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ON SPINOR REPRESENTATION OF O(o0, C)
UDC 513.88

YU. A. NERETIN

Let G be a Lie group and Gg its complexification. It is known that an infinite-
dimensional unitary representation of G can be continued holomorphically only to a
neighborhood of the identity in Gc. However, the representation operators are un-
bounded, and their common domain of definition is not invariant. It turns out (see
Theorem 2) that if G is an infinite-dimensional orthogonal group, then its spinor repre-
sentation can be continued to a global holomorphic representation of G¢ by unbounded
operators in a Hilbert space. This assertion extends the range of applicability of “imbed-
ding techniques” in the theory of representations of infinite-dimensional groups (see [2]-
[6]). In particular, it allows one to construct an analytic continuation with respect to
a parameter for many known series of representations of infinite-dimensional classical
groups and also to obtain somewhat unexpected theorems on integrability for represen-
tations of the Virasoro algebra and affine algebras.

1. Notation. The notation 4 € £; (resp. A € L2) will mean that A is a trace
class operator (resp. a Hilbert-Schmidt operator). Let U(oo), GL(00, C), O(00,R), and
O(oo, C) be, respectively, the full unitary, full linear, and full orthogonal groups of a
Hilbert space. Let G(00) D K(oo) be groups of the indicated form. Then (G(00), K(00))
is the subgroup of G(0o0) consisting of operators of the form A(14T), where A € K(o0)
and T € L. ' :

Let H be a Hilbert space, and let the A*H be its exterior powers. Then @y A H
is called Fock’s fermion space A(H). Let &;,£,... be “holomorphic” anticommuting
variables: '

Eebt = &k, &€ =—Elk, &&= —§&.

Then it is convenient to realize A(H) as the space of polynomials in €1,&3,... completed
with respect to the inner product

f9) = / 169 du,

where

dp = [exp (— ij T az,;) 1;[ skzk} 1;[ déy, d€,.,

and the Berezin integral of [], &€ is 1. But if at least one factor in this product is omit-
ted, then the integral equals 0. The monomials in the variables ¢, form an orthonormal
basis in A(H). The creation and annihilation operators in A(H) are introduced, respec-
tively, by the formulas Axf = & f and B f = (8/0¢k) f (A} = Bj, A By + B Ai = 6,1,
AkAz = —-AlAk, and BkBl = ——BlBk).

Let V be the space of linear operators in A(H) of the form Y pxAx + ¥ qx Bk, where
> (Ipx|® +|gx[?) < co. Then V is a closed subspace with respect to the uniform topology
in the algebra of all bounded operators. A symmetric bilinear form (P,Q) on V is
defined from the condition PQ + QP = (P,Q) - 1. The form (P, Q) is positive definite
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in the subspace V' of selfadjoint elements of V. We define O(2%, C) as the group of all
bounded operators in V' that preserve the form (P, Q). Its subgroup O(2*°, R) consists of
the operators in V' that preserve the subspace V’. We specify the elements of O(2%°, C)
by matrices of the form S = (4§ 2) in the basis A;, A, ..., By, B,,.... The subgroup of
block diagonal matrices is isomorphic to GL(0o, C). It is easy to see that

(0(2%, C), GL(c0, C)) N O(2*°, R) = (0(2*, R)), U(c0)).

Let G be a subgroup of O(2°,C). Its projective representation p in A(H) is called
spinorif forany Ac Gand T €V

p(A)Tp(A)™! = A(T).

A spinor representation (O(2°°,R), U(c0)) was constructed in [1] (see also [9] and
(10]). We shall attempt to define p(M), M € O(2%, C), by means of the formula (this is
a holomorphic continuation of (5.15) in [1]) ‘

(1 pKé ﬁ) s =0 [ oo H(nf)(i’?} AA_};) (g—ﬂf(ﬁ)du,

where 0 € C.

2. A bounded spinor representation. We consider the group O, (2®) c 0(2%, C)
consisting of all operators that are representable in the form U(1 + T)(1 + S), where
Ue€U(x),1+T€0(2®,R),1+S€0(2°,C), Te L3, and S € L.

THEOREM 1. There ezists a spinor representation of the group O,(2%°) by bounded
operators in A(H). The representation 1s defined by (1) on the matrices (&2) for which
A~1 exists.

3. A large spinor representation. Let f € A(H), f = (fo, f1,...), where fi €
A¥H. We consider in A(H) the subspace A of all elements for which ||£;1] decreases faster
than any function of the form e=C5. A collection of seminorms on A is introduced in the
obvious way, with respect to which it is a Fréchet space.

THEOREM 2. Formula (1) above gives a well-defined representation of
(0(2%°,C), GL(00,C)) by continuous operators in the space A.

PROOF. a) The space A is invariant under any operator T of a linear éhange of
variables and also operators of the form

Pf = exp (sz‘jéiéj) fi  Qf=exp (Z qt'j-g—&a—sj> £,

where Y |pi;|2 < oo and 3 |gi5]? < oo.

b) ‘We apply a local Iwasawa decomposition in (O(2%°,C), GL(co, C)) with respect
to GL(oo, C) to an operator of the form 1+ T, where T € L and ||T|| is small. Then
p(1 4+ T) can be represented as a product of operators of the form Q, T, and P.

¢) GL(00) acts on A by linear changes of variables. , ‘

d) Let H=C" @ L. Then A(H) = A(C") ® A(L). This defines an action of O(n, C)
in A.

e) The compatibility of b), ¢), and d) and the fact that the representation on the
matrices for which A~! does not exist is well-defined can be verified by the induced
action on the creation and annihilation operators.

PROOF OF THEOREM 1. It is necessary to use a polar decomposition for operators
of the form 1+ S, S € £;. Then the question of the boundedness of p(1 + S) reduces to
normal operators, for which the spectrum can be explicitly computed.
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4. The Virasoro algebra. Let Diff be the group of diffeomorphisms of a circle and
V the Virasoro algebra (see, for example, [5], [7], or (8]).

THEOREM 3. Any irreducible representation of V with highest weight (not necessarily
unitarizable) can be integrated to a continuous projective representation of Diff in some
locally convex space.

For the proof it is enough to verify the following assertions:

a) Suppose that the universal covering Diff ™~ of the group Diff is realized as the
group of diffeomorphisms of R that satisfy the condition g(x + 2%) = q(z) + 27. Let
H, (e € C, 0 £ Rea < 1) be the space of functions on R that satisfy the condition
g(z + 27) = €™¢(z). An inner product in H, is introduced by the formula f02 " fgdz.
Suppose that Diff™ acts in H, by the formula (w € C)

T(q)f(z) = f(a(z))q'(z)*/*+*.

Suppose that H}, C H, is spanned by the vectors e!¥+®)¢ k > n, and H;, by the
vectors e!kt@)¢ Lk < n. Then

T(q) € (GL(2*, C), GL(00,C) x GL(00, C))

(tlie subgroup GL(00,C) x GL(00,C) consists of matrices that preserve the subspaces
Ha,n)'

b) We denote by L7, the space H}, with a complex conjugate structure. Then the
identity mapping Hy — Hy , ® L}, defines an imbedding of (GL(2*°, C), GL(o0, C) x
GL(o0, C)) into (0(2%°, C), GL(o0, C)) (see also [2]).

¢) Restricting the spinor representation to Diff ™, we obtain a series A(a,w,n) of
representations of V. All the irreducible representations of V' with highest weight are
contained among its subfactors.

d) Each Diff-subrepresentation in A(o,w,n) is the closure of the set of its finitary
vectors. R ‘

5. Affine algebras. Let G be a complex Lie group, & its Lie algebra, and K a
maximal compact subgroup. The standard construction for imbedding C*(S*,S0(n))
into (O(2*°,R), U(c0)) (Vershik, Frenkel, and Ismagilov; see, for example, [4]) can be
continued to an imbedding of C*°(S!,80(n,C)) into (0(2*°,C), GL(c0)). The next
theorem follows from this.

THEOREM 4. A basis representation of the affine algebra C*(S*, ®) can be integrated
to a projective representation of C(S',G) that is unitary on C*~(S*, K).

In the case of the series C°(81,sl(n, C)) integrability follows for all representations
with highest weight.

6. REMARK 1. For a Weyl representation of the group Spy = (Sp(2*=,R), U(o0))
the analogs of Theorems 1 and 2 are false. However, the standard representation of the
group Spy X H, where H is an infinite-dimensional Heisenberg group, can be continued
holomorphically to a representation of Spp X Hc by unbounded operators in Fock’s space.
We consider the standard holomorphic realization of Fock’s boson space (see [1]). Then
Spg X Hc, an invariant dense subset of (1, forms finitary linear combinations of functions

of the form
P(z1,22,...)exp (Z aiz,-) exp({Az, z)),

where P is a homogeneous form in z1,22,..., Y |esf? < o0, and A is an antilinear
Hilbert-Schmidt operator. ||A|| < 3. The author is not aware of any natural topology
on §1. The restriction of our representation to the subgroup U(oo) x Hg is continuous
in the topology of uniform convergence on balls.
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REMARK 2. For infinite-dimensional classical groups Theorem 2 has consequences
of two types. First, Ol'shanskii’s fermion representations (see [2]) of real groups can be
continued holomorphically to representations of the corresponding complex groups. Sec-
ond, any series of fermion representations [2] (for certain groups the construction in [2] is
equivalent to the Thoma-Voiculescu-Vershik-Kerov construction of quotient representa-
tions; see [3] or [2]) that depends on real parameters can be continued holomorphically to
a series of representations (already nonunitary) that depends on a complex parameter.
It follows from Remark 1 that the same holomorphic continuations also exist for the
“intermediate” representations in [2]. It would be interesting to construct analogs of the
limit theorems (3] for these series.

REMARK 3. The subgroups of O,(2°°) and (O(2°°,C), GL(00,C)) on which the
spinor representation can be chosen to be two-valued are distinguished by the condition
that A-E€ Lyand D—E€ Ly (6 = £vdetAin (1)).*

REMARK 4. The representations constructed in Theorems 3 and 4 cannot be realized
in a Banach space. For this reason it was assumed that integrability can hold only in
the unitary case (on unitary integrability see [5]-(8]).
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