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Let G be a Lie group and Gc its complexification. It is known that an infinite-
dimensional unitary representation of G can be continued holomorphically only to a
neighborhood of the identity in Gc. However, the representation operators are un-
bounded, and their common domain of definition is not invariant. It turns out (see
Theorem 2) that if G is an infinite-dimensional orthogonal group, then its spinor repre-
sentation can be continued to a global holomorphic representation of Gc by unbounded
operators in a Hilbert space. This assertion extends the range of applicability of "imbed-
ding techniques" in the theory of representations of infinite-dimensional groups (see [2]-
[6]). In particular, it allows Olle to construct an analytic continuation with respect to
a parameter für many known series of representations of infinite-dimensional classical
groups and also to obtain somewhat unexpected theorems on integrability für represen-
tations of the Virasoro algebra and affine algebras.

1. Notation. The notation A E II (resp. A E l2) will mean that A is a trace
class operator (resp. a Hilbert-Schmidt operator). Let U( 00), GL( 00, C), 0(00, R), and
O(oo,C) be, respectively, the full unitary, fulllinear, and full orthogonal groups of a
Hilbert space. Let G(oo) :) K(oo) be groups ofthe indicated form. Then (G(oo),K(oo»)
is the subgroup of G(oo) consisting of operators of the form A(l + T), where A E K(oo)
and TE l2.

Let H be a Hilbert space, and let the A k H be its exterior powers. Then ffi': A k H

is called Fock's fermion space A(H). Let ~I, ~2,' ..be "holomorphic" anticommuting
variables:

~k~l = -~l~k, ~k~l = -~l~k, ~ = -~l~k.

Then it is convenient to realize A(H) as the space of polynomials in ~1, ~2,. ..completed
with respect to the inner product

where
82d,u = [exp IJ ~k~k

-La~~~

k
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and the Berezin integral of llk ~k ~ k is 1. But if at least one factor in this product is omit-
ted, then the integral equals O. The monomials in the variables ~k form an orthonormal
basis in A(H). The creation and annihilation operators in A(H) are introduced, respec-
tively, by the formulas Ak! = ~k! and Bk! = (a/a~k)! (Aj = Bj, AkBt + BtAk = bk.t,
AkAt = -AtAk, and BkBt = -BtBk).

Let V be the space of linear operators in A(H) of the form }:::PkAk +}::: qkBk, where
}:::(IPkI2 + Iqkl2) < 00. Then V is a closed subspace with respect to the uniform topology
in the algebra of all bounded operators. A symmetric bilinear form (P, Q) on V is
defined from the condition PQ + QP = (P, Q) .1. The form (P, Q) is positive definite
-
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in the subspace V' of selfadjoint elements of V. We define 0(200, C) as the group of all
bounded operators in V that preserve the form (P, Q). Its subgroup 0(200, R) consists of
the operators in V that preserve the subspace V'. We specify the elements of 0(200, C)
by matrices of the form S = (~g) in the basis Al, A2'..., Bi, B2, The subgroup of
block diagonal matrices is isomorphie to GL(oo, C). It is easy to see that

(0(200, C), GL(oo, C)) n 0(200, R) = (0(200, R), U(oo)).

Let G be a subgroup of 0(200, C). Its projective representation p in A(H) is called
spinaT if für any A E G and T E V

p(A)Tp(A}-'-l = A(T).

A spinal representation (0(2°o,R), U(oo)) was constructed in [1] (see also [9] and
[10]). We shall attempt to define p(M), ME 0(200, C), by means of the formula (this is
a holomorphic continuation of (5.15) in [1])

p[(~
(1)

where 0 E C.

2. A bounded spinor representation. We consider the group Or(2CX» C O(2CX>, C)
consisting of all operators that are representable in the form U (1 + T) (1 + S), where
U E U(oo), 1 + T E O(2CX>, R), 1 + SE O(2CX>, C), TE .c2, and SE .cl.

THEOREM 1. There exists a spinor representation oJ the group Or(2CX» by bounded
operators in ß(H). The representation is defined by (1) on the matrices (~~) Jor which
A-1 exists.

3. A large spinor representation. Let 1 E A(H), 1 = (/0,/1,.. .), where Ik E
AkH. We consider in A(H) the subspace A ofall elements for which Ilhlldecreases fast er
than any function of the form e-Gj. A collection of seminorms on A is introduced in the
obvious war, with respect to which it is a Frechet space.

THEOREM 2. Formula (1) above gives a well-defined representation 01
(0(200., C), GL(oo, C)) by continuous operators in the space A.

PROOF. a) The space A is invariant under any operator T'of a linear change of
variables and also operators of the form

82~ q _ ) /1L.., i.1 ß{iß{j
QJ = exp

where L IPijl2 < 00 and L Iqijl2 < 00.
b) 'We apply a local Iwasawa decomposition in (0(200, C), GL(oo, C)) with respect

to GL( 00, C) to an operator of the form 1 + T, where T E :C2 arid I/TII is small. Then
p(l + T) can be represented as a product oIoperators ofthe form Q,T, and P.

c} GL(oo) acts on A by linear changes ofvariables.
d) Let H = cn E9 L. Then A(H) = A(cn) @ A(L). This defines an action of O(n, C)

in A.
e) The compatibility of b), c), and d) and the fact that the representation on the

matrices .for which A -1 does not exist is well-detined can be verified by the induced

action on the creation and annihilation operators.
PROOF OF THEOREM 1. It is necessary to use apolar decomposition für operators

of the form 1 + S, S E :c 1. Then the question of the boundedness of p( 1 + S) reduces ,to
normal operators, für which the spectrum can be explicitly computed.
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4. The Virasoro algebra. Let Diff be the group of diffeomorphisms of a circle and
V the Virasoro algebra (see, für example, [5], [7], or [8]).

THEOREM 3. Any irreducible representation 01 V with highest weight (not necessarily
unitarizable) can be integrated to a continuous projective representation 01 Diff in Borne
locally convex space.

For the proof it is enough to verify the following assertions:
a) Suppose that the universal covering Diff~ of the group Diff is realized as the

group of diffeomorphisms of R that satisfy the condition q( x + 211") = q( x) + 211". Let
Ha (a E C, 0 :5: Re a :5: 1) be the space of functions on R that satisfy the condition
q(x + 211") = e21riaq(x). An inner product in Ha is introduced by the formula J;1r Igdx.

Suppose that Diff~ acts in Ha by the formula (LV E C)

T(q)f(x) = l(q(x))q'(x)1/2+w.

Suppose that H~n C Ha is spanned by the vectors ei(k+a)cp, k ~ n, and H;;;,n by the

vectors ei(k+a)cp, k < n. Then

T(q) E (GL(2°O, C), GL(oo, C) x GL(oo, C))

(the subgroup GL( 00, C) x GL( 00, C) consists of matrices that preserve the subspaces

H~n).,
b) We denote by L~,n the space H~n with a complex conjugate structure. Then the

identity mapping Ha -+ H;;,n EB L~,n defines an imbedding of (GL(2°O, C), GL(oo, C) x

GL(oo, C)) into (0(200, C), GL(oo, C)) (see also [2]).
c) Restricting the spinor representation to Diff"", we obtain aseries A(a, w, n) of

representations of V. All the irreducible representations of V with highest weight are

contained among its subfactors.
d) Each Diff-subrepresentation in A(a,w,n) is the closure of the set of its finitary

vectors.

50 Affine algebraso Let G be a complex Lie group, Q5 its Lie algebra, and K a
maximal compact subgroup. The standard construction für imbedding COO(81, SO(n))
into (O(2°o,R), U(oo)) (Vershik, Frenkel, and Ismagilovj see, für example, [4]) can be
continued to an imbedding of COO(81, SO(n, C)) into (0(200, C), GL(oo)). The next

theorem follows from this.

THEOREM 4. A basis representation 0/ the affine algebra CCX> (S 1, ~) can be integrated
to a projective representation 0/ CCX>(Sl, G) that is unitary on CCX>(Sl, K).

In the rase of the series CCX>(Sl, sl(n, C)) integrability follows für al1 representations

with highest weight.
6. REMARK 1. For a Weyl representation of the group Spo = (Sp(2°O, R), U(oo))

the analogs of Theorems 1 and 2 are falBe. However, the standard representation of the
group Spo ~ H, where H is an infinite-dimensional Heisenberg group, can be continued
holomorphically to a representation of Spo ~ Hc by unbounded operators in Fock's space.
We consider the standard holomorphic realization of Fock's boson spare (see [1]). Then
Spo ~ Hc, an invariant dense subset of 0, forms finitary linear combinations of functions

of the form
P(Zl, Z2,. ..) exp (~aiZi) exp( (Az, z}),

where P is a homogeneous form in Zl, Z2,..', E lail2 < 00, and A is an antilinear
Hilbert-Schmidt operator. IIAII < ~. The author is not aware of any natural topology
on O. The restriction of Dur representation to the subgroup U(oo) ~ Hc is continuous
in the topology of uniform convergence on balls.
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REMARK 2. For infinite-dimensional classical groups Theorem 2 haB consequences
of two types. First, OI'shanski1's fermion representations (see [2]) of real groups can be
continued holomorphically to representations of the corresponding complex groups. Sec-
ond, any series of fermion representations [2] (for certain groups the construction in [2] is
equivalent to the Thoma- Voiculescu- Vershik-Kerov construction of quotient representa-
tionsj see [3] or [2]) that depends on real parameters can be continued holomorphically to
aseries of representations (already nonunitary) that depends on a complex parameter.
It follows from Remark 1 that the same holomorphic continuations also exist für the
"intermediate" representations in [2]. It would be interesting to construct analogs of the
limit theorems [3] für these series.

REMARK 3. The subgroups of Or(2°O) and (0(200, C), GL(oo, C)) on which the
spinor representation can be chosen to be two-valued are distinguished by the condition
that A -E E .cl and D -E E .cl (0 = :f:VdetA in (1)).*

REMARK 4. The representations constructed in Theorems 3 and 4 cannot be realized
in a Banach space. For this reason it was assumed that integrability can hold only in
the unitary case (on unitary integrability see [5]-[8]).

Received 5/MAY /85Moscow Institute of Electronic Machine Construction

REFERENCES

1. F. A. Berezin, The method 0/ second quantization, "Nauka", Moscow, 1965; English transi.,
Academic Press, 1966.

2. G. I. Ol'shanskif, Dokl. Akad. Nauk SSSR 269 (1983), 33-36; English transi. in Soviet Math. Dokl.
27 (1983).

3. A. M. Vershik and S. V. Kerov, Dokl. Akad. Nauk SSSR 267 (1982), 272-276; English transi. in
Soviet Math. Dokl. 26 (1982).

4. I. B. Frenkel, J. Functional Anal. 44 (1981), 259-327.
5. Yu. A. Neretin, Funktsional. Anal. i Prilozhen. 17 (1983), no. 3, 85-86; English transi. in Functional

Anal. Appl. 17 (1983).
6. -, Candidate's Di~rtation, Moscow State Univ., Moscow, 1983. (Russian)
7,* Roe Goodman and Nolan R, Wallach, J. Reine Angew. Math. 347 (1984), 69-133; 352 (1984),

220.
8.* -, J. Functional Anal. 63 (1985), 299-321.
9. A. M. Vershik, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 123 (1983), 3-35;

English transl. in J. Soviet Math. 28 (1985), no. 4.
10. Oavid Shale and W. Forrest Stinespring, J. Math. Mech. 14 (1965), 315-322.

Translated by R. LENET

.Editor'8 note. The Russian cites preprints of these items.

74


