Théorie des groupes/Group Theory

Semi-groupes engendrés par la représentation de Weil du groupe symplectique de dimension infinie

Maxime Nazarov, Yurii Neretin et Grigorii Olshanskii

Résumé — Soient G le groupe métaplectique réel ou p-adique de dimension infinie et W sa représentation de Weil. Notre but est d'étudier le semi-groupe de contractions Γ , adhérence du groupe d'opérateurs W(G) par rapport à la topologie de la convergence faible.

Semigroups generated by the Weil representation of the infinite-dimensional symplectic group

Abstract — Let G be the infinite-dimensional real or p-adic metaplectic group and W its Weil representation. Our goal is to study the semigroup of contractions Γ , which is the closure of the operator froup W(G) relative to the weak topology.

1. Introduction. — Soient H un espace hilbertien. On appelle contraction de H tout opérateur dans H dont la norme est ≤ 1 . Si W est une représentation unitaire d'un groupe G dans H, on désigne par $\Gamma[G, W]$ l'adhérence de W(G) dans le semi-groupe de toutes les contractions de H muni de la topologie de la convergence faible; $\Gamma[G, W]$ est un semi-groupe et aussi une compactification de G.

Les résultats de [1] et [2] suggèrent l'idée d'examiner les semi-groupes $\Gamma[G, W]$ pour divers groupes G de dimension infinie. Dans cette Note nous étudions le cas où G est le groupe métaplectique réel ou p-adique de dimension infinie et W sa représentation de Weil. Les résultats du n° 4 de la Note s'appliquent au groupe des difféomorphismes du cercle, voir [3].

2. Préliminaires et résultats généraux. — Soit F le corps R ou un corps local non archimédien dont la caractéristique est distincte de 2; lorsque $F \neq R$, on note \mathcal{O} l'anneau des entiers de F. Soient $n=1, 2, \ldots, V_n = F^n \oplus F^n$, $\{X_1, \ldots, X_n, Y_1, \ldots, Y_n\}$ la base canonique de V_n et B la forme symplectique sur V_n telle que $B(X_i, X_j) = 0$, $B(Y_i, Y_j) = 0$, $B(X_i, Y_j) = \delta_{ij}$. On note $T = \{a \in C^* : |a| = 1\}$. On introduit un bicaractère χ sur $V_n \times V_n$ à valeurs dans T comme suit : lorsque F = R, on pose $\chi(u, v) = \exp(i B(u, v))$, et lorsque $F \neq R$, on fixe un caractère additif χ_0 dont le conducteur est 0 et on pose $\chi(u, v) = \chi_0(B(u, v))$. On définit le groupe de Heisenberg Heis (V_n) comme l'espace $V_n \times T$ muni du produit (u, a), $(v, b) = (u + v, ab, \chi(u, v))$.

Soient T_n la représentation unitaire irréductible standard de Heis (V_n) [on suppose $T_n((0, a)) = a$. id] et \mathcal{H}_n son espace hilbertien. Soient $Sp(V_n) = Aut(V_n, B)$ le groupe symplectique et W_n sa représentation de Weil: c'est une représentation unitaire projective dans \mathcal{H}_n définie par

$$W_n(g) T_n((u, a)) = T_n((gu, a)) W_n(g), \qquad g \in Sp(V_n), \quad (u, a) \in Heis(V_n).$$

Suivant [4], on prolonge W_n en une représentation unitaire ordinaire du groupe métaplectique G(n), une extension centrale non triviale de $Sp(V_n)$ -par T.

On définit le « vecteur de vide » $\xi \in \mathcal{H}_n$, $\|\xi\| = 1$, comme suit. Lorsque $\mathbf{F} = \mathbf{R}$, on note heis (V_n) l'algèbre de Lie de Heis (V_n) , on identifie V_n à un sous-espace de heis (V_n) et on désigne par dT_n la représentation de heis (V_n) dans \mathcal{H}_n^{∞} , le sous-espace des vecteurs

Note présentée par Michel Duflo.

 C^{∞} de T_n . Alors la droite $C\xi$ s'identifie à l'annulateur dans \mathcal{H}_n^{∞} des opérateurs $dT_n(X_k) - i \cdot dT_n(Y_k)$ où $k = 1, \ldots, n$. Lorsque $F \neq \mathbb{R}$, on note r_n le sous- \mathcal{O} -module de V_n engendré par les X_k , Y_k et alors $C\xi$ s'identifie au sous-espace des invariants du sous-groupe $r_n \times \{1\}$ de Heis (V_n) .

Il existe un plongement isométrique, et un seul, $\mathcal{H}_n \to \mathcal{H}_{n+1}$ qui identifie les « vecteurs de vide » et commute à l'action de Heis (V_n) . Soient \mathcal{H} le complété de l'espace préhilbertien $\bigcup \mathcal{H}_n$ et P_n le projecteur orthogonal de H sur H_n . On note $G = \bigcup G(n)$. Il existe une représentation unitaire W du groupe G dans \mathcal{H} telle que l'on ait $W(g) | \mathcal{H}_n = W_n(g)$ lorsque $g \in G(n)$. On notera $\Gamma = \Gamma[G, W]$.

Théorème 1. — (i) Γ contient l'opérateur nul 0, et $\Gamma \setminus \{0\}$ est un sous-semi-groupe de Γ .

- (ii) Pour chaque $n = 1, 2, \ldots,$ on a $P_n \in \Gamma$, donc $P_n \Gamma P_n$ est un sous-semi-groupe de Γ [que l'on notera $\Gamma(n)$].
 - (iii) Pour tout $A \in \Gamma(n) \setminus \{0\}$, il existe $g \in G(2n+1)$ tel que $A = P_n W(g) P_n$.

On considérera désormais les éléments de $\Gamma(n)$ comme des opérateurs dans H_n . On notera $P\Gamma[\text{resp. }P\Gamma(n)]$ le semi-groupe formé des opérateurs non nuls de Γ [resp. de $\Gamma(n)$] considérés à scalaire multiplicatif près. Remarquons que G(n) s'identifie au sous-groupe des éléments inversibles de $\Gamma(n)$ tandis que $Sp(V_n)$ joue le même rôle pour $P\Gamma(n)$.

3. Les semi-groupes $\Gamma(n)$ dans le cas F = R. — Nous commençons avec une réalisation géométrique du semi-groupe $P\Gamma(n)$. Posons $V_n^C = V_n \otimes C$ et prolongeons B à V_n^C . Soit J la forme sesquilinéaire sur $V_n^C \otimes V_n^C$ telle que $J(u, v) = -i B(u, \overline{v})$ où $v \mapsto \overline{v}$ désigne la conjugaison dans V_n^C par rapport à V_n^C . Soit $\Lambda(n)$ l'ensemble de tous les sous-espaces $L \subset V_n^C \oplus V_n^C$ satisfaisant aux conditions suivantes : (a) L est lagrangien par rapport à $(-B) \oplus B$; (b) L est non négatif par rapport à $(-J) \oplus J$; (c) $L \cap (V_n^C \oplus \{0\})$ et $L \cap (\{0\} \oplus V_n^C)$ sont strictement positifs par rapport à $(-J) \oplus J$. On démontre que $\Lambda(n)$ est un semi-groupe par rapport au produit de relations défini par

$$L_2.L_1 = \{ u \oplus w \in V_n^{\mathbf{C}} \oplus V_n^{\mathbf{C}} \mid \exists v \in V_n^{\mathbf{C}} : u \oplus v \in L_1, v \oplus w \in L_2 \}.$$

Théorème 2 (cf. [5]). — (i) Pour tout $L \in \Lambda(n)$, il existe dans \mathcal{H}_n un unique, à scalaire multiplicatif près, opérateur borné non nul $\alpha(L)$ laissant stable \mathcal{H}_n^{∞} tel que $\alpha(L) dT_n(u) = dT_n(v) \alpha(L)$ pour tout $u \oplus v \in L$.

(ii) L'application $L \mapsto \alpha(L)$ établit un isomorphisme de semi-groupes $\Lambda(n) \to P\Gamma(n)$.

Suivant [6], on réalise \mathscr{H}_n comme un espace hilbertien formé de fonctions entières f(z) sur \mathbb{C}^n de carré sommable par rapport à la mesure gaussienne sur \mathbb{C}^n dont la densité est égale à π^{-n} . $\exp(-\langle z, z \rangle)$ où $\langle .,. \rangle$ désigne le produit scalaire de \mathbb{C}^n . A chaque $z \in \mathbb{C}^n$ on associe une fonction $f_z(w) = \exp(\langle z, w \rangle)$; on a alors $f_z \in \mathscr{H}_n$ et $(f, f_z) = f(z)$ pour tout $f \in \mathscr{H}_n$. Remarquons que $\xi = f_0$. Tout opérateur borné A dans \mathscr{H}^n est caractérisé par son symbole $K(z, w) = (A f_w)(z)$ où $z, w \in \mathbb{C}^n$.

Soient Ω une matrice complexe symétrique $2n \times 2n$ et

(1)
$$\mathbf{K}_{\Omega}(z, \mathbf{w}) = \exp((z \oplus \overline{\mathbf{w}})^{t} \Omega(z \oplus \overline{\mathbf{w}})/2),$$

où $z \oplus \overline{w}$ est considéré comme un vecteur-colonne de longueur 2n et $(z \oplus \overline{w})^t$ désigne son transposé. On divise Ω en 4 blocs Ω_{ij} dont chacun est une matrice $n \times n$. On note S(n) l'ensemble des matrices $\Omega = \Omega^t$ telles que $\|\Omega\| \le 1$ et $\|\Omega_{11}\| < 1$, $\|\Omega_{22}\| < 1$. A chaque $\Omega \in S(n)$ on associe un sous-espace $L = \lambda(\Omega)$ dans $V_n^c \oplus V_n^c$ où

(2)
$$\lambda(\Omega) = \{ \Omega_{21} Z - \Omega_{22} W) \oplus W \oplus Z \oplus (-\Omega_{11} Z + \Omega_{12} W) \mid z, w \in \mathbb{C}^n \}.$$

Théorème 3. — (i) La fonction (1) est le symbole d'un opérateur borné dans H_n si et seulement si $\Omega \in S(n)$; on notera alors $A(\Omega)$ cet opérateur.

- (ii) Γ (n) est formé des opérateurs $a \in \Omega$ (Ω) où $\Omega \in S$ (n), $a \in \mathbb{C}$, $|a| \leq ||A(\Omega)||^{-1}$.
- (iii) L'image de A(Ω) dans P Γ (n) s'identifie à $\alpha(\lambda(\Omega))$.

Pour la fonction $\Omega \mapsto ||A(\Omega)||$, il y a une formule explicite mais assez compliquée.

4. Le semi-groupe Γ dans le cas $\mathbf{F} = \mathbf{R}$. — On identifie le complété hilbertien de $\bigcup \mathbf{C}^n$ à l_2 . Suivant [6], on réalise \mathscr{H} , l'espace hilbertien de \mathbb{W} , comme un espace de fonctions entières sur l_2 . On définit les vecteurs $f_z \in \mathscr{H}$ et les symboles $\mathbb{K}(z,w)$ d'opérateurs dans \mathbb{H} tout comme au n° 3, l'unique différence est que maintenant $z, w \in l_2$. On note \mathbb{S} l'ensemble des matrices $\Omega = \Omega^t$ ayant le format $2 \infty \times 2 \infty$ et vérifiant les conditions suivantes : $\|\Omega\| \le 1$, $\|\Omega_{11}\| < 1$, $\|\Omega_{22}\| < 1$ et Ω_{11} , Ω_{22} sont des opérateurs de Hilbert-Schmidt dans l_2 . A chaque $\Omega \in \mathbb{S}$ on associe une fonction \mathbb{K}_{Ω} définie toujours par (1). On note $\mathbb{V}^{\mathbb{C}} = l_2 \oplus l_2$ et Λ l'ensemble des sous-espaces $\mathbb{L} \subset \mathbb{C}^{\mathbb{C}}$ ayant la forme $\lambda(\Omega)$ où $\Omega \in \mathbb{S}$ et λ est définie par (2). On démontre que Λ est un semi-groupe par rapport au produit de relations. Soit \mathbb{S}' le sous-ensemble de \mathbb{S} formé des Ω pour lesquels il existe un opérateur borné $\mathbb{A}(\Omega)$ dans \mathbb{H} à symbole \mathbb{K}_{Ω} . On démontre que $\mathbb{S}' \neq \mathbb{S}$. Tout de même on a le résultat suivant.

Théorème 4. — Il existe un sous-espace dense $H^0 \subset H$ et une famille $\{A(\Omega) | \Omega \in S\}$ d'opérateurs dans H^0 tels que :

- (a) lorsque z, $w \in l_2$, on a $f_w \in H^0$ et $A(\Omega) f_w(z) = K_{\Omega}(z, w)$, $\Omega \in S$;
- (b) l'application $L \mapsto A(\lambda^{-1}(L))$ est une représentation projective du semi-groupe Λ dans H^0 ;
 - (c) si $\Omega \in S'$, alors $A(\Omega)$ se prolonge en un opérateur borné dans \mathcal{H} .

Théorème 5. — Soit $\Omega \in S$. Si $\|\Omega\| < 1$ où Ω_{11} , Ω_{22} sont des opérateurs nucléaires dans l_2 , alors $\Omega \in S'$.

On note $\Lambda' = \lambda(S')$ et on démontre que Λ' est un sous-semi-groupe de Λ .

Théorème 6. — (i) L'application $L \mapsto A(\lambda^{-1}(L))$ définit un isomorphisme de semigroupes $\Lambda' \to P\Gamma$.

(ii) Γ s'identifie à l'ensemble des opérateurs de la forme $a.A(\Omega)$ où $\Omega \in S'$, $a \in C$, $|a| \leq ||A(\Omega)||^{-1}$.

Il serait intéressant de trouver une description explicite de S' et de la fonction $\Omega \mapsto \|A(\Omega)\|$ sur S'.

5. Les semi-groupes $\Gamma(n)$ dans le cas $F \neq R$. — Un sous- \emptyset -module $L \subset V_n \oplus V_n$ est dit lagrangien si L = L' où

$$L' = \{ u' \oplus v' \in V_n \oplus V_n \mid \chi(u, u')^{-1} \chi(v, v') = 1, \forall u \oplus v \in L \}.$$

On note $\Lambda(n)$ l'ensemble des sous- \mathcal{O} -modules lagrangiens L tels que $L \cap (V_n \oplus \{0\})$, $L \cap (\{0\} \oplus V_n)$ soient compacts. On démontre alors que $\Lambda(n)$ est un semi-groupe par rapport au produit de relations.

Théorème 7 (cf. théorème 2). - (i) Pour tout $L \in \Lambda(n)$ il existe dans \mathcal{H}_n (un unique, à scalaire multiplicatif près, opérateur borné non nul $\alpha(L)$ tel que $\alpha(L) T_n((u, 1)) = T_n((v, 1)) \alpha(L)$ pour tout $u \oplus v \in L$.

(ii) L'application α établit un isomorphisme de semi-groupes $\Lambda(n) \to P\Gamma(n)$.

Soit μ la mesure de Haar sur V_n telle que $\mu(r_n)=1$. On peut réaliser \mathcal{H}_n comme le sous-espace de $L^2(V_n, \mu)$ formé des fonctions f(z) telles que $f(z+u)=\chi(z, u)$ f(z) pour

tous $z \in V_n$, $u \in r_n$. Alors la représentation T_n de Heis (V_n) est donnée par

$$T_n((u, a)) f(z) = a \cdot \chi(z, u) f(z+u), \quad z \in V_n, \quad (u, a) \in Heis(V_n),$$

et le vecteur ξ s'identifie à la fonction caractéristique de $r_n \subset V_n$. On note $f_z = T_n((-z, 1))\xi$ où $z \in V_n$. On a alors $(f, f_z) = f(z)$ pour tous $f \in \mathcal{H}_n$, $z \in V_n$. On définit les symboles d'opérateurs tout comme au n° 3.

A chaque $L \in \Lambda(n)$, on associe une fonction $K_L(z, w)$ comme suit. Supposons donné $(z, w) \in V_n \times V_n$; s'il existe $u \oplus v \in L$ tel que $u - z \in r_n$, $v - w \in r_n$; alors on pose $K_L(z, w) = \chi(u, z)^{-1} \chi(v, w)$; sinon on pose $K_L(z, w) = 0$. On note encore q l'ordre du corps résiduel de F et $L \cdot r_n = \{v \in V_n \mid \exists u \in r_n : u \oplus v \in L\}$,

$$\varphi(L) = [\mu(r_n + (L \cdot r_n)) \mu(r_n + (L \cap (V_n \oplus \{0\}))]^{-1/2}.$$

Théorème 8. — (i) Pour tout $L \in \Lambda(n)$, il existe un opérateur borné A(L) dans \mathcal{H}_n dont le symbole est égal à K_L . On a $||A(L)||^{-1} = \varphi(L)$.

- (ii) Le semi-groupe $\Gamma(n)\setminus\{0\}$ est constitué des opérateurs de la forme a.A(L) où $L\in\Lambda(n), a\in \mathbb{C}^*, |a|^2=q^m, m\in\mathbb{Z}, |a|\leq\varphi(L).$
 - (iii) Pour tout $L \in \Lambda(n)$, l'image de $\Lambda(L)$ dans $P\Gamma(n)$ est égale à $\alpha(L)$.
- 6. Le semi-groupe Γ dans le cas $\mathbf{F} \neq \mathbf{R}$. On note $\mathbf{F}^{\infty} = \mathbf{F} \times \mathbf{F}$..., $\mathcal{O}^{\infty} = \mathcal{O} \times \mathcal{O} \times \ldots$ Soit \mathbf{E} l'ensemble des suites $(u_1, u_2, \ldots) \in \mathbf{F}^{\infty}$ telles que $u_k \in \mathcal{O}$ pour tout k assez grand. On note $\mathbf{V} = \mathbf{E} \oplus \mathbf{E}$; c'est un groupe abélien localement compact dont $\mathbf{V}_{\infty} = \bigcup \mathbf{V}_n$ est un sousgroupe dense. Le bicaractère χ de $\mathbf{V}_{\infty} \times \mathbf{V}_{\infty}$ se prolonge en un bicaractère sur $\mathbf{V} \times \mathbf{V}$. Soient $\mathbf{r} = \mathcal{O}^{\infty} \oplus \mathcal{O}^{\infty}$ et μ la mesure de Haar sur \mathbf{V} telle que $\mu(r) = 1$. Tout comme cidessus on définit le groupe d'Heisenberg Heis (\mathbf{V}) , sa représentation \mathbf{T} dans \mathcal{H} , la réalisation de \mathcal{H} comme un sous-espace de $\mathbf{L}^2(\mathbf{V}, \mu)$, les vecteurs $f_z \in \mathcal{H}$ où $z \in \mathbf{V}$, les notions de symboles et de sous- \mathcal{O} -modules lagrangiens.

On note Λ l'ensemble des sous- \emptyset -modules lagrangiens $L \subset V \oplus V$ tels que L.r, $L^*.r$ soient compacts où L^* désigne l'image de L par rapport à l'involution $u \oplus v \to v \oplus u$ dans $V \oplus V$. On démontre que Λ est un semi-groupe par rapport au produit de relations. Pour tout $L \in \Lambda$ on définit K_L et $\varphi(L)$ comme au n° 5, en remplaçant r_n et V_n par r et V respectivement.

Théorème 9. — Toutes les assertions des théorèmes 7, 8 restent valables lorsque l'on remplace T_n , \mathcal{H}_n , $\Lambda(n)$, $\Gamma(n)$ et $P\Gamma(n)$ par T, \mathcal{H} , Λ , Γ et $P\Gamma$ respectivement.

Après la rédaction de cette Note, les auteurs ont pris connaissance d'un preprint de R. Howe, The oscillator semi-group qui contient des résultats analogues à ceux du paragraphe 3.

Note remise et acceptée le remise et acceptée le 12 juin 1989.

RÉFÉRENCES BIBLIOGRAPHIQUES

[1] G. I. Olshanskii, Infinite-dimensional classical groups of finite R-rank: description of representations and asymptotic theory, Funct. Anal. Appl., 18, n° 1, 1984.

[2] G. I. OLSHANSKII, The method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups, Funct. Anal. Appl., 22, n° 4, 1988.

[3] Yu. A. NERETIN, Holomorphic continuations of representations of the group of diffeomorphisms of the circle, *Math. U.S.S.R. Sbornik*, 180, n° 5, 1989.

[4] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math., 111, 1964, p. 143-211.

[5] V. GUILLEMIN et S. STERNBERG, Some problems in integral geometry and some related problems in micro-local analysis, Amer. J. Math., 101, 1979, p. 915-955.

[6] I. E. SEGAL, The complex-wave representation of the free boson field, in: Adv. Math. Supp. Studies, 3, Acad. Press, N. Y., 1978, p. 321-343.

M. N.: Department of Mathematics, Moscow State University, Moscow 119899, U.S.S.R.;

Yu. N.: Department of Applied Mathematics,
Moscow Institute of Electronic Machine Construction, Moscow 109028, U.S.S.R.;
G. O.: Institute of Geography, U.S.S.R. Academy of Sciences, Moscow 109017, U.S.S.R.