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Conformal geometry of symmetric spaces and

generalized linear-fractional maps of Krěın–Shmul’yan

Yu.A. Neretin

Abstract. The matrix balls Bp,q consisting of (p× q)-matrices of norm < 1 over C
are considered. These balls are one possible realization of the symmetric spaces
Bp,q = U(p, q)/U(p)×U(q). Generalized linear-fractionalmaps are maps Bp,q→Br,s
of the form Z 7→ K + LZ(1−NZ)−1 (they are in general neither injective nor sur-
jective). Characterizations of generalized linear-fractional maps in the spirit of the
‘fundamental theorem of projective geometry’ are obtained: for a certain family of
submanifolds of Bp,q (‘quasilines’)it is shown that maps taking quasilines to quasi-
lines are generalized linear-fractional. In addition, for the standard field of cones on
Bp,q (described by the inequality rk dZ 6 1) it is shown that maps taking cones to
cones are generalized linear-fractional.

Bibliography: 21 titles.

Introduction

Consider any one of the 10 series of classical Riemannian non-compact symmetric
spaces

GL(n,R)/O(n), GL(n, C )/U(n), GL(n,H)/ Sp(n), U(p, q)/U(p)× U(q),

O(p, q)/O(p) ×O(q), Sp(p, q)/ Sp(p)× Sp(q),

Sp(2n,R)/U(n), Sp(2n, C )/ Sp(n), SO∗(2n)/U(n), O(n, C )/O(n,R).

It turns out that there exist natural maps between distinct spaces in one series,
the so-called generalized linear-fractional maps of Krěın–Shmul’yan. For the series
U(p, q)/U(p)×U(q) such maps have been known in operator theory since the 1950s
at least (they have appeared in papers by Potapov, M. Krěın, Yu. Ginzburg, and
Shmul’yan; see, for instance, [1]–[4]). For the series Sp(2n,R)/U(n) they have
been introduced in [2] and for other series in [5]. In the 1980s these maps found
their way into representation theory (see [5]–[7]). The aim of the present paper is
to demonstrate that generalized linear-fractional maps are very natural from the
geometric standpoint.
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Research (grant no. 98-01-00303) and the Russian Programme of Support for Leading Scientific

Schools (grant no. 96-01-96249).
AMS 1991 Mathematics Subject Classi�cation. Primary 32M15, 53C35; Secondary 53C10.
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We now explain just what we mean. For example. consider the series of spaces

U(p, q)/U(p)×U(q).

They have a convenient realization as Cartan domains or matrix balls. Namely,
let B(p,q) be the set of complex p × q-matrices with norm < 1 (by the norm of a

matrix we mean the norm of the corresponding linear operator from the Euclidean
space C p into the Euclidean space C q ). We consider the pseudo-unitary group

U(p, q), that is, the group of block matrices

(
A B
C D

)
of size (p + q) × (p + q)

preserving the Hermitian form with matrix

(
1 0
0 −1

)
. The group U(p, q) acts in

Bp,q by linear-fractional maps of the form

Z 7→ (A + ZC)−1(B + ZD), (0.1)

where

(
A B
C D

)
∈ U(p, q). The stabilizer of the point Z = 0 consists of the

matrices (
A 0
0 D

)
,

where A ∈ U(p), D ∈ U(q). Thus, Bp,q = U(p, q)/U(p)×U(q).
Let Z1, Z2 ∈ Bp,q . We consider now the matrix

Λ(Z1, Z2) = (1− Z∗1Z1)
−1/2(1− Z∗1Z2)(1 − Z∗2Z2)

−1/2.

Let λ1 > λ2 > · · · be the singular values of this matrix (recall that singular values

of a matrix Λ are eigenvalues of the matrix |Λ| =
√

Λ∗Λ). It turns out that this
collection of numbers is a complete set of invariants of the pair Z1, Z2 ∈ Bp,q under
the action of U(p, q). The quantities

ϕ1 := cosh−1(λ1), ϕ2 = cosh−1(λ2), . . .

are called the complex (compound) distance or the stationary angles (see [8], [9] for
fuller detail). The standard distance in the symmetric space U(p, q)/U(p) × U(q)
induced by the invariant Riemannian metric can be expressed through the complex
distance by the formula

ρ(Z1, Z2) =
(∑

ϕ2
j

)1/2

.

We consider now the block
(
(r + q) × (s+ p)

)
-matrix

S =

(
K L
M N

)
(note the size) satisfying the conditions

(a) ‖S‖ 6 1,
(b) ‖K‖ < 1.
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It can be shown that the formula

τS(Z) = K + LZ(1 −NZ)−1M (0.2)

defines in this case a map
τ(S) : Bp,q → Br,s.

Note that if (p, q) = (r, s), then the matrices S corresponding to motions (0.1) of
the symmetric space Bp,q are unitary, that is, even in this case there exist more
maps (0.2) than there are motions (0.1). Maps of the form (0.2) are called gener-

alized linear-fractional maps of Kre��n{Shmul'yan.
The following result can be found in [8], [9] (in the form of a lemma in the proof

of boundedness for a class of integral operators).

Theorem 0.1. Let τS : Bp,q → Br,s be a map of the form (0.2). Let ϕ1 > ϕ2 > · · ·
be the compound distance between points Z1, Z2 ∈ Bp,q and let ψ1 > ψ2 > · · · be
the compound distance between their images. Then

ϕ1 > ψ1, ϕ2 > ψ2, ϕ3 > ψ3, . . . (0.3)

(see the first inequality in [10]).

Of course, if follows from (0.3) that generalized linear-fractional maps decrease
the standard Riemann distance in Bp,q . However, Theorem 0.1 states in fact that
generalized linear-fractional maps are contractions in an incomparably stronger —
and fairly unusual — sense.

The aim of the present paper is to characterize generalized linear-fractional maps
(in the spaces U(p, q)/U(p) × U(q)) in terms of the geometry of symmetric spaces
(Theorems 2.2–2.4). First, we give their characterizations in the spirit of the ‘funda-
mental theorem of projective geometry’: an (in general, not injective) map taking
some family of submanifolds of one symmetric space to a similar family of sub-
manifolds of another is (under certain additional assumptions) generalized linear-
fractional.

We also give a characterization of generalized linear-fractional maps in the spirit
of so-called ‘conformal geometry’. Namely, we consider a standard field of cones
in the tangent spaces to a symmetric space (see [11]–[14]). We show that (under
certain additional provisos) maps taking cones into cones (not necessarily in a one-
to-one way) are generalized linear-fractional maps. As a consequence we derive
Theorem 2.6, a result converse to Theorem 0.1: a map Bp,q → Br,s satisfying (0.3)
is generalized linear-fractional.

All these results are stated in § 2 and proved in § 3. In § 1 we present preliminary
information. In § 4 we discuss other series of symmetric spaces.

I am indebted to G. I. Ol’shanskǐı, who asked me about possible geometric
characterizations of generalized linear-fractional maps.

§1. Results similar to the ‘fundamental
theorem of projective geometry’

1.1. Grassmannian. Let Grp,q be the set of all p-dimensional subspaces of
C
p+q = C

p ⊕ C q . By Matp,q we shall mean the space of (p × q)-matrices or,
equivalently, the space of linear operators C p → C

q .
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Let A ∈Matp,q. Then graph(A), the graph of the operator A, is a p-dimensional
subspace of C p ⊕ C q , that is, an element of Grp,q. Thus, the map A 7→ graph(A) is
an embedding

Matp,q → Grp,q .

It is easy to see that the image of Matp,q is an open dense subset of Grp,q.
The group GL(p + q, C ) acts in C p+q , therefore it acts also in Grp,q. Using the

variable Z ∈Matp,q we can express the action of GL(p+ q, C ) as follows:

Z 7→ (A + ZC)−1(B + ZD),

where

(
A B
C D

)
is an invertible ((p + q) × (p+ q))-matrix.

1.2. Line structures. Let T and S be subspaces of C p+q such that

dimT = p+ 1, dimS = p− 1, and T ⊃ S.

We consider the set `T,S of H ∈ Grp,q such that

S ⊂ H ⊂ T.

Clearly, `T,S is a one-dimensional complex manifold holomorphically equivalent to

the projective line CP1. We shall call the submanifolds `T,S quasilines.
In the chart Matp,q ⊂ Grp,q quasilines are described by the formulae

A + tB,

where A,B ∈Matp,q, rkB = 1, and t ranges in C .
We now consider a subspace S of C p+q of dimension p−1. Let VS be the set of all

H ∈ Grp,q such that H ⊃ S. Clearly, VS is a complex manifold biholomorphically
equivalent to the projective space CPq . We shall call the submanifolds VS ⊂ Grp,q
quasiplanes of the �rst kind.

Let T ⊂ Cp+q be a subspace of dimension p+1 and letWT be the set ofH ∈ Grp,q
such that H ⊂ T . Clearly, WT is a complex manifold that is holomorphically
equivalent to the projective space CPp. We shall call the submanifolds WT ⊂ Grp,q
quasiplanes of the second kind.

In the variables Z ∈ Matp,q a quasiplane of the first kind can be expressed as
the set of matrices of the form

Z(t1, . . . , tq) = A+

 t1α1 t2α1 . . . tqα1

. . . . . . . . . . . . . . . . . . . . .
t1αp t2αp . . . tqαp

 ,

where t1, . . . , tq range over C , while the matrix A and the numbers α1, . . . , αp
are fixed. Accordingly, quasiplanes of the second kind can be parametrized in
accordance with the formula

Z(s1, . . . , sp) = A+

 s1β1 s1β2 . . . s1βq
. . . . . . . . . . . . . . . . . . . . . .
spβ1 spβ2 . . . spβq

 .
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Lemma 1.1. (a) For S 6= S′ the quasiplanes VS and VS′ intersect in one point at

most. The same holds for the quasiplanes WT and WT ′ .

(b) For T 6⊃ S the quasiplanes WT and VS are disjoint, and for T ⊃ S they

intersect in the quasiline `T,S.
(c) For each quasiline ` there exist a unique quasiplane of the �rst kind and a

unique quasiplane of the second kind containing `.

Lemma 1.2. (a) Two arbitrary points in a quasiplane can be joined by a quasiline.

(b) Let M be a subset of Grp,q such that for two arbitrary points in M there

exists a quasiline through them. Then M lies in some quasiplane.

All these assertions are obvious.

Remark. The Plücker embedding

Grp,q → CP
Cpp+q−1

takes quasilines into straight lines (see [15]).

1.3. Determinant submanifolds. We can define the so-called integral distance

n(H1, H2) in Grp,q by the formula

n(H1, H2) = codimension of H1 ∩H2 in H1.

It is easy to see that it satisfies in fact all the axioms of a metric. In terms of
matrices this distance can be expressed as follows:

n(Z1, Z2) = rk(Z1 − Z2).

Remark. The quantity n(H1, H2) is the minimum length of a chain `1, . . . , `n of
quasilines such that H1 ∈ `1, H2 ∈ `n, and `j intersects `j+1.

r
r
r
r r

H1

H2

Let α = 0, 1, . . . , p. We define the determinant submanifold Dα(H) of Grp,q as
the set of R ∈ Grp,q such that n(H,R) 6 α. In terms of matrices Dα(A) is described
by the condition

rk(Z − A) 6 α.

1.4. Projective characterization of the group GL(p + q, C )GL(p + q, C )GL(p+ q, C ). We introduce
in C p+q the operation of component-wise complex conjugation

(x1, . . . , xp+q) 7→ (x1, . . . , xp+q).

For arbitrary H ∈ Grp,q let H be the image of H under this conjugation. Further,
we consider in C p+q the non-degenerate symmetric bilinear form

(x, y) =
∑
j6p

xjyj −
∑
j>p

xjyj .

Let H⊥ be the orthogonal complement of H ∈ Grp,q with respect to this form. In
the variables Z ∈ Matp,q this operation can be expressed by the formula Z 7→ Zt,
where Zt ∈ Matq,p is the transpose of Z.
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Theorem 1.3 (Hua Loo Keng [16]). Let λ : Grp,q → Grp,q, where min{p; q} > 1,
be a continuous bijection1 preserving the integral distance. If p 6= q, then the map

λ has one of the following forms:

λ(H) = gH or λ(H) = gH, where g ∈ GL(p+ q, C ), H ∈ Grp,q . (1.1)

If p = q, then λ can also have one of the following forms:

λ(H) = gH⊥ or λ(H) = gH
⊥
, where g ∈ GL(p+ q, C ), H ∈ Grp,q . (1.2)

An equivalent result was obtained by Chow in [15] (1949).

Theorem 1.4. Let λ : Grp,q → Grp,q, where max{p; q} > 1, be a continuous bijec-

tion taking quasilines to quasilines. Then for p 6= q the map λ has the form (1.1)
and for p = q it has the form (1.1) or (1.2).

The proof of these results and their various versions can be found in Dieudonné’s
book [17]; see also [18] and the papers in the ‘Geometry of matrices’ section in Hua
Loo Keng’s collection of papers [19]

1.5. Conformal structure. Let H ∈ Grp,q and let TH be the tangent space to
Grp,q at H. We denote by ConeH the cone in TH formed by the vectors tangent
to the determinant submanifold D1(H). We obtain in this way a field of cones on
Grp,q.

Operating in the space Matp,q we shall identify the tangent space at a point
A ∈Matp,q and Matp,q itself. A vector dZ lies in ConeA if

rk dZ 6 1.

Theorem 1.5 (Goncharov [11], [12]). Assume that min{p; q} > 1 and let λ be

a holomorphic di�eomorphism of an open subset O1 of Grp,q onto another open

subset O2 of Grp,q taking the �eld of cones ConeH into itself. Then λ can be extended

to a map H 7→ gH, where g ∈ GL(p + q, C ) (if p = q, then maps H 7→ gH⊥ are

also possible).

Remark. A similar result is proved in [11] and [12] for all Hermitian symmetric
spaces. It has been extended to other Riemannian symmetric spaces in [14].

1.6. Comments. (a) Of course, results similar to Theorems 1.3–1.5 are mostly
of aesthetic value (which has merits on its own). Nevertheless, results similar to
Theorems 1.3–1.4 find fairly sensible applications in the structure theory of classical
groups over fields distinct from R, C , or H (see [17], Ch. 4).

(b) For p = 1 both integral distance and conformal structure are meaningless
(the integral distance is always equal to 1 and the cone ConeH coincides with the
entire space). Hence Theorems 1.3 and 1.5 do not hold. Theorem 1.4 turns into the
so-called ‘fundamental theorem of projective geometry ’ (or von Staudt's theorem).

1In fact, measurability is sufficient. We could also do without measurability, but in this case

the complex conjugation in the statement of the theorem must be replaced by some automorphism
of the field C (see [17]).
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Theorem. Assume that q > 1. Then a continuous one-to-one map of the q-dimen-

sional projective space CPq into itself that takes lines into lines is induced by a linear

or an antilinear map of CPq+1.

This result, in its turn, is void for q = 1.
(c) Theorem 1.5 is a consequence of Cartan’s theorem on primitive pseudogroups

of holomorphic diffeomorphisms (see [20]). Indeed, the local group G of diffeo-
morphisms preserving the field of cones contains the local group GL(p+q, C ). Hence
it cannot preserve any partitioning into subsets. On the other hand it is clearly
distinct from all primitive infinite-dimensional diffeomorphism pseudogroups (the
full diffeomorphism pseudogroup, the symplectic, the contact, the pseudogroup
preserving the volume up to a constant factor, and the pseudogroup preserving a
symplectic form up to a function coefficient). Hence the local group G is finite-
dimensional by Cartan’s theorem.

Next, we consider the stabilizer Gx of a point x in G. It contains a parabolic
subgroup (GL(p, C ) ×GL(q, C )) nN ⊂ GL(p+ q, C ), where N is an Abelian group
isomorphic to the additive group Matp,q. The natural filtration in the group of jets
induces a filtration in Gx. Its lowest level is an Abelian group commuting with N .
However, N acts transitively in Grp,q \{x}, therefore each local diffeomorphism
commuting with N belongs to N .

In the case of real diffeomorphisms the status of Cartan’s theorem is apparently
not completely clear, therefore it can hardly be regarded as a universal key to results
similar to Theorem 1.5.

§ 2. Statements of results

2.1. Generalized linear-fractional maps. A generalized linear-fractional map

Matp,q →Matr,s

is a map of the following form:

Ψ(Z) = K + LZ(1−NZ)−1M, (2.1)

where

(
K L
M N

)
is a block matrix of size (r+q)×(s+p). Of course, the map (2.1)

is not defined on the whole of Matp,q , but rather on the dense open subset described
by the condition det(1−NZ) 6= 0. This subset clearly contains the point 0.

Remark. It is useful to bear in mind the formula

Z(1 −NZ)−1 = (1− ZN)−1Z.

Remark. Consider the map

Z 7→ (A + ZC)−1(B + ZD) (2.2)

from Matp,q into Matp,s. Assume that it is well defined in a neighbourhood of 0
(which is equivalent to the invertibility of A). Then (2.2) can be written also in the
form (2.1); namely, it coincides with the map

Z 7→ A−1B + A−1(E + ZCA−1)−1Z(D −CA−1B).
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Conversely, if the matrix L in (2.1) is invertible (which means, by the way, that it is
a square matrix, that is, r = p), then the transformation (2.1) can also be written
in the form (2.2).

Remark. Consider now the map

Z 7→ (PZ +Q)(RZ + T )−1 (2.3)

from Matp,q into Matr,q . Assume that it is well defined in a neighbourhood of 0
(which is equivalent to the invertibility of T ). Then (2.3) can be written also in the
form (2.1); namely, as the map

Z 7→ QT−1 + (P −QT−1R)Z(E + T−1RZ)−1T−1.

Conversely, if the matrix M in (2.1) is invertible (in particular, s = q), then (2.1)
can also be written in the form (2.3).

2.2. Linear relations. Wenow explain the meaningof generalized linear-fractional
maps in the language of Grassmannians (see [9] for further detail). We consider an
(r + q)-dimensional subspace S (a ‘linear relation’) of the space

C
p+q ⊕ C r+s .

For each H ∈ Grp,q we can define the subspace SH ⊂ C r+s of all vectors w ∈ C r+s
for which there exists v ∈ H such that (v, w) ∈ S. A calculation of dimensions
demonstrates that if H ∈ Grp,q is in general position, then SH belongs to Grr,s.

Proposition 2.1. The map (2.1) is de�ned by some (r + q)-dimensional linear

relation S ⊂ C p+q ⊕ C r+s .
Proof. The linear relation S is the graph of the operator(

K L
M N

)
: C r ⊕ C q → C

s ⊕ C p

(note the order of the variables!); see [9] for greater detail.

2.3. Statements of local theorems. We say that a holomorphic map Ψ of a
connected open subset O of Matp,q into Matr,s is non-degenerate if

(1) the dimension of the range of Ψ is larger than 1;
(2) the range of Ψ does not entirely lie in a quasiplane.

We say that a holomorphic map of O ⊂ Matp,q into Matr,s is conformal if for
each point A ∈ O the image of the cone ConeA under the action of the differential
of the map Ψ lies in the cone ConeΨ(A).

Theorem 2.2. Let O be a connected open subset of Matp,q containing 0. Let

Ψ: O→Matr,s be a non-degenerate holomorphic map satisfying at least one of the

following conditions:

(A) Ψ is conformal ;
(B) for each quasiline ` ⊂ Matp,q the set Ψ(` ∩ O) lies entirely in a quasiline;
(C) for each quasiplane Y ⊂ Matp,q the set Ψ(Y ∩O) lies entirely in a quasiplane;
(D) for arbitrary Z1, Z2 ∈ O,

n(Ψ(Z1),Ψ(Z2)) 6 n(Z1, Z2). (2.4)
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Then Ψ has the following form:

Ψ(Z) = K + LZ(1 −NZ)−1M (2.5)

or

Ψ(Z) = P +QZt(1− RZt)−1T. (2.6)

Remark. Clearly, each of conditions (B)–(D) yields (A). Hence we shall deduce the
conclusion of the theorem from (A).

Remark. The condition that the holomorphic map is non-degenerate has roughly
the same significance as the condition q > 1 in von Staudt’s theorem or the condi-
tions min{p; q} > 1, max{p; q} > 1 in Hua Loo Keng’s, Chow’s, and Goncharov’s
results.

(1) If the range of a map lies entirely in some quasiplane, then conditions
(A), (C), and (D) hold automatically.

(2) Consider an affine (that is, linear inhomogeneous) map from Matp,q into a
quasiplane in Matr,s. Then all conditions (A)–(D) must hold.

(3) Conditions (A)–(D) hold for each map of Matp,q into a quasiline.
(4) Let L be a holomorphic curve tangent at each point Q to the cone ConeQ.

Let Ψ(O) ⊂ L. Then condition (A) is clearly satisfied.

The elimination of all these ‘stupid’ cases is an essential (and unpleasant) part
of the proof of the theorem.

We now present another formulation of the same result.

Theorem 2.3. Let O ⊂ Matp,q be an open connected subset containing 0. Let Ψ
be a non-degenerate holomorphic map O→Matr,s such that its di�erential dΨ has

the following form at each point Z ∈ O:

dΨ = A(Z) · dZ ·B(Z).

Then Ψ is a generalized linear-fractional map.

Remark. In this connection one could put a question the reasonableness of which is
not entirely clear to this author. Let Ψ: Matp,q → Matr,s be a holomorphic map.
Then its differential can be written as follows:

dΨ =
α∑
j=1

Aj(Z) · dZ ·Bj(Z),

where Aj(Z), Bj(Z) are some matrices. For maps in general position the least
number of terms α is equal to min{p; q; r; s}. The question is as follows: is there
any sensible way to classify maps with fixed small α (α < min{p; q; r; s})?
2.4. Coordinate-free version of the theorem.

Theorem 2.4. Let O be a connected open subset of Grp,q and let Ψ: O→ Grr,s be

a non-degenerate holomorphic map satisfying one of conditions (A)–(D) in Theo-

rem 2.2. Then either the map H → Ψ(H) is induced by some (r + q)-dimensional

linear relation in C
p+q ⊕ C r+s or the map H → Ψ(H⊥) is induced by some

(r + p)-dimensional linear relation in C p+q ⊕ C r+s .
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2.5. Metric version of the theorem. We return to the notation used in the
introduction.

Theorem 2.5 (Shmul’yan [4]). Let

Ψ(Z) = K + LZ(1 −NZ)−1M

be a generalized linear-fractional map from the matrix ball Bp,q into Br,s. Then for

some λ ∈ R the matrix

Sλ =

(
K λL

λ−1M N

)
(2.7)

satis�es the condition ‖Sλ‖ 6 1, K < 1.

Note that generalized linear-fractional maps τSλ corresponding to distinct λ are
the same.

We point out also that the composite of two generalized linear-fractional maps,
Φ: Bp,q → Br,s and Ψ: Br,s → Bu,v, is also a generalized linear-fractional map (this
is not that obvious).

As in the introduction, let

ϕ1(Z1, Z2) > ϕ2(Z1, Z2) > · · ·

be the compound distance between points Z1 and Z2.

Theorem 2.6. Let R be a non-degenerate holomorphic map Bp,q → Br,s. Assume

that

ϕj(R(Z1), R(Z2)) 6 ϕj(Z1, Z2) (2.8)

for all Z1, Z2 ∈ Bp,q and each j. Then R is generalized linear-fractional.

Proof. The following result is easy to verify.

The integral distance n(Z1, Z2) is equal to the number of elements in the

collection ϕ1(Z1, Z1), ϕ2(Z1, Z2), . . . that are distinct from zero.

Hence (2.8) yields (2.4).

§ 3. Proof of Theorem 2.2

The main ingredients in the proof of the theorem are Lemma 3.3 (this is a well-
known result (see [11], [12]) and we present its proof merely for completeness) and
the lemmas in subsections 3.5–3.6 on the geometry of the sphere in the integral
metric. The rest is very simple, but the author feels obliged to give the details of
the proof because of its many slippery places.

Throughout this section O is a connected open subset of Matp,q containing 0.
We shall assume that the intersection of O with each quasiline is connected. This
can be obtained, for instance, by shrinking this set and taking for O a sufficiently
small ε-neighbourhood of zero (with respect to an arbitrary norm).

The phrase ‘in general position’ means ‘in some open (in the sense of the stan-
dard topology) dense set ’ (which will be fixed throughout).
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3.1. Locally projective maps. Let U ⊂ CPn be a connected open subset and
let ψ : U→ CP

k be a holomorphic map. We say that ψ is locally projective if

(a) for each line ` ⊂ CPn the ψ-image of the set `∩U lies in some linem ⊂ CPk;
(b) the set ψ(U) does not entirely lie in a single line.

Let A : Cn+1 → C k+1 be a linear operator and let PkerA ⊂ CPk be the projec-
tivization of its kernel. Then A induces in a natural way a locally projective map
CP

n \PkerA→ CP
k.

Lemma 3.1. Each locally projective map is induced by a linear operator.

Proof. (1) We can assume without loss of generality that the range of ψ does not

lie in a proper subspace of CPk.

(2) Clearly, the image of each s-dimensional subspace of CPn lies in some
s-dimensional subspace (see the figure: the structure on the left-hand side is trans-
formed into the structure on the right-hand side).

` m-ψ

In particular, k 6 n.

(3) We now consider (k + 1) points P0, P1, . . . , Pk in the range of ψ not lying in

the same (k − 1)-dimensional subspace of CPk. Choosing appropriate coordinates
we can assume without loss of generality that

P0 = (1 : 0 : 0 : . . . ), P1 = (0 : 1 : 0 : · · · : 0), . . . , Pk = (0 : · · · : 0 : 1).

(4) We choose points Q0, Q1, . . . , Qk such that ψ(Qj) = Pj. By (2) they do
not lie in one (k − 1)-dimensional subspace. Choosing suitable coordinates we can
assume that

Q0 = (1 : 0 : · · · : 0), Q1 = (0 : 1 : 0 : · · · : 0), . . . , Qk = ( 0 : · · · : 0︸ ︷︷ ︸
k

: 1 : 0 : · · · : 0︸ ︷︷ ︸
n−k

).

(5) For each element

(x0 : x1 : · · · : xk : 0 : · · · : 0) ∈ U

we have

ψ(x0 : x1 : · · · : xk : 0 : · · · : 0) = (x0 : x1 : · · · : xk).

See the figure on the next page: the structure on the left-hand side is transformed
into the one on the right-hand side. Once we know the images of Q0, Q1, Q2, Q3,
we know also the images of the points R1, R2, R3, . . . . However, the sequence
R1, R2, . . . converges to Q0, and we can use uniqueness results for holomorphic
functions.
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Q0

Q1 Q2

Q3

R3

R1
R2

P0

P1 P2

P3

(6) Written in coordinate-free form, (5) means that the map ψ is projective
in the usual sense of this term on k-dimensional subspaces of CPn in general
position.

(7) Let m be a line in CPk intersecting the range of ψ. Then its inverse image
ψ−1(m) ⊂ CPn is an open subset of some subspace of CPn. For let a, b ∈ ψ−1(m)
be points in general position and let ` be the line through these points. Then
ψ(a) 6= ψ(b). Hence ψ(`) ⊂ m and therefore ` ∩ U ⊂ ψ−1(m). We leave out the
final trivial steps.

(8) Consider a point x ∈ ψ(U). We claim that its inverse image ψ−1(x) is an
open subset of some subspace of CPn. We consider two straight lines m1 and m2

intersecting at x. Then

ψ−1(x) = ψ−1(m1) ∩ ψ−1(m2),

and the result is now obvious.

(9) We shall now treat CPk as the subspace of CPn consisting of the points with
coordinates

(x0 : x1 : · · · : xk : 0 : · · · : 0).

(10) We consider now a line m in CPk in general position. Its inverse image
ψ−1(m) is an open subset of some (n − k + 1)-dimensional subspace M ⊂ CP

n.
We consider two points on m, p and q in general position. Their inverse images
are open subsets of some (n − k)-dimensional subspaces P,Q ⊂ M ⊂ CPn. Hence
P ∩Q is an (n− k − 1)-dimensional subspace of M .

Let ϕ be the operation of projection of CPn onto CPk from P ∩ Q. Clearly, ϕ
coincides with ψ on the sets CPk ∩ U, P ∩ U, and Q ∩ U. We claim that ϕ = ψ
everywhere in U. We consider a k-dimensional subspace of S in general position
that has a (k− 1)-dimensional intersection with CPk ∩U and also intersects P ∩U
and Q ∩ U. As we saw in (6), ψ is a projective map in S. On the other hand it

coincides with ϕ on P ∩S, Q∩S, and on the (k−1)-dimensional subspace S∩CPk.
Hence ϕ = ψ everywhere in S.
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r

r

P ∩Q

Q
P

S

CP
k ∩ SCP

k

The required result is now obvious.

We shall use also the following technical lemma.

Lemma 3.2. Let `1, . . . , `n ⊂ CP
n be a collection of straight lines that intersect

at some point u and do not all lie in the same (n − 1)-dimensional subspace and

let m1, . . . , mn ⊂ CPk be an arbitrary collection of straight lines intersecting at a

point v. Let ϕj : `j → mj be a collection of projective maps such that ψj(u) = v for

each j. Then there exists a unique locally projective map Ψ: CPn → CP
k
equal to

ψj on the line `j for each j.

Proof. The point u corresponds to some line ũ ⊂ Cn+1 , and the lines `1, . . . , `n
correspond to planes ˜̀1, . . . , ˜̀n ⊂ Cn+1 passing through ũ. Further, we have linear

maps ˜̀j → CP
k coinciding on ũ. The required result is now trivial.

3.2. Integral manifolds of the field Cone. Let R be a complex submanifold
of Grp,q. We call R an integral manifold of the �eld of cones Cone if for each Z ∈ R
the tangent space TZ(R) to R at Z lies in ConeZ .

Lemma 3.3. Each manifold R of dimension > 2 that is an integral manifold of

the �eld Cone lies in some quasiplane.

Proof. The cone ConeZ contains two families of linear subspaces, Va and Wb,
defined as follows. The subspaces Va consist of the matrices of the form

dZ = a · x,

where a is a fixed matrix column and x ranges over the set of matrix rows. The
subspaces Wb consist of the matrices of the form

dZ = y · b,

where b is a fixed matrix row and y ranges over the set of matrix columns. Of
course, these spaces are the tangent spaces of certain quasiplanes through Z.

Each linear subspace of ConeZ lies in some space Va or Wb. Clearly, the tangent
space TZ(R) of the integral manifold R at an arbitrary point Z lies in one of the
maximal linear subspaces Va or Wb. Arguments based on holomorphy show that
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either for all Z ∈ R the space TZ(R) lies in the subspaces Va or for all Z ∈ R it lies
in the subspaces Wb.

For definiteness, let TZ(R) ⊂Wb. It suffices to consider the case dimR = 2. Let
R = R(t, s) be a parametrization of R in a neighbourhood of a non-singular point.

Then the matrices
∂R

∂t
and

∂R

∂s
lie in a common subspace Wb (with b dependent

on t and s). Hence the entries rij of the matrix R satisfy equations of the following
form: 

∂

∂t
rij = ai(t, s)bj(t, s),

∂

∂s
rij = ci(t, s)bj(t, s).

We emphasize that the matrices
∂R

∂t
and

∂R

∂s
must be linearly independent, that

is, the vectors (a1, . . . , ap) and (c1, . . . , cp) cannot be collinear.
We claim that the quantity

b1(t, s)

b2(t, s)

is independent of t and s. To this end we write down the relation
∂2

∂t∂s
=

∂2

∂s∂t
in

our case:
∂

∂s

(
ai(t, s)bj(t, s)

)
=

∂

∂t

(
ci(t, s)bj(t, s)

)
,

or equivalently, (
∂ai

∂s
− ∂ci

∂t

)
bj = ci

∂bj

∂t
− ai

∂bj

∂s
.

Dividing both sides by bj we obtain

∂ai

∂s
− ∂ci

∂t
= ci

∂

∂t
(ln bj)− ai

∂

∂s
(ln bj). (3.1)

Subtracting (3.1) with j = 2 from the same equation with j = 1 we obtain

ci
∂

∂t

(
ln
b2

b1

)
− ai

∂

∂s

(
ln
b2

b1

)
= 0

for all i. However, the vectors (a1, a2, . . . ) and (c1, c2, . . .) are not collinear, so that

∂

∂t

(
ln
b2
b1

)
=

∂

∂s

(
ln
b2
b1

)
= 0,

that is, b2/b1 = const. In a similar way, for all k and l we have bk/bl = const.

Hence the matrices
∂R

∂t
and

∂R

∂s
lie in some subspace Wb with b independent of t

and s. The required result is now obvious.

3.3. Elimination of degenerate cases. Let O be an open connected subset of
Matp,q.
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Lemma 3.4. Let Ψ be a non-degenerate conformal map from O into Matr,s. Then

(a) the image of each quasiplane lies in some quasiplane;
(b) the image of each quasiline lies in some quasiline;
(c) either the image of each quasiplane of the 1st kind lies in a quasiplane of

the 1st kind and the image of each quasiplane of the 2nd kind lies in a

quasiplane of the 2nd kind or, on the contrary, the image of each quasiplane

of the 1st kind lies in a quasiplane of the 2nd kind and the image of each

quasiplane of the 2nd kind lies in a quasiplane of the 1st kind ;
(d) the image of a quasiplane in general position has dimension > 2.

Proof. (1) Quasiplanes are integral manifolds of the field of cones. Hence the image
of a quasiplane is also an integral manifold of the field of cones. That is, the image
of a quasiplane lies either in a quasiplane or in a (complex) curve.

The rest of the proof is obvious but becomes quite lengthy when written down.

(2) We consider a point X ∈ O such that the differential dX of Ψ does not
identically vanish. The cone ConeX spans the entire tangent space TX . Hence the
value of the linear operator dX on the general vector in ConeX is not zero and
therefore the map Ψ takes a quasiline in general position through X into a curve
(rather than a point).

(3) Assume that all quasiplanes of the 1st and the 2nd kind are mapped into
curves and consider a quasiline ` such that its Ψ-image is not a point. Then close
quasilines are not taken into points either. We consider now a quasiplane of the 1st
kind V and a quasiplane of the 2nd kind W such that V ∩W = `. Then the images
of V , W , and ` are curves, and therefore the sets Ψ(V ), Ψ(W ), and Ψ(`) lie on the
same curve.

Next, we consider a quasiplane V ′ of the 1st kind intersecting W in a quasiline `′

close to `. Then Ψ(`′) is a curve that, on the one hand, coincides (locally) with
Ψ(`) ' Ψ(W ) and, on the other, must coincide with Ψ(V ′). Hence Ψ(V ′) coincides
with Ψ(`).

Repeating these arguments we see that all quasilines close to ` are mapped
into Ψ(`). Hence the rank of the differential at each point in ` or in a quasiline
close to ` (that is, at all points in a neighbourhood of `) is equal to 1. Thus, Ψ
maps the entire set O into a single curve, which contradicts the non-degeneracy
of Ψ. This proves (d).

(4) Assume that the map Ψ takes some quasiplane of the 1st kind V into a
manifold of dimension > 2, while the image of each quasiplane of the 2nd kind lies
on a curve. We claim that the entire range of Ψ lies in one quasiplane in this case.

Let S be a quasiplane containing Ψ(V ). We consider a point A ∈ V such that
the restriction of the differential dA to V has rank > 2. Let ` ⊂ V be a quasiline
through A such that dA does not annihilate the direction vector of the quasiline `.
Let W be a quasiplane of the 2nd kind such that ` = V ∩W . Then the curve Ψ(W )
coincides with Ψ(`), so that Ψ(W ) lies in the quasiplane S.

Further, we consider in W a quasiplane `′ close to `. We consider a quasiplane
of the 1st kind V ′ such that `′ = V ′ ∩W . Then `′ is mapped into a curve, which
must be Ψ(`). Thus, the quasiplanes containing Ψ(V ) and Ψ(V ′) must contain a
common curve (namely, Ψ(`)), therefore they must be the same (see Lemma 1.1).
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Thus, for each quasiplane V ′ of the 1st kind and in general position that passes
through A we have the inclusion Ψ(V ′) ⊂ S. By continuity the same must hold
for each quasiplane through A. Hence the entire determinant submanifold D1(A)
is mapped into the quasiplane S.

Next, we consider a point A′ ∈ D1(A) close to A. The same arguments show
that Ψ(D1(A

′)) ⊂ S. Hence we immediately obtain that Ψ(D2(A)) ⊂ S, and so
forth.

(5) We have thus proved (a).

(6) Assume that all quasiplanes (of the 1st and 2nd kinds) are mapped, for
instance, into quasiplanes of the 1st kind. We consider now a quasiline ` in general
position; let ` be the intersection of quasiplanes V and W . Then the sets Ψ(V )
and Ψ(W ) intersect in the curve Ψ(`), therefore (see Lemma 1.1) the quasiplanes
of the 1st kind containing Ψ(V ) and Ψ(W ) are the same. It is now easy to deduce
that the entire range of Ψ lies in one hyperplane.

(7) Thus, we have established (c). This immediately gives us assertion (b). For
let ` be a quasiline in general position and let V and W be quasiplanes containing
it (that is, ` = V ∩W ). Let S and Q be quasiplanes containing Ψ(V ) and Ψ(W ).
Then the set Ψ(`) lies in Ψ(V ) ∩ Ψ(W ) ⊂ S ∩ Q. Hence the intersection S ∩ Q
is non-empty and therefore it is a quasiline (see Lemma 1.1). This proves (b) for
quasilines in general position, and by continuity (b) holds for all quasilines.

Corollary 3.5. Each non-degenerate conformal map is locally projective on quasi-

planes in general position.

Proof. In fact, such a map takes quasilines to quasilines.

Corollary 3.6. Let ` ⊂ Matp,q be a quasiline such that the set Ψ(`) contains more

than one point. Then, as a map between the projective lines ` and Ψ(`), Ψ is

projective.

Proof. In fact, the maps of quasiplanes in general position are locally projective,
therefore they are projective on quasilines.

Corollary 3.7. For each point A the image of the determinant submanifolds D1(A)
lies in the determinant manifold D1(Ψ(A)).

We say that a non-degenerate conformal map `respects' the kind of hyperplanes

if the image of each quasiplane of the 1st kind lies in a quasiplane of the 1st kind
and the image of each quasiplane of the 2nd kind lies in a quasiplane of the 2nd
kind.

Assume that a map Ψ: O → Matr,s does not respect the kind of hyperplanes.
Then the map

Z 7→ Ψ(Z)t

from O into Mats,r respects the kind of hyperplanes. For that reason we can content
ourselves with maps respecting the kind of hyperplanes.

3.4. Maps of determinant submanifolds D1(A)D1(A)D1(A). Let Ψ be a non-degenerate
conformal map respecting the kind of hyperplanes. We say that the differential dA
of Ψ is non-degenerate at a point A if the operator dA has rank > 1 on some quasi-
plane of the 1st kind and on some quasiplane of the 2nd kind passing through A.
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Lemma 3.8. Let Ψ be a non-degenerate conformal map respecting the kind of

quasiplanes. Assume that the di�erential of Ψ is non-degenerate at 0. Then Ψ
coincides on D1(0) with some generalized linear-fractional map.

Proof. (1) Without loss of generality we can set Ψ(0) = 0. We denote the cone

D1(0) ⊂ Matp,q by D1 and the cone D1(0) ⊂ Matr,s by D̃1.
(2) We fix a quasiplane of the 1st kind V ◦ in Matp,q passing through 0 and a

quasiplane of the 2nd kind W ◦ passing through 0. Let PV ◦ be the set of quasilines
passing through 0 and lying in V ◦. We define in a similar way PW ◦. Clearly, PV ◦

as a complex manifold is isomorphic to CPq−1 and PW ◦ is isomorphic to CPp−1.
We observe now that quasiplanes of the 2nd kind passing through 0 are in one-

to-one correspondence with points in PV ◦ ' CPq−1. Namely, with each quasiplane
of the 2nd kind W we associate the intersection W ∩ V ◦. It is a quasiline, that
is, a point in PV ◦ ' CPq−1. In a similar way, quasiplanes of the 1st kind passing
through 0 are in one-to-one correspondence with points in PW ◦ ' CPp−1.

(3) The manifold D1 is a cone with base

CP
p−1 × CPq−1.

For consider a generator of this cone, that is, a quasiline through 0. It can be
represented in a unique way as the intersection of a quasiplane of the 1st kind and
a quasiplane of the 2nd kind (see Lemma 1.1). As we saw in (2), quasiplanes of
the 1st kind are indexed by points in CPp−1 and quasiplanes of the 2nd kind are
indexed by planes in CPq−1.

(4) A map between cones Ψ: D1 → D̃1 induces a map between their bases:

Λ : CPp−1 × CPq−1 → CP
r−1 × CPs−1,

which is defined in an open dense subset of CPp−1 × CPq−1. Moreover, it follows
from (3) that Λ is a product of maps

λ1 : CPp−1 → CP
r−1 and λ2 : CPq−1 → CP

s−1.

However, Ψ is locally projective on the quasiplanes V ◦ and W ◦. Hence the
maps λ1 and λ2 are induced by certain linear maps

A : C p → C
r and B : C q → C

s .

(5) The next question is as follows: to what extent is a map between cones

D1 → D̃1 defined by the map between their bases?
(6) We claim that the differential of Ψ at zero is defined by the maps λ1 and λ2

to within a coefficient.
We consider a quasiplane Y in general position passing through 0. Let y be an

arbitrary tangent vector to Y at 0. We know the value of the differential on y to
within a coefficient (for we know the image of the corresponding quasiline). Since
the rank of the differential at 0 is larger than 1, the operator d is defined on Y up
to multiplication by a constant.
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We now fix some possible value of the differential on the quasiplane Y . Let X
be a quasiplane of another kind through 0. The differential on it is also defined up
to multiplication by a constant. However, we have already fixed the value of the
differential on the direction vector of ` = X ∩ Y (for we have fixed it on Y ). Thus,
the operator d is uniquely defined on X, and such quasiplanes X sweep out the
entire cone Cone0. Hence the differential d is fixed on the cone Cone0 to within a
coefficient. Since this cone spans the entire tangent space, this gives us the required
result.

(7) Thus, the differential of Ψ has the following form at the origin:

dZ 7→ A · dZ ·B, (3.2)

where A and B are (r × p)- and (q × s)-matrices, respectively.
Let Eij be the matrix having 1 at the intersection of the ith row and the jth

column and having zeros at other places. We can assume that the differential does
not annihilate any of the matrix units Eij. For otherwise we could make a change of
variables of the form Z 7→ SZT , where S and T are non-singular square matrices.

(8) We claim that the map Ψ: D1 → D̃1 is uniquely defined by its restrictions
to the quasilines t · Eij, where t ∈ C .

We consider a quasiplane of the 2nd kind Vα consisting of all matrices of the
form

∑
i tiαEiα. By Lemma 3.2 the restriction of Ψ to the quasiplane Vα is well

defined.
We consider now a quasiplane W of the 1st kind; let `α = W ∩ Vα. Clearly, for

quasiplanes W in general position the value of d on the direction vector of `α does
not vanish, therefore the map Ψ is well defined on each quasiplane W of the 1st
kind by Lemma 3.2. However, such quasiplanes sweep out D1(0).

(9) Assume now that the differential (3.2) is fixed. Let `ij be the quasiline
consisting of the points t · Eij. Let mij be the image of this quasiline under the
map Ψ, and let ψij be the restriction of Ψ to `ij . Note that, given the differential,
we also know the quasilines mij and the first derivatives

ψ′ij(0) :=
d

dt
ψij(t)

∣∣∣∣
t=0

.

On the other hand, a projective map ψij : `ij → mij is uniquely determined by
the quantities

ψij(0) = 0, ψ′ij(0), ψ′′ij(0).

It remains to show that each collection of second derivatives can in fact be
obtained from some generalized linear-fractional map

Φ(Z) = AZ(1 −NZ)−1B.

Setting Z = t · Eij we obtain

Φ(t · Eij) = (t − njit2)AEijB,

where the nαβ are the entries of the matrix N . We have AEijB 6= 0 (this means
that the differential does not vanish at Eij), therefore choosing a suitable matrix
N we can obtain an arbitrary collection of second derivatives.
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3.5. Intersection of determinant manifolds. Let A ∈ Matp,q be a matrix of
rank k > 1. We are interested in the intersection of the determinant manifolds

Dk−1(0) = {Z : rkZ = k − 1}

and

D1(A) = {Z : rk(Z −A) = 1}.

We now explain how one can describe all points in their intersection.
Thus, let A be an operator C p → C q of rank k. Let f be a non-trivial linear

functional vanishing at the kernel kerA of A. We choose v ∈ C p such that

f(v) = 1.

Further, we define an operator Y of rank 1 from C p into C q by the formula

Y x = f(x)Av.

Then the operator
B = A− Y

lies in the required intersection, and one can obtain in this way all points in this
intersection. It is easy to see that

dim
(
Dk−1(0) ∩D1(0)

)
= 2k − 1.

Lemma 3.9. Let rkA = rkA′ = k and assume that A 6= A′. Then the sets

Dk−1(0) ∩D1(A) and Dk−1(0) ∩D1(A
′)

are distinct.

Proof. We must describe the recovery of the operator A from Ξ = Dk−1(0)∩D1(A).
(1) It is easy to see that

kerA =
⋂
B∈Ξ

kerB.

Hence we can assume without loss of generality that kerA = 0.
(2) We fix a subspace H of C p of codimension 1. For each operator B ∈ Ξ we

consider its restriction ResH(B) to H. We are interested in the level sets (that is,
inverse images of points) of the map

B 7→ ResH(B)

from Ξ into the space of operators H → C
q .

(3) Let ϕ be a linear functional in C q annihilatingH. Then for all vectors v such
that ϕ(v) = 1 the operators of the form

Bx = Ax− ϕ(x)Av (3.3)
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coincide on H. These operators are indexed by a linear functional ϕ (defined to
within a coefficient) and a vector v. Thus, the operators of the form (3.3) make up
a k-dimensional family. For all operators B obtained in this way the corresponding
operators ResH(B) are the same and are equal to ResH(A).

(4) We consider now the two operators,

Bx = Ax− f(x)Av

and

Cx = Ax− g(x)Aw,

that are not of the form described in (3) (that is, neither f nor g annihilates H).
The equality ResH(B) = ResH(C) is possible only in the case when

f(x)Av = g(x)Aw for all x ∈ H.

Hence the vectors Av and Aw are proportional. The matrix A is non-degenerate,
therefore v and w are proportional. Multiplying g by a coefficient we can assume
that v = w.

Now, the functionals f and g satisfy the conditions

f(x) = g(x) for all x ∈ H,
f(v) = g(v) = 1.

If v /∈ H, then f = g on the whole of C p , that is, B = C, and the level set is a
singleton.

Let v ∈ H and let ϕ be a linear functional annihilating H. Then there exists
λ ∈ C such that

f(x) = g(x) + λϕ(x),

that is, the level set is one-dimensional.
(5) Thus, the map ResH( · ) has a unique level set of dimension k (recall that

k > 2). Hence we know (see (3)) the restriction of A to an (arbitrary) subspace
H ⊂ C p of codimension 1. The proof is complete.

3.6. Induction on the index of a determinant submanifold. Let Ψ be a
non-degenerate conformal map respecting the kind of quasiplanes. Assume that
the differential of Ψ is non-degenerate at zero (see § 3.4), and let Ψ(0) = 0. We
have already seen that Ψ coincides on the determinant submanifold D1(0) with
some generalized linear-fractional map Φ. Now, using Lemmas 3.10 and 3.11 we
shall successively show that Φ = Ψ on D2(0),D3(0), . . . .

Let us first of all introduce possibly simpler coordinates. Consider a generalized
linear-fractional map

Y = Φ(Z) = AZ(1 −NZ)−1B.

We introduce the variable

Z̃ := Z(1 −NZ)−1, (3.4)
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and reduce our map to the form

Y = Φ(Z̃) = AZ̃B.

Further, we can change coordinates in Matp,q and Matr,s by the formulae

Z 7→ S1ZS2, Y 7→ T1Y T2, (3.5)

where S1, S2, T1, and T2 are invertible square matrices.
Thus, we can assume without loss of generality that Φ has the following form:

Φ(Z) = PZQ, (3.6)

where

P =

(
Eα 0
0 0

)
, Q =

(
Eβ 0
0 0

)
, (3.7)

and Eα, Eβ are the identity matrices of sizes α× α and β × β, respectively.

Lemma 3.10. Let Ψ be a non-degenerate conformal map with non-degenerate dif-

ferential at zero. Assume that Ψ coincides with a generalized linear-fractional map

Φ on Dk−1(0). Let α and β be as above and assume that 2 6 k 6 min{α; β}. Then

Φ = Ψ on Dk(0).

Proof. (1) Let A ∈ Dk(0) be a matrix in general position. Then rk Ψ(A) = k and
rk Φ(A) = k (the second relation is obvious, and the first follows from the explicit
formula for the differential).

(2) Let us introduce our notation:

Ξ = Dk−1(0) ∩D1(A) ⊂ Matp,q ,

ΠΨ = Dk−1(0) ∩D1(Ψ(A)) ⊂ Matr,s,

ΠΦ = Dk−1(0) ∩D1(Φ(A)) ⊂ Matr,s .

The dimension of all these sets is 2k− 1. Since both Ψ and Φ decrease the integer
distance, the set

Φ(Ξ) = Ψ(Ξ)

lies in both ΠΨ and ΠΦ.
(3) We claim that if A is a matrix in general position, then the dimension of the

set Φ(Ξ) = Ψ(Ξ) is 2k − 1. It suffices to show that this holds for one matrix A.
However, each matrix of the form

A =

(
∗ 0
0 0

)
,

where the upper left corner is of size α× β, has these properties.
(4) Thus, the (2k−1)-dimensional sets ΠΨ and ΠΦ contain a (2k−1)-dimensional

subset Ψ(Ξ) = Φ(Ξ). In view of the analyticity, the sets ΠΨ and ΠΦ are the same.
By Lemma 3.9 we obtain the equality Ψ(A) = Φ(A).
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Lemma 3.11. Let α and β be as above and assume that k > min{α; β} > 2.
Let Ψ be a non-degenerate conformal map with non-degenerate di�erential at zero.

Assume that Ψ coincides with a generalized linear-fractional map Φ on Dk−1(0).
Then Φ = Ψ non Dk(0).

Proof. For definiteness, assume that α 6 β.
(1) We express an element Z ∈Matp,q as a block matrix

Z =

(
Z11 Z12

Z21 Z22

)
of size (α+ (p− α))× (β + (q − β)). Then

Φ(Z) =

(
Z11 0
0 0

)
.

Moreover, if rkZ < k, then Ψ(Z) = Φ(Z).
(2) Let

A =

(
A11 A12

A21 A22

)
∈Matp,q .

Let rkA = k and assume that the first k rows in the matrix A are linearly inde-
pendent (which is true for matrices A ∈ Dk(0) in general position). We claim
that Ψ(A) = Φ(A). Once this is established, continuity arguments show that
Ψ(A) = Φ(A) for all A ∈ Dk(0).

(3) Let Θ be the subset

Θ = Dα−1(0) ∩D1(Eα)

of the space of (α× α)-matrices.
We fix S ∈ Θ and consider the matrix

U =

(
S 0
T Ep−α

)(
A11 A12

A21 A22

)
,

where the first factor is a block ((α + (p − α)) × (α + (p − α)))-matrix. Clearly,
rkU 6 k. We claim that we can choose the matrix T such that rkU = k − 1 and

rk

((
S 0
T Ep−α

)
−Ep

)
= 1.

(4) We denote the rows of A by a1, . . . , ap. We can choose a basis in Cα such
that S takes the following form:

0
1

1
. . .

 .

Assume that h > k. We expand the row ah in terms of a1, . . . , ak:

ah =
k∑
j=1

νhjaj .
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Next, we set the entries t(h−α)1 of T equal to −νh1 and we set all other entries
equal to 0. The construction of T is complete.

(5) Thus, rkU = k − 1, therefore Ψ(U) = Φ(U). Hence

Ψ(U) =

(
SA11 0

0 0

)
. (3.8)

As S ranges over Θ the set of matrices of the form (3.8) ranges over

Dk−1(0) ∩ D1

(
A11 0
0 0

)
. (3.9)

On the other hand rk (A − U) = 1, therefore rk (Ψ(A) −Ψ(U)) 6 1, that is, Ψ(U)
belongs to Dk−1(0) ∩ D1(Ψ(A)). Hence Dk−1(0) ∩ D1(Ψ(A)) coincides with (3.9).
By Lemma 3.9,

Ψ(A) =

(
A11 0
0 0

)
,

as required.

3.7. Non-degeneracy of the differential. We have shown that, by means of
linear-fractional changes of variables (3.4), (3.5), a conformal map can be brought
into the form (3.6), (3.7). However, the map (3.6), (3.7) is generalized linear-
fractional, therefore, by Proposition 2.1, it is defined by an (r + q)-dimensional
linear relation in C p+q ⊕C r+s . Linear-fractional changes of variables in Matp,q and
Matr,s correspond to the transformations of the Grassmannians Grp,q and Grr,s
induced by linear transformations of C p+q and C r+s .

Thus, each conformal map is induced by a linear relation, that is, we have estab-
lished Theorem 2.4. As regards Theorem 2.2, we have proved it only under the
assumption that the differential at zero of the map Ψ is non-degenerate. We now
show that this restriction is not important.

Lemma 3.12. Let P be a linear relation in C p+q ⊕ C r+s of dimension r + q, let
kerP be the subspace P ∩ C p+q and let domP be the projection of P onto C p+q .

Further, let M be the set of all H ∈ Grp,q such that

kerP ∩H = 0 and domP +H = C
p+q . (3.10)

Then the map H 7→ PH is holomorphic in M and has non-removable singularities

at all points in Grp,q \M.

The proof is trivial, and we leave it out.

It is easy to verify that the differential of the map H 7→ PH is either degenerate
at all points in M or is non-degenerate at all points in this set.

This observation completes the proof of Theorem 2.2.
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§ 4. Other symmetric spaces

4.1. Matrix spaces. By a matrix space we mean a space in one of the following
10 series:

– the spaces of (p× q)-matrices over a division ring K =R, C,H ;
– the spaces of real symmetric (skew-symmetric) matrices of size n× n;
– the spaces of complex symmetric (skew-symmetric, Hermitian) matrices of

size n× n;
– the spaces of quaternion Hermitian (anti-Hermitian) (n× n)-matrices.

The list of all these spaces is presented in the table opposite. We indicate the
division ring K = R, C,H in the second column and, in the fourth, the additional
condition imposed on the matrices.

4.2. Grassmannians. Consider one of the above-listed matrix spaces Mat◦. We
shall regard elements Z ∈ Mat◦ as the matrices of the linear operators v 7→ v Z from
the linear space V + into the linear space V − (using the notation of the previous
subsection, V + = Kp and V− = Kq , or V + = Kn and V− = Kn ).

We consider graph(Z), the graph of the operator Z. In cases 1, 5, and 8 (see the
first column of the table) this can be an arbitrary p-dimensional linear subspace of
V +⊕V − disjoint from V −. In cases 2–4, 6–7, 9–10 graph(Z) is a maximal isotropic
subspace with respect to the form Λ = Λ((v+, v−); (w+, w−)) (which can be sym-
metric, skew-symmetric, Hermitian, or anti-Hermitian) indicated in column 5.

Let Gr◦ be the Grassmannian of all subspaces that are maximal isotropic with
respect to the form Λ indicated in column 5 (in cases 1, 5, and 8, when there is no
form indicated, we merely take the Grassmannian of all p-dimensional subspaces).
The range of the embedding graph: Mat◦ → Gr◦ is dense in Gr◦ except for cases
3 and 7. In these cases the Grassmannian has two connected components and the
range of this embedding is dense in one of them.

We consider now the group G∗ indicated in column 6. It consists of all linear
operators in V +⊕V − preserving Λ. This group acts in Gr◦ in an obvious way. We
shall write elements g ∈ G∗ as block matrices

g =

(
A B
C D

)
: V + ⊕ V − → V + ⊕ V −.

In cases 2–4, 6–7, 9–10 the matrix g preserves the form Λ, which imposes on it a
condition of the following form:(

A B
C D

)(
0 E
±E 0

)(
A B
C D

)σ
=

(
0 E
±E 0

)
,

where σ signifies transposition or conjugation.
Using the variable Z ∈ Mat◦ in Gr◦ we can express the action of Gr◦ on the

Grassmannian as follows:

Z 7→ (A + ZC)−1(B + ZD).
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4.3. Symmetric spaces. We consider the following three subgroups of G∗.
(a) The non-compact subgroup Gnc of operators in V + ⊕ V − preserving the

indefinite Hermitian form

M((v+, v−); (w+, w−)) :=
∑

v+
i w

+
i −

∑
v−j w

−
j

(see column 7). In other words, Gnc is a subgroup of G∗ described by the additional
condition (

A B
C D

)(
E 0
0 −E

)(
A B
C D

)∗
=

(
E 0
0 −E

)
.

(b) The compact subgroup Gc of operators in V +⊕ V − preserving the positive-
definite Hermitian form

E
(
(v+, v−); (w+, w−)

)
:=
∑

v+
i w

+
i +

∑
v−j w

−
j

(see column 8). In other words, Gnc is the subgroup of G∗ described by the addi-
tional condition (

A B
C D

)(
E 0
0 E

)(
A B
C D

)∗
=

(
E 0
0 E

)
.

(c) The compact subgroup K of matrices of the following form:(
A 0
0 D

)
,

where A is an unitary operator in V + (that is, AA∗ = E), and D is unitary in V −.
It is easy to see that

K = Gnc ∩Gc.

In all 10 cases the GrassmannianG◦ is aGc-homogeneous space, and the groupK
is always the stabilizer of the subspace V + ∈ Gr◦. Thus,

Gr◦ = Gc/K.

It is easy to see that the 10 series of the spaces Gc/K cover all 10 series of compact

symmetric spaces (up to centres and coverings; for instance, the space U(n)/O(n)
gets into our table, but SU(n)/ SO(n) does not).

Further, we consider the subset B◦ of Gr◦ consisting of the subspaces such that
the restriction to them of the Hermitian form M is positive-definite. Then (see [9])
the set B◦ is a Gnc-homogeneous space and the stabilizer of the point Z = 0 is
equal to K. Thus,

B◦ = Gnc/K.

It is easy to see that, among the 10 series of the spaces Gnc/K we can find the
entire 10 series of non-compact Riemannian symmetric spaces (up to centres: for
instance, the space GL(n,R)/O(n) gets into our table, whereas SL(n,R)/ SO(n) is
not there).

Further, it is easy to verify (see [9]) that each P ∈ B◦ is the graph of an operator
Z : V + → V −, where ‖Z‖ < 1. Conversely, the condition ‖Z‖ < 1 yields the
inclusion graph(Z) ∈ B◦. For that reason we shall make no difference between the
domain B◦ ∈ Gr◦ and the matrix ball ‖Z‖ < 1 in Mat◦.
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4.4. Generalized linear-fractional maps. These are defined for two Grass-
mannians from the same series and (in the coordinate form) are described by the
formula

Z 7→ K + LZ(1 −NZ)−1M, (4.1)

where the matrix S =

(
K L
M N

)
satisfies the condition indicated in the last column

of our table.
If ‖S‖ 6 1 and ‖K‖ < 1, then the map (4.1) takes the matrix ball into the

matrix ball.

Remark. For the Hermitian symmetric spaces

B◦ = U(p, q)/U(p) ×U(q), Sp(2n,R)/U(p), SO∗(2n)/U(n)

the semigroup of generalized linear-fractional maps of the unit ball into itself con-
tains the Ol’shanskǐı semigroup (see [21]).

Theorem 4.1. Theorem 0.1 on the decrease of the compound distance holds for

all 10 series of matrix balls (= Riemannian non-compact symmetric spaces).

Proof. The proof in [9] is suitable for all 10 series of symmetric spaces.

4.5. Linear structures. (a) One can define quasilines for all 10 types of Grass-
mannian Gr◦.

For the full Grassmannians over R or H (cases 5 and 8) they are defined in
precisely the same way as for the full Grassmannian over C (case 1).

In cases 2, 4, 6, 9, and 10 we must consider an isotropic subspace S of dimension
n − 1 and its orthogonal complement S⊥. We define the quasiline `S as the set of
all subspaces H ∈ Gr◦ such that S ⊂ H ⊂ S⊥.

Finally, the definition in cases 3 and 7 (orthogonal Grassmannians) is similar,
but one must consider an isotropic subspace S of dimension n− 2.

In all cases quasilines are submanifolds homeomorphic to the projective linePK1.
(b) The integral distance n(H1, H2) is defined as the codimension of H1 ∩ H2

in H1 and H2.
(c) The determinant submanifold Dk(A) consists of the points in H such that

n(H,A) 6 k.

4.6. Conformal structures. We set α to be equal to 2 for the orthogonal Grass-
mannians in cases 3 and 7 and to 1 in the other cases. In the tangent space at
an arbitrary point H ∈ Gr◦ we consider the cone ConeH consisting of the vectors
tangent to the determinant submanifold Dα(H).

In the coordinate notation the cone ConeZ in the tangent space at Z ∈ Mat◦ is
described by the condition

rk dZ 6 α.

4.7. Conformal maps. Analogues of Theorems 1.3–1.5 hold for all 10 series of
Grassmannians (and are already known; see [11], [12], [14], [18], [19]).

It seems plausible that analogues of Theorems 2.3–2.6 also hold for all series.
However, this author does not know of any proof of this assertion.
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Our proof in § 3 runs into small or big trouble on any attempt to use it for
other series. A smooth version of Theorem 2.2 for the full Grassmannian Grp,q
over C (recall that we considered holomorphic maps in the original version of that
theorem) requires only slightly more complex arguments in the case of R or H.
The Lagrangian Grassmannian over C calls for additional ideas (which makes the
already lengthy proof longer still). The author knows no proofs for other series.

4.8. Exceptional groups. The question of possible analogues for exceptional
groups of the phenomena discussed in this paper is not an unreasonable one. Still,
it must be pointed out that we discussed above only the classical groups GL(n, C ),
GL(n,H), GL(n,R), and U(p, q), not the semisimple classical groups SL(n, C ),
SL(n,H), SL(n,R), and SU(p, q), and this faint distinction was significant for us.
It is not even clear how one could pose the problem in the case of semisimple

exceptional groups, and this author does not know the answer.
However, for the Hermitian symmetric spaces

G/K = EIII / SO(10)× U(1) and EVII /E6 ×U(1)

there are the Ol’shanskĭı semigroups [21] acting by injective maps G/K → G/K.
Further, one can consider the closure of an Ol’shanskǐı semigroup in the set of
all holomorphic maps from G/K into itself. Elements of this closure are natural
candidates for analogues of generalized linear-fractional maps.

The situation with symmetric spaces of the type

G/K = O(n, 2)/O(n) ×O(2)

(Cartan domains of type IV or future tubes) is not very transparent. In this case
there are two distinct semigroups acting in G/K: one is the same as for all spaces
O(p, q)/O(p) ×O(q), and the other is the Ol’shanskǐı semigroup. The question of
the closure of the latter in the space of holomorphic maps is unclear.
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