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ON COMBINATORIAL ANALOGS OF THE GROUP
OF DIFFEOMORPHISMS OF THE CIRCLE

UDC 519.46

YU. A. NERETIN

ABSTRACT. The goal of this article is to construct and study groups which, from the
point of view of the theory of representations, should resemble the group of diffeo-
morphisms of the circle. The first type of such groups are the diffeomorphism groups
of p-adic projective lines. The second type are groups consisting of diffeomorphisms
(satisfying certain conditions) of the absolutes of Bruhat-Tits trees; they can be re-
garded as precisely the diffeomorphism groups of Cantor perfect sets. Several series
of unitary representations of these groups are constructed, including the analogs of
highest-weight representations.

From the point of view of the theory of representations, the group Diff of dif-
feomorphisms of the circle is an object that is very important and very unusual.
Moreover, Diff is an object that is highly complex. (For example, at present it re-
mains practically the only large (=infinite-dimensional) group for which mantles and
trains [18] still have not been constructed.) The desire to generalize it is completely
natural (if only to obtain an additional way of looking at the group itself), and this
desire is evidently shared by the majority of people who have dealt with large groups.
However, although the group itself (or its Lie algebra) is included in various series,
the theory of representations of Diff turns out to be unique in its own way. This
statement is not exactly precise: there are several series of groups with a similar
theory of representations, but these groups are more likely different manifestations
of Diff than different essences. This was first studied a lot (see [17], [21], and [13])
in semidirect products of Diff and loop groups, as well as the combinatorial analog
of Diff discussed here and the group of almost periodic diffeomorphisms of the line
recently investigated by Ismagilov [5].

The combinatorial analogs Oif[(Ap) of the group of diffeomorphisms of the circle
were constructed by the author in 1983 (see [10]). In the same place it was shown
that the constructions of the representations of Diff connected with almost invariant
structures (see [8], [9], [12], [13], and [19]) can be partially carried over to Diff(^p).

Evidently, our groups are somehow connected with "non-Archimedean field the-
ory" (references can be found in [24]).

I thank G. I. Ol'shanskii for discussing this subject.

§ 1. CLASSICAL GROUPS

This section contains a summary of the necessary results on infinite-dimensional
classical groups. For more details on representations of (G, AT)-pairs see [15] and
[20], and on the spinor representation of (0(2oo, C ) , GL(oo, C)) see [12].

1.1. (G, K)-pairs. We denote by C/(oo) the full unitary group of Hubert space, by
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O(oo) the full orthogonal group, by GL(oo) the full linear group, etc. Let G D Κ be
two groups of similar type. We denote by (G, K) the group of all operators A € G
representable in the form A = (1 + S)B, where Β &Κ and S is a Hilbert-Schmidt
operator.

1.2. Universal groups. A. The symplectic group (automorphism group of the canon-
ical commutational relations) (Sp(2oo, R), t/(oo)) consists of invertible matrices of
the form (ψ ^) that preserve the skew-symmetric bilinear form with matrix (2\ ό)
and such that Ψ is a Hilbert-Schmidt operator (the subgroup i/(oo) in our case
consists of matrices of the form ( φ ^ ) ) .

B. The affine symplectic group consists of affine transformations of the form υ H->
Av + b, where A e (Sp(2oo, R), U(oo)) and ν = ( | ) .

C. The complex orthogonal group (O(2oo, C), GL(oo, C)) consists of invertible
matrices of the form (£ £) that preserve the symmetric bilinear form (° ^) and are
such that Β and C are Hilbert-Schmidt operators (the subgroup GL(oo, C) consists
of matrices of the form (^ A°-i)).

D. The real orthogonal group (O(2oo), U(oo)) (automorphism group of the canon-
ical commutational relations) is the subgroup in (O(2oo, C), GL(oo, C)) distin-
guished by the condition D = A, C = Β.

The "Weyl representation" of the group (Sp(2oo, R), U(oo)) and the spinor rep-
resentation of (O(2oo, U(oo)) are old mathematical objects (see [1], [13], [22], and
[23]). It is also well known that the "Weyl representation" of the group (Sp(2oo, R),
U(oo)) can be extended to a representation of the affine symplectic group. All these
representations are unitary. The spinor representation of (O(2oo, R), t/(oo)) was
constructed in [11].

We assume that all these constructions are known. (Actually, to understand this
article it is enough to believe that such constructions exist.)

1.3. The group (GL(oo, R), O(oo)). This group consists of the bounded operators
in a real Hubert space representable in the form A{\ + T), where A e O{oo) and Τ
is a Hilbert-Schmidt operator.

We construct a series of imbeddings τ$: (GL(oo, R), 0(oo)) —• (Sp(2oo, R),
C/(oo)) by the formula

sinhs\ 1 / g + g'~l i(g - g'~l)\ /coshs
coshs) 2 \-i(g - g'~l) g + g'~{ ) Vsinhs

where s € R and g' denotes the transpose matrix. Restricting the Weyl represen-
tation of (Sp(2oo, R), U(oo)) to (GL(oo, R), O(oo)), we obtain a series of unitary
representations of (GL(oo, R), O(oo)) that depends on the parameter s .

1.4. The group (U(oo), O(oo)). Let Η be a real Hubert space and //c its com-
plexification. The group (t/(oo), O(oo)) consists of the unitary operators in Hc rep-
resentable in the form A(l + Τ), where A is an orthogonal operator (i.e., a unitary
operator that leaves the real subspace Η c Hc invariant) and Γ is a Hilbert-Schmidt
operator.

We construct a series of imbeddings as: (C/(oo), 0(oo)) —> (Sp(2oo, R), U(oo))
by the formula

s inhi\ (g 0\ fcoshs s inhs\~
V coshi j \0 g) \sinhs cosh^J '

where 5 6 R. Restricting the Weyl representation of (Sp(2oo, R), C/(oo)) to (U(oo),
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O(oo)), we obtain a series of unitary representations of (U(oo), O(oo)) that depends
on s.

There also exists a series of imbeddings of (f/(oo), 0(oo)) into (0(4oc), U(2oo))
(see [20]), but its construction is somewhat more complicated.

1.5 The groups (U(2oo), U(oo)x U{oo)) and (GL(2oo, C), GL(oo, C)xGL(oo, C)).
Let Η be a Hubert space. The group

GLoo = (GL(2oo, C), GL(cx), C) χ GL(oo, Q )

consists of bounded invertible operators in Η θ Η representable in the form

(ο
(i.e., A and Β are bounded operators in H), and Γ is a Hilbert-Schmidt operator.
Its subgroup (t/(2oo), U(oo) χ U(oo)) consists of unitary operators that belong to

We construct an imbedding of GLoo into (0(4oo, C), GL(2oo, C)) by the for-
mula

A B\]_( 0 1 \ ( ( i ! ) \ ( 0 1

• c D ) 1 = { • ° ) {

Restricting the spinor representation of (0(4oo, C), GL(2oo, C)) to GLoo , we
obtain a holomorphic representation of GLoo (it splits into a countable sum of
irreducible ones).

The same formula (1.1) defines an imbedding of (t/(2oo), U(oo) χ U{oo) into
(0(4oo), U(2oo)). Restricting the spinor representation of (0(4oo), U(2oo)) to
(U(2oo), U(oo) χ U(oo)), we obtain a unitary representation of (U(2oo, U(oo) χ
t/(oo)).

§2. THE /?-ADIC ANALOG OF THE GROUP

OF DIFFEOMORPHISMS OF THE CIRCLE

Let Qp be the p-adic number field, Q* its multiplicative group, Zp the ring of
p-adic integers, and F p the field of ρ elements. We endow Qp with the canonical
Haar metric άμ{ζ) so that the measure of Z p is equal to 1. We denote by QpP

l

the p-adic projective line and by Anp the group of analytic diffeomorphisms of Qp .

2.1. Complementary series of unitary representations of SL2(QP). Let 0 < s < 1 .
Let Hs be the space of real functions on Qp with scalar product

(f,g)=[ f \zl-z2r
lf(zi)g(z2)dzldz2.JQP

 JQP

The unitary representations Ts of the group SL2(QP) of the complementary series
are realized in the space Hs by the formula (see [4])

(2..) r

2.2. Imbeddings of Anp in (GL(CXD, R), O(oo)). We extend the representation
(2.1) of the group SL2(QP) to the group Anp . Let q € Anp . Then

Ts{q)f{z) = ^^2

The operators Ts(q) no longer need to be orthogonal. However, the following
theorem is valid:
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Theorem 2.1. Ts{q) e (GL(oo, R), 0(oo)).

This theorem is a consequence of the following lemma.

Lemma 2.1. The operators T*(q)Ts(q)-E have finite rank.

Proof. Lef us show that the bilinear form

(2.2) ((Ts(qyTs(q) - E)fi , f2) = (Ts(q)fx, Uq)h) ~ (Α , fi)

has finite rank. The expression {Ts{q)f\, Ts(q)f2) is equal to

/ / -
JQP JQPLet r be the diffeomorphism inverse to q. Making the change of variables «i =

q(zi), u2 = q(z2), we obtain

—A{u\)f{u 2)duidu 2 .
-r{u2)V

Thus, (2.2) is equal to

izj A{u\)h(u2)duidu2.

As is easy to see, the expression in square brackets is locally constant and equal to 0
in a neighborhood of the line u\ = u2. This proves the lemma.

Restricting the unitary representations (see §1.3) of (GL(oo, R), <9(oo)) to An ,̂,
we obtain a series of unitary representations of Anp .

2.3. The singular representation of SL2(QP). Let Hi be the space of real functions
on Qp such that

with scalar product

/ / ]n\zl-z2\Azl)f{z2)dzldz2./ /
JQP

 JQP

The group SL2(QP) acts in Η by the formula

This (unitary) representation of SL2(QP) is commonly called singular [4]. The
representation Tx is properly understood as the limit of the representations Ts as

The action of Tx can be extended to an action of Anp in Hi by the formula

Ti{q)f{z)=f{q{z))\q'{z)\.

Theorem 2.1'. Tx{q) € (GL(oo, R), O(oo)).

The proof is similar to that of Theorem 2.1.
Here, however, one can obtain somewhat more. To wit, we now construct a series

of imbeddings of Anp into the group of affine transformations of the form / *-*
Af + b , where A e (GL(oo, R), O(oo)) and b e Hi . This group, in turn, can be
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imbedded into the affine symplectic group, and we obtain the possibility of restricting
the Weyl representation to A%,. This affine action is denned by the formula

f{z)~f{q(z))\q\z)\+k{\q'{z)\-\).

2.4. The even fundamental series of representations of SL2(QP). Let χ be a unitary
character of the group SL2(QP) (i.e., a homomorphism of Qp into the group of
complex numbers equal to 1 in absolute value). The representations Tx of the even
fundamental series are realized in the space L2(QP) by the formula

The representation Tx is equivalent to Τχ-\ . The operator that intertwines Tx and
Tx-i is defined by

- ( def,- f f(z)dz
™J- u) T™JQp \z -

But the representation Τχ-\ is complex-conjugate to Tx; that is, Tx is equivalent
to its conjugate. Hence, Tx has either real or quaternionic type ([6], §7). Consider
the real-linear operator Ix that intertwines Tx with itself:

Ixf(z) = Axf{z).

A direct calculation shows that Ι2 = λΕ, where λ > 0. (For the calculation it is
useful to carry out a Fourier transform; all the necessary calculations are contained
in [4], II.3.3.) It follows that Tx has real type (if λ < 0, then we would have
quaternionic type). Thus, L2(QP , C) contains two real SL2(QP)-invariant spaces
V+ and F_:

V± = {v GL2: IXV = ±\/λυ}.

Mult ip l icat ion by i interchanges these subspaces.

In part icular, L2 is t h e complexification of V+ , a n d so we can define t h e subgroup

( t / ( o o ) , 0 ( o o ) ) in C/(oo) (see §1.4).

Suppose t h a t t h e group A n p acts in L2(QP) by uni tary opera tors according t o t h e

formula
Tx(q)f(z) = f(q(z))X(q'(z))\q'(z)\1'2.

Theorem 2.2. Tx(q) e ( f/(oo), O(oo)) .

T h e t h e o r e m is a consequence of t h e following l e m m a .

Lemma 2.2. The operator Ax(q) = IxTx{q) — Tx-,(q)Ix has finite rank.

Proof. We have

A , Λ , , ω _ ff(q(z))\q'(z)\l/2

X(p'(z))dz f f(z)dz
Ax{q)J(u)J Jω _ ff(q(z))\q'(z)\l/2

X(p'(z))dz f
u)-J | Z _ M | ^ 2 ( Z _ M ) J

Λ ω f f

x{q)J(u)-J | Z _ M | ^ 2 ( Z _ M ) J \z -p{u)\x2(z -p(u))

Making the change of variable ζ = p(w) in the second integral, we obtain

Ax{q)f{u)= Jf{pM)\p'{w)\x(p'{w))

\p'{w)\lf2\p'{u)\l'2x-l(p'(w))X-
l(p'{u))-

' - u\x~2(w - u) \p(w) - p{u)\x-2(p(w) -p{u))

The expression is square brackets is locally constant and equal to 0 in a neighborhood
of the diagonal. This proves the lemma.
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We now obtain the possibility of restricting the unitary representations of the group
(t/(oo), 0(oo)) to Anp.

§3. COMBINATORIAL STRUCTURES

3.1. Bruhat-Tits trees. A Bruhat-Tits tree Jn is a tree (=cycle-free connected graph)
at each vertex of which n+1 edges converge. By a path on a tree we mean a sequence
a\,ai, ... such that a, and cij+l have a common vertex and are distinct. We
call two paths ai, a2, ... and b\, bj, ... equivalent if there exists a k such that
aj = bj+k for sufficiently large j . The set of equivalence classes of paths is called
the absolute Ap (this is the formal definition, but it is necessary to understand the
absolute as the set of a tree's points at infinity).

Remark. Bruhat-Tits trees are a special case of Bruhat-Tits buildings [2], [7].

3.2. Bruhat-Tits trees and the projective line. The Bruhat-Tits tree Jp and QpP1

are related to each other in roughly the same way as the Lobachevsky plane and the
circle—its absolute.

We call sets of the form

B(a,pk) = {zeQp:\z-a\<pk},

where k e Z, spheres in Qp. Let B(a,pk) be a sphere. We call the sphere
B(a,pk+l) an upper neighbor of it. It is clear that each sphere has exactly one
upper neighbor and exactly ρ lower neighbors (a sphere Bi is a lower neighbor of
a sphere B2 if #2 is an upper neighbor of B\).

Let us construct a graph whose vertices are numbered by spheres. The vertices of
Β χ and Bi are joined by an edge if and only if they are neighbors. It is easy to see
that this graph is precisely the Bruhat-Tits tree Jp .

It is natural to identify the projective line with the absolute. Indeed, consider the
path B\, B2, ... . Let b\ be the corresponding point of the absolute. If Bj D BJ+\
for sufficiently large j (for j > N), then it is natural to identify a point b e Ap with
the point f)JLNBj. But if Bj c Bj+l for sufficiently large j , then it is natural to
identify b with 00.

By a cell in QpP
l we mean either a sphere or the complement of a sphere. The set

of vertices of a graph Jp is in one-to-one correspondence with the set of partition-
ings of Qp-P1 into ρ + 1 pairwise disjoint cells. It is easy to check that elements of
SL2(QP) carry cells into cells. Therefore, SL2(QP) acts in a natural way on the set of
vertices of the graph Jp . It is easy to check that indeed SL2(QP) acts by automor-
phisms of Jp (in all it is simpler to check this separately for affine transformations
of Qp, and also for the mapping ζ >-> l/z; the group PSL2(Qi,) is generated by
such transformations).

3.3. The automorphism group of the graph Jn . Let Aut/n be the automorphism
group of the graph Jn . If η = ρ is a prime, then Aut(Jp) D PSL2(QP). As Cartier
observed [16], the group Aut(/P) has a sensible theory of representations that largely
resembles the theory of representations of PSL2(QP). The classification of the rep-
resentations of Aut(/P) is obtained in [14].

3.4. Spheroids. We fix an integer η > 2 . By a spheroid we mean a compact set in
which is distinguished a collection of open-closed subsets, which are called spheres
and satisfy the following conditions:

(a) M is covered by spheres.
(b) If Β and C are spheres, then either Β D C or C D Β or BnC = 0 .
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(c) Each sphere Β can be canonically represented as a union of pairwise disjoint
spheres B\, ... , Bn (we shall say that the Bj are a canonical partition of B).

(d) If B\ D B2 D •• • is a sequence of imbedded spheres (Bj+i Φ Bj), then f]Bj
consists of exactly one point.

We call a homeomorphism q of a sphere Β into a sphere C proper if q carries
subspheres into subspheres and canonical partitions into canonical partitions.

We call a homeomorphism r of a spheroid Μ into a spheroid Ν a spheromor-
phism if there exists a partition of Ν into subspheres Ν = \JRj such that r(Rj) is
a sphere for all Rj and r is a proper sphere homeomorphism Rj —> r(Rj).

Remark [3]. Let Μ be a spheroid and Λ/ = /Ί U· · -1>PN a covering of Af by pairwise
disjoint spheres. Let d be the remainder of the division of Ν by η — 1 . Then d
does not depend on the partition and is the (unique) invariant of the spheroid under
spheromorphisms.

Example. The Cantor set is endowed with a spheroid structure in the obvious way.

Another example of a spheroid is the absolute An of the Bruhat-Tits tree /„
(spheres are what were called cells above). This example is universal; to wit, any
spheroid can be spheromorphically imbedded into An .

Proposition 3.1. Any analytic transformation q e Anp is a spheromorphism Ap ~

QPP
l-

Proof. The assertion is local and, by virtue of the action of SL2(QP), without loss of
generality we can restrict ourselves to a mapping of a sphere of the form \z-a\ <pk

into a sphere of the form \z - b\ <p". Thus, suppose that in a neighborhood of the
point a the mapping has the form

q(z) = c0 + ci{z - a) + c2(z - a)2 + • • • .

We take a neighborhood Β = {ζ: \z - a\< l/pN} so small that the series converges
in it and \q'(z) — c\\ < C\ . Then q is a proper homeomorphism of the sphere Β
onto the sphere {z: \z — CQ\ < \c\\/pN) . This proves the assertion.

3.5. The group Diff(v4n). We define the group ΌϊΚ(Αη) as the spheromorphism
group of the absolute An of the tree /„. Let us define this group without using the
word "spheromorphism".

We take some edge of the tree /„ and cut it in the middle. Then the tree splits into
two sets, which we shall call branches. To each branch L there naturally corresponds
a subset AL of the absolute, namely, those points to which one can go by moving
along paths that lie in this branch (more accurately: AL consists of equivalence
classes of the paths that lie in this branch). We call a set of branches L\, ... , Lk

such that the Lj are pairwise disjoint and the sets AL cover the entire absolute a
broom.

Let L\, ... , Lk and L\, ... , L'k be two brooms in Jp . Let σ be a permutation
of the set {1, . . . , k} . We map each branch Lj isomorphically onto the branch
L'a^ . This set of mappings induces a homeomorphism of the absolute. The group
Oiff(An) consists of all of the homeomorphisms absolute that can be obtained in this
way.

3.6. Canonical measure on the absolute. We fix some point oo of the absolute
An . In the set of vertices of the tree Jp we introduce a function h with values in
Ζ that satisfies the following condition: if a\, a2, ... is a path that leads to oo,
then h{aj+\) = h{aj) + 1 . Naturally, this function is unique up to the addition of a
constant.
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Remark. The "level lines" of the function h are commonly called horocycles.
We now cut some edge b of the graph /„ and take, of the two resulting branches,

the one that does not contain oo as a limit point. We denote this branch by L{b).
Let V be the end of the cut edge b that lies in L(b). the canonical measure μ on
the absolute is defined from the condition μ(Α^)) = nh^b'>.

It is easy to see that the measure μ in quasi-invariant under the action of Oiff(An);
the Radon-Nikodym derivative is locally constant and takes values of the form na ,
where a e Ζ . We shall denote the Radon-Nikodym derivative of a mapping q €
DifT(^p) at the point ζ e Ap by \q'{z)\.

We define a metric p{z\, z2) on the absolute. Consider a path ... , α_ι, ας,,
a\, ... that leads from z\ to z2. Let κ{ζ\, z2) be the maximum of the function
h(cij). By definition, we set

Remark. Let η = ρ be prime. Then μ, up to multiplication by a constant, coincides
with Haar measure on Qp . The metric p{z\, z2) coincides, up to multiplication by
a constant, with \z\ — z2\.

3.7. Imbeddings of DifT(^p) in (GL(oo, R), O(oo)). Let 0 < s < 1. Consider the
space Hs of real functions on the absolute An with scalar product

/

The group Oiff(An) acts in Hs by the formula

Ts{q)f{z) = f{q{z))q\z

Theorem 3.1. Ts{q) e (GL(oo, R), O(oo)).

The proof coincides verbatim with the proof of Theorem 2.1.

Remark. The construction in §2.3 also carries over to

3.8. Imbeddings of Oiff(Ap) in (i/(oo), O(oo)). Suppose that the group
acts in the complex L2 on An by the formula

A real-linear operator Is in L 2 is defined by

p{z,u)is-lW)du.

As before, Is defines a real structure in L2 .

Theorem 3.2. Tis{q) e (f/(oo), 6>(oo)).

The proof is similar to that of Theorem 2.2.

§4. ANALOGS OF HIGHEST-WEIGHT REPRESENTATIONS

In this section ρ > 2 is a prime; the field of ρ elements is denoted by F p , and
the Legendre symbol is denoted by (a/p) ((a/p) = 1 if a e F* is a square, and
(a/p) =-I otherwise).
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4.1. The /?-adic Hilbert transform. Let ζ e Q*, ζ = akp
k + ak+xp

ku Η , where
ak^0. We set

sgn(z) = (ak/p).

We define the Hilbert transform in L2(QP) by

sgn(z - u)f{u) du
I f { ! ) ' T p LTpL |x- . I •

If / is a finite function that takes only a finite number of values, then this integral
is well defined in the sense of principal value:

p.v. / q(z)dzd= lim / f(z)dz.
JO» N-^°°J\z\>l/pf'

In addition, a direct calculation shows that (//, Ig) = (f, g) for any compactly
supported functions / and g taking only a finite number of values. Hence, I can
be uniquely extended to a unitary operator in L2(QP).

It is not complicated to check that I2 = - 1 . This can be checked directly, but it
is more elegant to carry out a Fourier transform & in L2(QP):

In particular, we see that the operator / has two proper subspaces V+ and F_ ,
where V± consists of functions whose Fourier transform has support in the set

Q± = {zQ;: sgnz = ± l } .

4.2. The group An^. This group consists of analytic transformations of QpP1

such that sg,nq'(x) = 1 for all χ . If desired, we can interpret An^ as the group of
orientation-preserving diffeomorphisms.

We note that PSL2(QP) c An+ .

4.3. Imbeddings of An+ in GL^ and in (t/(2oo), t/(oo) χ C/(oo)). Let / be a
homeomorphism of Q* into C*. We define the representation Tx{q) of the group
A ^ in L2(QP):

Tx(q)f(x) = f(q(x))X(q'(x))\q'(x)\.

In L2{QP) we distinguished the two subspaces V+ and V- . The group GLoo =
(GL(2oo, C), GL(oo, C) χ GL(oo, C)) consists of operators that "almost preserve
F ± " (see §1.5).

Theorem 4.1. (a) Tx(q) e
(b) // \X\ = 1, then Tx(q) e (t/(2oo), U(oo) χ C/(oo)).

Proof. Assertion (b) follows from (a), and (a) is a consequence of the following
lemma.

Lemma 4.1. [Tx(q), I] has finite rank.

Proof. We have

-ιf(z)\q'{u)\'l2x{q'{u))dz'Qp \z-q(u)\sgn(z-q{u)) '
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We make the change ζ = q(w) in the second integral, and ζ = w in the first. We
obtain

f(p'(w))\p'(w)\l/2

X(p'(w))

1 \'P(w)\l/2\P'(u)\l/2x(p>(u))X(p>(wm d u

\w - w|sgn(tu - u)\ \w - u\sgn(p(w) -p{u)) \ '

and the singularity in square brackets disappears the next time. This proves the
lemma.

Restricting the representation of GLoo (see §1.5) to An+ , we obtain a series of
representations of An^ . The representations are numbered by the characters χ of
the group Q*. If / is a unitary character, \χ\ = 1, then the resulting representation
is unitary.

These representations are exact duplicates of the highest-weight representations of
the group of diffeomorphisms of the circle (see the "two-fermion construction" in
[13]). It is still not clear, to be sure, what is meant by the words "highest weight",
since there is no Lie algebra for the group Anp .

4.4. Combinatorial structures. A Bruhat-Tits tree Jp has still another interpreta-
tion. To wit, the vertices of the tree Jp are in one-to-one correspondence with the
lattices of volume 1 in Qj; (a lattice in Qp is a Zp-submodule of rank 2). Two
vertices are joined by an edge if the intersection of the corresponding lattices has
volume p~l.

Let β be a lattice of volume 1 and R\, ... , Rp+\ neighboring lattices. The space
Q/PQ can be naturally identified with the vector space Fp . To each lattice Rj we
can associate the line (Q Π R)/pQ in Q/pQ — Fj . Thus, the set of edges that
emanate from Q is endowed with the structure of the projective line FPP

X. The
group SL2(FP) acts in the natural way on the set {R\, ... , Rp+i}.

We denote by Jp a Bruhat-Tits tree Jp endowed with the following additional
structure: for each vertex ν there is defined a bijection of FpP

l into the set of edges
li, ... ,lp+\ leading to ν . We shall call Jp an equipped tree.

Remark. Earlier (§3.3) we interpreted Jp as a set of spheres in Q^. Let Β be
a sphere, C its upper neighbor, and D\, ... , Dp its lower neighbors. The set of
spheres Dj has the form

Dj = a + jp"+pn+lZp,

where j = 0, I, ... , p—l. Hence, the spheres Dj are in one-to-one correspondence
with the points of the affine line F^ over the field Fp . We associate the sphere C
with the point oo e FpP

l .

4.5. The combinatorial version of the group An^ . Let Jp be an equipped tree. Let
L\, ... , Ln and L\, ... , L'n be two brooms (see §3.5) and σ a permutation of the
set 1, . . . ,« . Consider the set of mappings qj: Lj —> La^ such that qj is an iso-
morphism of equipped branches. The set {qj} defines an absolute homeomorphism
(see §3.5). We denote the group of all such homeomorphisms by DifF^(/p).

We state in passing that the above-mentioned isomorphism q of equipped
branches L and L' is one of these. In the first place, this is a tree isomorphism.
Further, let ν be a vertex and l\, ... , lp+\ edges that go to it. Then the mapping
κυι of the set / [ , . . . , l'p+l onto FpP

l is fixed. Thus, we have the composition
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We require that this mapping lie in the group PSL2(F9) (to emphasize the point,
it must lie in PSL 2(F 9), not just in PGL2(F<7)(!)).

4.6. The combinatorial Hubert transform. We fix the point oo on the absolute
Ap of the tree Jp . Let υ be a vertex of the tree. Then among the ρ + 1 edges
that go to υ the edge lx is selected, namely, the one that is directed toward the
side of the point oo e Ap . Let IQ , . . . , lp-i be the remaining edges that go to ν .
The elements of the set /0, l\, . . . , lp-\, /oo are in bijective correspondence with the
points of the projective line FPP

X . Without loss of generality we can assume that
lj corresponds to a point j e Fp . Then the remaining edges /o, . . . , lp-\ are in
bijective correspondence with the points of the afnne projective line F^ . Without
loss of generality we can assume that lj corresponds to a point j e¥p . Let i φ j .
We set

Remark. It is important to emphasize that the right-hand side of the equality is
invariant with respect to the subgroup Β c SL2(F i)—the stabilizer of the point oo
in FpP

l . Indeed, the group Β consists of transformations of the projective line of
the form j H-> a2) + c.

Let h(v), η{ζ\, z 2 ) , and p{z{, z2) be the same as in §3.6. For two distinct points
ζ ι and z2 {zjΦ oo) of the absolute we also define the quantity sgn(z!, z2) = ± 1 .
To do so, we join z\ and z2 by a path ... ,a-\, a§, a.\, ... leading from z\ to
z 2 . Let as be the vertex at which the maximum of the function h(aj) is attained.
Let l\ be the edge [a;, a,_i] and l2 the edge [cij, tf/+i]. Then

sgn(z,, z 2 ) : =sgn(/!, l2).

We define the Hilbert transform in L2(AP) by the formula

where λ is chosen from the condition I2 — -1 .

Remark. Here we need to use all of the words that we used in §4.1. The integral in
the sense of principal value is understood as

p.v. / f{u)du= lim / f(u)du,
JAn

 k^°° JAn\B^

where Bk is a sequence of spheres, containing w0 , such that f) B^ = u$ .
If we identify Ap with QpP

l , then our Hilbert transform coincides with the
Hilbert transform in §4.1.

4.7. Imbeddings of Oift(Jp) in GL^ and in {U(2oo, U(oo) χ U(oo)). Let a e C.
We define the action of Diff1"(Jp) in L2(AP) by

Ta(q)f(z)=f(q(z))\q'(z)\^2+ia.

Theorem 4.2. (a) Ta(q) e G L ^ .

(b) If a e R, then Ta{q) e (i/(2oo), C/(oo) χ ί/(σο)).

The proof coincides with that of Theorem 4.1.
Naturally, having such imbeddings, we have representations of the group Diff*"(Jp)

as well.
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