ker );(P) is generated be vectors fAge A...Agn—;, where f runs
over Ker P.

In the case b) the subspace Im ) ;(P) is generated by the vector e; A...Ae;, where {eq} is a basis
in Im P, and the subspace Ker A;j(P) is generated by the vector fAgaA...Agn-j, where f belongs to
D(P).

The case ¢) also follows from what was said above.

2.2. Exact resolving sequences. By definition, an exact resolving sequence is a sequence of linear
relations Py, P, ... , P, € GL;, such that
Indef P, =0, KerP,=0, D(Pjy1)=KerP;, Indef(Pjy:)=ImP; forall j.
Let # = (P, ... , P,) be an exact resolving sequence. Fix a number j and consider the sequence of

operators Aj(P1), Aj(P2), ..., Aj(Ps). Lemma 2.2 implies that this sequence contains only one or two
nonzero elements. If there are two nonzero elements, then their indices are consecutive integers. Lemma

2.3 also implies that \; (P )= ,(Pa+1) for Aj(Po) #0, Aj(Pot1) #0.
Define an operator A; j(7) € Mt(AIC™) by
Xi(m) = X(Pa),
where Xj(Pa) #0.
It is convenient to represent the action of exact resolving sequences by diagrams of the form

* L " A ¢ _“-o——-o T
) !
1

where the circles denote the representations A;, Az, ... , Ap—1 of the group SL, , therewith the funda-
mental representations A, ... , An_; are linked by edges, and so we obtain the Dynkin diagram of type
Apn—1 . The crosses denote the representations A, and An . The arrows denote the domains of action of
linear relations Py, P, ... ; they contact but do not overla.p.
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D(P)®W — D(P) ® (W/Indef(P)); obviously, R is simply the graph of a linear operator;

c) Q: W/Indef(P) 3 W is the graph of the projection W — W/ Indef(P).

Define an operator A(P) to be AMQ)A(R)A(T), where A@), MR), MT) are defined as follows:

a) A(T): A(V) — A(D(P)) is the interior multiplication by fih...Af,, where {f;} is a basis in t}
space of functionals on V' which are zero on D(P);

b) AR): A(D(P)) — A(W/Indef(P)) is the natural functorial mapping of exterior algebras corr
sponding to the operator with graph R;

c¢) MQ): A(W/Indef(P)) — A(W) is the exterior multiplication by e1A...Ae;, where {e;} isabas
in Indef(P).

Denote by GL*(V)) the semigroup whose elements are the null and all the linear relations of dimensio
dim V' (it is not quite obvious that GL*(V) is closed under multiplication; the conditions (1.1) are heavil
exploited in proving this fact). If dimV =n, then we also denote the semigroup GL*(V) by GL:.

Remark. Suppose that P: V 3 W is a linear relation and dim P — dimV = s. Then the operatc
A(P): A(V)— A(W) maps A¥(V) into AF+o(V).

1.5. Toric manifolds. Suppose that T = (C*)* is the complex torus. Let g — p(g) be a holomor
phic representation of T, defined up to a coordinate transform, g = (21, ... , zx) € T. The representatio:
p(g) has the following form:

xi(g) ... 0
p(g) = diag(x1(9), --. , xs(9)) = ,

6 . x,.(g)

where x;(g) =z, --- zp’* and aj, are (real) integers. It is known that the sequences a; = (a;, , ...
aj,) are said to be weights of the representation p.

It is not difficult to describe the closure p(T) of the set 2(T) in the space of all operators. We stat
the answer [1]. Let P be the convex cone in R generated by the weights a; of the representation p
Consider some face A of the cone P. Put x#(g) = x;(g) if a; € A and xMg)=0if o ¢ A. Le
X(A) be the set of all the matrices of the form diag(x{!(g), --. , x2(g)), where g runs over T. Then

p(T)\ p(T) = J X(4),
A

the union being taken over all the faces of the cone P.

1.6. The s;t“?(G’) . Suppose that G is a complex reductive Lie group and p is a representatior
of G. Let p(G) be the closure of the set of operators p(g), g € G, in the space of all operators. Let
T C G be a maximal torus.

Theorem (see [14, 15]). L L
p(G) =G-p(T)-G.

Thus, the problem of describing p(G) is reduced to the same problem for p(T).
Now let G be a semisimple group and p be its irreducible representation. We are interested in

describing the set C.p(G). This problem can be reduced to the previous one, because the reduction
group G' = C*-G acts in the representation space of p (the group C* acts by scalar multiplication and
G acts by the operators p(g)).

§2. Completion of the Group SL,

Let V be a linear space and Mat(V) be the semigroup of all operators in V'; we define Mt(V) =
Mat V/C* to be the quotient of Mat(V) with respect to the action of the complex multiplicative group
C* . Introduce the natural quotient topology in the semigroup Mt(V); this topology is not separated:
the point 0 is contained in the closure of any point. If p: I' - Mat(V') is a representation of a group or

of a semigroup T', then we denote by 7 the natural mapping of ' into Mt(V) = Mat(V)/C*.
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Then Xj(‘ﬂ') = X_,-(‘.'r') for any j.
Remark 2. Suppose that 7 = (P,, ... , P,) is a resolving sequence and the domain of action for P
is the single point which is contained in the domain of action for Py—1 or Pa+1 -

‘.W.I. L ) W...
B pe—it T (2.3)
| &, | B

Consider the sequence 7' = (Py, ... , Pac1y Pog1, ... , Ps). Then X_,-(vr) = Xj('zr_’) for all ;.
_ So we see that in some cases different resolving sequences can give rise to the same set of operators
Aj(m). -
A resolving sequence 7 = (P, ... , P;) is said to be correct if the following conditions hold:

a) for any j the condition D(Pj4;) # Ker P; implies dimKer P; — dimD(P;41) 2 2, i.e., either the
domains of action for neighboring relations Pj, Pjy1 have contacts or they are at a distance not less

than 2;

b) if the domain of action of P, is the single point, then it is not contained in the domains of action
of P,_; and P,4;; then, the pictures of the form (2.3) are forbidden.

The following assertion is more or less obvious.

Lemma 2.6. For each resolving sequence w there ezisis a unigue correct resolving sequence ' such
that Aj(m) = Aj(n') for all j.

Define SL, to be the semigroup of all correct resolving sequences. Note that the multiplication of
correct resolving sequences does not break the condition a); if the condition b) is broken then we simply
drop unnecessary relations.

Remark. The group GL, C SL, consists of sequences = = {P;} which have the single element, P,
being an invertible operator (Ker P, =0, Indef(P;) = 0).

Now we define the topology in SL, as follows. The sequence 7; € SL,, is said to converge to 7 € SL,
if the sequence Ax(w;) converges to Ae(m) in the topology of Mt(A*C™) for any k. The topology thus
obtained on SL, is not separated. For example, the closure of the point © = (P, ... , Pi) € SL,
contains all the resolving sequences of the form (F;, ,... , P;,).

By Lemma 2.5, the group SL, is dense in the semigroup SL, .

2.5. Extension of irreducible representations of SL,, to SL,. A fixed irreducible represen-
tation of the group SL, can have several extensions that are continuous projective representations of the
semigroup SL, . This does not contradict the fact that SL, is dense in SL, ; the reason is that the
topology on SL, is not separable. However, among these extensions there exists a certain canonical one
p. Now we are going to construct it.

Let p be an irreducible representation of SL,, and let a;,... , a,—; be its labels at the Dynkin
diagram of type A,. It is known (see, e.g., [8]) that this representation has the following realization.
Consider the tensor product of the form S = Aie“‘ ® z\?“’ ®...8 Aff'l"" ; then the representation p acts
on the subspace £ in § generated by the highest weight vector. The representation § can be extended
to the semigroup SL, by the same formula. Since the group SL, is dense in the semigroup SL,, the
subspace L is invariant under the action of SL, . The canonical extension 3 of p is constructed.



. wemina z.4. Let T 0e an ecact resolving sequence. Lhen there exists a curve g, C SL, such the
Ai(ge) = Aj(7r) as e =0, forall ;5.

Proof. The group GL, X GL,, acts on the set of all exact resolving sequences by left and right mu
tiplications. Under this action, each exact resolving sequence can be transformed to the canonical fort
Qi,..., Q: asfollows.

Let C*=V1@Vo,®---®V; andlet V/®--- @V, be another copy of the space C". Then the desire
linear relation Qo C C" @ C" is generated by (Vi®...® Vou1) @ (V.y, ®---®V/) and by the graph c
the identical map V, — V.

Now we define g. to be an operator in C® whose restriction to V, is the multiplication by e*~1
This proves the Lemma.

The converse is also true.

Lemma 2.5. Let 0 <i3 <i3 <--- <i,<n, and let g € SL, be a sequence such that X;,(g,,) -
A; € Mt(A**C")\ 0 for each i, . Then there ezists an ezact resolving sequence m such that

A,‘a = X,’a (11')

Proof. Consider the group G of operators in @, A«(C") generated by operators @ A;_ (9), g¢
SLn , and by operators which act as a scalar multiplication on each A’*(C"™). The group G is the quotien
of the group SL, x(C*)® by some finite subgroup. Thus, the technique of Subsections 1.5 and 1.6 can b
applied.

2.3. Resolving sequences. By definition, a resolving sequence is a set (possibly void) of lineas
relations such that

D(Pjt+1) C Ker F;, Indef(Pj41) O Im P;.

It is convenient to represent resolving sequences by diagrams of the form

¥ ... 71 *
|

s B B :‘%;
e—— fr—— =

As before, the arrows indicate the domain of action of P, ; however, these domains may have no contact

points.
For each resolving sequence = = (Py, ... , P,) and for each j such that 0 < j < n, we now define
an operator A;j(7) € Mt(A/C"). As before, consider the sequence of operators A;(P1), ... , A;j(P,). Let

Aj(r) =0 if Aj(Py) = 0 for all P, and Aj(7) = A;(P,) if A;(P.) # 0. Using the same reasons as
above, we prove that the operator X,-('lr) € Mt(AJC?) is well defined.

Define a multiplication of resolving sequences 7 = (P;,... , P,) and % =(Q1, ... , @Q¢). In order to
do this, we consider all the products of the form @,Ps different from the null. Note that if the domains
of action for @, and Pz do not intersect, then their product is null. Moreover, the domain of action for
Qo Pp is contained in the intersection of the domains of action for @, and Pg. It is easy to prove that
the set Ro,g = Q.Pg becomes a resolving sequence when properly ordered; the corresponding ordering
is defined by the condition Rnp < Rys if aa < v, 8 < 6. It follows from what was said above that this
ordering is total.

The universal completion of SL, could be defined as a semigroup of resolving sequences in C* ; however,
we have preferred the definition which is a bit more complicated.

2.4, Correct resolving sequences.
Remark 1. Suppose that 7 =(Py,... , P,) and o' =(Py, ... , Poc1, Pat1, ... , Ps) areresolving
sequences and the domains of action have the following form near P, :
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The circles denote the genuine points of the object A, the crosses denote the adjoined points; other
elements of Z are denoted by dots. Consecutive genuine points are linked with edges.

To each interval I of A consisting of k* points we assign a complex linear space V(I) of dimension
(k +1). Thus, to any object of A we have assigned a collection of linear spaces V(I),... , V(l),
where I, ... , I, is the collection of all the intervals of our object.

3.2. Morphisms of category LA . Suppose that A, B are objects of the category LA. Let
Iy, ..., I, be the intervals of the object A, and let J;, ..., J; be the intervals of the object B. In
both cases the intervals are indexed from left to right.

By definition, a morphism is a (possibly empty) collection 7 of linear relations P;: V(Ia) =3 V(J3).
The exact description of admissible collections is rather complicated and occupies the rest of this subsec-
tion.

A. Dimensions. Let I, =[s,s+k—1], Js=[t,t+1—1]. Then the dimension of the relation P;
acting from V(I,) to V(Jg) equals to (k+1)+(s—1t) =dimV(I,) +s—t.
In particular, a linear relation P; € m can act from V(I,) to V(Jg) only provided the extended
intervals I, and fﬂ have a common point.
Example. Suppose that I, and Jz are disposed as follows:
I .
LT XL or LU X oﬁ-o.

% M 4
'x hﬂ* -..l—% x---

and P; acts from V(I,) to V(Jg). Then P; is zero-dimensional in the first case; P; = V(I,)®V(J;s)
in the second case.

B. The domain of action of P;. By definition, the domain of action of P; is the set of integers k € Z
such that

t + dimIndef(P;) < k < ¢ + dimIm(P;).

Note that the domain of action of P; is contained in I, N J3.

It is convenient to suppose at once that the domains of action do not overlap for different relations
P; € m (but they may have contacts, i.e., common endpoints); however, this requirement is a consequence
of further conditions.

C. Concordance. Let P, Q € w be linear relations, P acts from V(I,) to V(Jg) and @ acts from
V(ls) to V(Jy), therewith v > B and the domain of action of P is from the left of the domain of action
of @ (i.e., neither point of the domain of action of P is from the right of any point of the domain of
action of Q). Then

D(Q) C Ker P.

Now, if P acts from V(I,) to V(Jg), Q acts from V(I,) to V(Jg), g > a, and the domain of
action for P is from the left of the domain of action for Q, then

Indef(Q) > Im P.

D. Ezactness in pendent points. Suppose that the extended intervals I, and fa—[-l have a common

endpoint k. r P
LA = x

Taes

Ja
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We omit the proof of this theorem based on the arguments of Subsections 1.5-3.6.
Remark. This Theorem js valid only for irreducible representations. '

2.6. The action of SL,. on flag spaces. Let S be a set of integers s;3,...,8, such the
0 <33 <32<...<3y<n.Suppose Fs is the flag space of type S in C,. A point of this space is tt
set of subspaces V3, ..., V, such that V Cc Vo C ..- C ¥, with dim V; = s;. We define the flag spac
F to be |JFs, the union being taken over all sets S (including the empty one).

If $' D S, then the natural projection Pg’: Fs — Fs is defined (we simply drop the unnecessar
subspaces). Define a (not separated) topology on F. The sequence v}, v@ ... is said to converge t
the point v € Fg if

a) if v("') € Fst), then S O § for sufficiently large %;

b) Pg( Y98 = v in the natural topology of Fs.

Thus, the closure of the point v = (V4,... , V,) € F consists of all sequences obtained by droppin
some subspaces from ». L
Now let = = (P;,... ,P,) € SL,, v=(Vi,... , Vi) € F. Define an element 7v € §. Toward thj

end, consider the set of all pairs (P, V3) such that
KerPaNVg=@, D(P)+Vz=C".

For each pair of this type we consider the subspace P,Vs C C" given by P.Vg ={zeC"| Iy
(z,y) € Po,y € Vg}. It is easy to verify that the set of subspaces P,Vy is a flag. Thus, we hav
constructed the action of SL, on F. : 2

2.7. The action of SL, on the “completed quadric space” GL, /O, .- Suppose that a spac
V ~ C" is equipped with a nondegenerate symmetric bilinear form B(-, -). Introduce 2 nondegenerat
skew-symmetric bilinear form on V @& V by the formula

C((v,w), (v', w")) = B(v, v') - B(+', w).

By definition, the space GLy /On consists of resolving sequences v = (@1, ... , Q&) in the space V
such that any Q; is a maximal isotropic subspace in V @ V' with respect to the form C(., - ).

Introduce an antiautomorphism 7 +— 7' in SL, as follows. If = = (P, ..., P;), then we sel
7t = gg:‘, - ,:{BEP , where P} is the orthogonal complement to P; with respect'to the form C(-, ).

The semigroup SL, acts on GL, /O, by the formula
T2y > wiym,

Remark. Consider the subspace § in GL, /O, that consists of all exact resolving sequences. Ther
S is the completed quadric space defined by Semple (see [16-17]).

§3. The Big Category LA

In § 2 we have constructed natural operators which act on irreducible representations of SL, . Similarly,
we can construct some operators relating representations of different groups SL,, and SL,, and, moreover,
those of different groups of the form P, SL,, .

3.1. Objects of the category LA. We define an object of the category LA to be a finite subset
A of Z. The points of A are said to be genuine points of the object A. An interval I = [, a + &]

‘of the object A is a maximal subset of the form «, @+ 1,... ,a+k contained in A. An extended

interval I is defined as theset «a —1,a,... ,a+ k+ 1. The points @—1 and a+k+1 are called
adjoined points of the interval I and of the object as well. We denote by A the set of all the genuine
and adjoined points of the object A. i a is an adjoined point and the points a4 1 are genuine, then
a is called a pendent point.

It is convenient to represent the objects by diagrams
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Note that this definition is a bit ambiguous for pendent points; namely, if ¥k € Iy, and k € I,
simultaneously, then our definition implies that My(A) is simultaneously equal to A°(V(Ia41)) and to
AdimVIL)(V(1,)). However, these spaces are one-dimensional and so they can be identified arbitrarily
(because our representations are projective).

Define an operator pr(m): My(A) —» M(B) for each morphism 7 = (Pl yeon s Py)i A= B. We set
px(7) = 0 if k is not contained in the domain of action for any relation P;. Suppose, that k belongs
to the domairn of action for some P;: V(i) = V(Jg). Then ui(w) is the na.tura.l mapping of exterior
powers related to the linear relation P;.

Remark. The last assertion may seem ambiguous for a pendent point k¥ of A or B. However, the
mapping is well defined by virtue of exactness in pendent points.

It is easy to check that (M, i) is a projective representation of the category LA.

3.5. Representations of the categbry LA . Suppose that h; (k € Z) is a sequence of nonnegative
integers with a finite number of nonzero elements. We use this sequence to construct an irreducible
representation (T}, 7,) of the category LA. Toward this end, we consider the tensor product S, =
& MP " and take a highest weight vector v(A) in any Q) Mi(A)® 4 then we form the cyclic
subspace T),(A) generated by the vector v(A) under the action of the group Autys(A). The collection
of subspaces T,(A)CSa(A) determines an irreducible subrepresentation in Sk{A4).

Seemingly, these are all the irreducible representations of the category LA.

§4. Completions of Groups Sp2, and SO,

We restrict ourselves only to describing the universal semigroups.

4.1. The case of groups Spz,. Let V be a 2n-dimensional complex space equipped with a
nondegenerate skew-symmetric bilinear form {- , -}. The group Sp,, consists of operators which preserve
{-,-}. The group Sp,, is included in a larger semigroup Endc(V) which consists of endomorphisms
of objects of the category C (the category C is defined in [6]). This semigroup is a subsemigroup in
GL*(V) and consistsof null and of the maximal isotropic (lagrangian) subspaces in V @V with respect
to the form '

{(U , W), (U’: w')}VQV = {'U, ‘U'} - {w ' w’}' (41)

The semigroup Sp,, consists of correct resolving sequences = = (P, ..., P}, where P; € GL3,
satisfy some additional conditions. Namely, the elements P; are of two kinds:

1) P; € Ende(V);

2) Ker P; is coisotropic and Im P; is isotropic.

Note that the elements of the first kind may be absent; otherwise, the only element of this kind,
containing in the sequence = = (P, ... , P,),is P,.

It is convenient to represent the elements of Sp,, by diagrams of the form

%

o s?
3 g

The domains of action of linear relations P; are the same as for SL;, (although the action of P, on the
rightest fundamental representation requires a more detailed discussion).

4.2. The groups SO2,41. These groups can be treated similarly verbatim.

4.3. The case of groups SO,,, . Let V be a complex linear space of even dimension endowed with
a nondegenerate symmetric bilinear form {-,-}. Let us introduce a bilinear form on V @V by means
of (4.1). Consider the Grassmannian Gr of ma.xlmal isotropic subspaces in V @ V. The group SO(V)
is naturally embedded into Gr. It is easy to check that Gr has two connected components and.that the
group SO(V) is dense in one of them; denote this component by Gry .
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a) k is contained in the domain of action of a relation P: V(I,) = V(J), P € r;

b) k is contained in the domain of action of a relation Q: V(Ip41) =3 V(J35), Q€ 7.

Similarly, suppose that extended intervals J; s and Jg.H have a common pendent point k. Then v
require equwalence of the following conditions:

a) k is contained in the domain of action of a relatlon P:V(I,)=3V(Jg), Pem;

b) k is contained in the domain of action of a relation Q: V(I,) =3 V(Jsy1), Q€ 7.

Example. In the case

I KX Tnes
, TOm——0 X
Joer

the collection 7 either does not contain any relation whose domain of action includes % or contains for
relations of this type:

Vil) 3 V(). V()3 V(ss), Vllan)3V(p), V(Iat1) 3 V(Js).

E. Correctness (as in § 2, this condition is reasonable from the aesthetic view-point). Suppose that th
relations P, @ € v act from V(Ia) to V(Jg). We require the following conditions:

a) the domain of action for P does not contain that of Q;
b) the neighboring domains of action for relations V(I,) =3 V(J;3) either have a contact point or the

are at a distance not less then 2.
It is convenient to represent morphisms of the category LA by diagrams

?}g
; *;
%

arrows denoting the domains of action of linear relations from the collection .

3.3. Multiplication of morphisms. Suppose that A, B, C are the objects of LA and I,
Jg, K, areintervalsof A, B, C. Let 7: A — B, »: B — C be morphisms of the category LA
= (P,... ,P), #=(Q1,...,Q:). Consider all the products of the form Q;P;, where P; act:
from V(I,) to V(Jg) and Q acts from V(J3) to V(K,). Dropping all the elements equal to the nul
from the collection @;P; we obtain the collection of linear relations which satisfies all the conditions tha
are to be satisfied by a morphism A4 — C, except the condition a) of correctness. As in 2.5, we obtain ¢
morphism of the category LA from A to C by dropping unnecessary relations from Q;P;

Remark. The group Autys(4) of automorphisms of an object A is isomorphic to @, GL{V(I,))

where I, runs over all intervals of the object A.

3.4. Fundamental representations. Let k € Z. Assign a linear space My(A) to each object A

of the category LA .
If a point £ is neither genuine nor adjoined for the object A, then My(A) is zero-dimensional. Now

we define Mi(A) at other points.
Let I, be aninterval in A, Iy = [a, a+m —1]. Then for all k¥ such that a—1 < k < a+m we sel
Mi(A) := A¥* V(1))
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Define a semigroup Endp(V) to be the subsemigroup in Endga(V) that consists of null and of the
elements of Gry (on the category D see [6]). ‘ : :

The semigroup SOg, consists of collections of linear relations = = (2’1 yore 5 Ps) from V satisfying
some additional conditions given below. “

There are elements P; of two kinds:

1) Pje Endp(V);

2) Ker P; is coisotropic, Im P; is isotropic, and in the case dim Ker P; = dimIm P; = n the dimension
of the subspace Ker P; NIm P; is even (this complication appears, because we deal with SQO,, instead of

Oqn).
There are domains of action of two kinds for linear relations P;: i.e., natural and prescribed domains.
Enumerate the fundamental representations o, of the group SO, as follows (¢ =1,2,... ,n—
2,4, -):

oo is a representation of SOy, in A%(V).

Linear relations of the type 1) have natural domains of action if dim Ker P; < n—3 or, equivalently,
if dimIndef(P;) < n—3. In this case the domain of action consists of o4 and all the o (k € Z)
satisfying the condition k > dimKer P;. Linear relations P; of type 2) have natural domains of action
if dimIndef(P;) < n -3 and also if dimIndef(P;) = dimImP; = n ~ 2. In this case the domain
of action contains all the o (k € Z) such that 0 < k < n -2, dimIndef(P;) < k < dimImP;. H
dimIm P; > n — 2, then the domain of action also contains ¢, and o_.

Prescribed domains of action occur only if dimIndef(P;) > n — 2. If dimIndef(P;) = n — 2, then
the domain of action contains o,,_, . The domain of action also contains o, or g_ . We stress that the
domain of action is not determined completely by P; only; we must also keep in mind whether it acts in
o4 orin o_ . Recall once more that in the case dim Indef(P;) = dimIm P; = n—2 the domain of action
1s natural.

Now we pass to the list of conditions on # = (P, ... , P,).

a) The collection = is a resolving one, i.e., if the domain of action for P; is from the left of the domain
of action for Py, then

Ker P; D D(F), Im P; C Indef (Py).

Besides, if the domains of action for P, and P_ are disposed as follows:

then Indef(Py) = Indef(P_), D(Py)=D(P.).
b) The collection {P;} is correct, i.e., the domain of action for P, is not contained in the domain of

action for Pg and either two neighboring domains of action have a contact point or they are at a distance
not less than 2.

4.4. Representations of the semigroups Sp,, , SOz,41, SOz, . In this case an analog of
Theorem 2.1 is valid. The main step in the construction of representation of this semigroups is the
construction of fundamental representations. The principal difficulty lies in the construction of the action
of linear relations in spinor representations (partly this was done in [4, 6]; however, in our case this

construction is inadequate, because it can occur that the operators w4 (P,) are not Berezin operators in
the sense of [4]).
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