ON SPINOR REPRESENTATION OF $O(\infty, C)$

UDC 513.88

YU. A. NERETIN

Let G be a Lie group and $G_{\mathbb{C}}$ its complexification. It is known that an infinitedimensional unitary representation of G can be continued holomorphically only to a neighborhood of the identity in $G_{\mathbb{C}}$. However, the representation operators are unbounded, and their common domain of definition is not invariant. It turns out (see Theorem 2) that if G is an infinite-dimensional orthogonal group, then its spinor representation can be continued to a global holomorphic representation of $G_{\mathbb{C}}$ by unbounded operators in a Hilbert space. This assertion extends the range of applicability of "imbedding techniques" in the theory of representations of infinite-dimensional groups (see [2]-[6]). In particular, it allows one to construct an analytic continuation with respect to a parameter for many known series of representations of infinite-dimensional classical groups and also to obtain somewhat unexpected theorems on integrability for representations of the Virasoro algebra and affine algebras.

1. Notation. The notation $A \in \mathcal{L}_1$ (resp. $A \in \mathcal{L}_2$) will mean that A is a trace class operator (resp. a Hilbert-Schmidt operator). Let $U(\infty)$, $GL(\infty, \mathbb{C})$, $O(\infty, \mathbb{R})$, and $O(\infty, \mathbb{C})$ be, respectively, the full unitary, full linear, and full orthogonal groups of a Hilbert space. Let $G(\infty) \supset K(\infty)$ be groups of the indicated form. Then $(G(\infty), K(\infty))$ is the subgroup of $G(\infty)$ consisting of operators of the form A(1+T), where $A \in K(\infty)$ and $T \in \mathcal{L}_2$.

Let *H* be a Hilbert space, and let the $\Lambda^k H$ be its exterior powers. Then $\bigoplus_{0}^{\infty} \Lambda^k H$ is called *Fock's fermion space* $\Lambda(H)$. Let ξ_1, ξ_2, \ldots be "holomorphic" anticommuting variables:

$$\xi_k\xi_l = -\xi_l\xi_k, \quad \xi_k\overline{\xi}_l = -\overline{\xi}_l\xi_k, \quad \overline{\xi_k\xi_l} = -\overline{\xi}_l\overline{\xi}_k.$$

Then it is convenient to realize $\Lambda(H)$ as the space of polynomials in ξ_1, ξ_2, \ldots completed with respect to the inner product

$$f,g
angle = \int f(\xi)\overline{g(\xi)}\,d\mu,$$

where

$$d\mu = \left[\exp\left(-\sum_{k} \frac{\partial^{2}}{\partial \xi_{k} \partial \overline{\xi}_{k}}\right) \prod_{k} \xi_{k} \overline{\xi}_{k}\right] \prod_{k} d\xi_{k} d\overline{\xi}_{k},$$

and the Berezin integral of $\prod_k \xi_k \overline{\xi}_k$ is 1. But if at least one factor in this product is omitted, then the integral equals 0. The monomials in the variables ξ_k form an orthonormal basis in $\Lambda(H)$. The creation and annihilation operators in $\Lambda(H)$ are introduced, respectively, by the formulas $A_k f = \xi_k f$ and $B_k f = (\partial/\partial \xi_k) f$ $(A_j^* = B_j, A_k B_l + B_l A_k = \delta_{k,l}, A_k A_l = -A_l A_k$, and $B_k B_l = -B_l B_k$).

Let V be the space of linear operators in $\Lambda(H)$ of the form $\sum p_k A_k + \sum q_k B_k$, where $\sum (|p_k|^2 + |q_k|^2) < \infty$. Then V is a closed subspace with respect to the uniform topology in the algebra of all bounded operators. A symmetric bilinear form (P,Q) on V is defined from the condition $PQ + QP = (P,Q) \cdot 1$. The form (P,Q) is positive definite

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 22E70.

^{©1987} American Mathematical Society 0197-6788/87 \$1.00 + \$.25 per page

in the subspace V' of selfadjoint elements of V. We define $O(2^{\infty}, \mathbb{C})$ as the group of all bounded operators in V that preserve the form (P, Q). Its subgroup $O(2^{\infty}, \mathbb{R})$ consists of the operators in V that preserve the subspace V'. We specify the elements of $O(2^{\infty}, \mathbb{C})$ by matrices of the form $S = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ in the basis $A_1, A_2, \ldots, B_1, B_2, \ldots$ The subgroup of block diagonal matrices is isomorphic to $GL(\infty, \mathbb{C})$. It is easy to see that

$$(\mathrm{O}(2^\infty,\mathbf{C}),\mathrm{GL}(\infty,\mathbf{C}))\cap\mathrm{O}(2^\infty,\mathbf{R})=(\mathrm{O}(2^\infty,\mathbf{R}),\mathrm{U}(\infty)).$$

Let G be a subgroup of $O(2^{\infty}, \mathbb{C})$. Its projective representation ρ in $\Lambda(H)$ is called *spinor* if for any $A \in G$ and $T \in V$

$$\rho(A)T\rho(A)^{-1} = A(T).$$

A spinor representation $(O(2^{\infty}, \mathbb{R}), U(\infty))$ was constructed in [1] (see also [9] and [10]). We shall attempt to define $\rho(M), M \in O(2^{\infty}, \mathbb{C})$, by means of the formula (this is a holomorphic continuation of (5.15) in [1])

(1)
$$\rho \left[\begin{pmatrix} A & B \\ C & D \end{pmatrix} \right] f(\eta) = \theta \int \exp \left[-\frac{1}{2} (\eta \overline{\xi}) \begin{pmatrix} CA^{-1} & A^{-1} \\ A^{t-1} & A^{-1}B \end{pmatrix} \begin{pmatrix} \eta \\ \overline{\xi} \end{pmatrix} \right] f(\xi) \, d\mu,$$

where $\theta \in \mathbf{C}$.

- -

. -

2. A bounded spinor representation. We consider the group $O_r(2^{\infty}) \subset O(2^{\infty}, \mathbb{C})$ consisting of all operators that are representable in the form U(1+T)(1+S), where $U \in U(\infty)$, $1+T \in O(2^{\infty}, \mathbb{R})$, $1+S \in O(2^{\infty}, \mathbb{C})$, $T \in \mathcal{L}_2$, and $S \in \mathcal{L}_1$.

THEOREM 1. There exists a spinor representation of the group $O_r(2^{\infty})$ by bounded operators in $\Delta(H)$. The representation is defined by (1) on the matrices $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ for which A^{-1} exists.

3. A large spinor representation. Let $f \in \Lambda(H)$, $f = (f_0, f_1, \ldots)$, where $f_k \in \Lambda^k H$. We consider in $\Lambda(H)$ the subspace Λ of all elements for which $||f_j||$ decreases faster than any function of the form e^{-C_j} . A collection of seminorms on Λ is introduced in the obvious way, with respect to which it is a Fréchet space.

THEOREM 2. Formula (1) above gives a well-defined representation of $(O(2^{\infty}, \mathbb{C}), \operatorname{GL}(\infty, \mathbb{C}))$ by continuous operators in the space Λ .

PROOF. a) The space Λ is invariant under any operator T of a linear change of variables and also operators of the form

$$Pf = \exp\left(\sum p_{ij}\xi_i\xi_j\right)f, \qquad Qf = \exp\left(\sum q_{ij}\frac{\partial^2}{\partial\xi_i\partial\xi_j}\right)f,$$

where $\sum |p_{ij}|^2 < \infty$ and $\sum |q_{ij}|^2 < \infty$.

b) We apply a local Iwasawa decomposition in $(O(2^{\infty}, \mathbb{C}), \operatorname{GL}(\infty, \mathbb{C}))$ with respect to $\operatorname{GL}(\infty, \mathbb{C})$ to an operator of the form 1 + T, where $T \in \mathcal{L}_2$ and ||T|| is small. Then $\rho(1+T)$ can be represented as a product of operators of the form Q, T, and P.

c) $GL(\infty)$ acts on Λ by linear changes of variables.

d) Let $H = \mathbb{C}^n \oplus L$. Then $\Lambda(H) = \Lambda(\mathbb{C}^n) \otimes \Lambda(L)$. This defines an action of $O(n, \mathbb{C})$ in Λ .

e) The compatibility of b), c), and d) and the fact that the representation on the matrices for which A^{-1} does not exist is well-defined can be verified by the induced action on the creation and annihilation operators.

PROOF OF THEOREM 1. It is necessary to use a polar decomposition for operators of the form 1+S, $S \in \mathcal{L}_1$. Then the question of the boundedness of $\rho(1+S)$ reduces to normal operators, for which the spectrum can be explicitly computed.

4. The Virasoro algebra. Let Diff be the group of diffeomorphisms of a circle and V the Virasoro algebra (see, for example, [5], [7], or [8]).

THEOREM 3. Any irreducible representation of V with highest weight (not necessarily unitarizable) can be integrated to a continuous projective representation of Diff in some locally convex space.

For the proof it is enough to verify the following assertions:

a) Suppose that the universal covering Diff[~] of the group Diff is realized as the group of diffeomorphisms of **R** that satisfy the condition $q(x + 2\pi) = q(x) + 2\pi$. Let H_{α} ($\alpha \in \mathbf{C}$, $0 \leq \operatorname{Re} \alpha \leq 1$) be the space of functions on **R** that satisfy the condition $q(x + 2\pi) = e^{2\pi i \alpha}q(x)$. An inner product in H_{α} is introduced by the formula $\int_{0}^{2\pi} f \bar{g} dx$. Suppose that Diff[~] acts in H_{α} by the formula ($\omega \in \mathbf{C}$)

$$T(q)f(x) = f(q(x))q'(x)^{1/2+\omega}.$$

Suppose that $H_{\alpha,n}^+ \subset H_{\alpha}$ is spanned by the vectors $e^{i(k+\alpha)\varphi}$, $k \geq n$, and $H_{\alpha,n}^-$ by the vectors $e^{i(k+\alpha)\varphi}$, k < n. Then

$$T(q) \in (\mathrm{GL}(2^{\infty}, \mathbf{C}), \ \mathrm{GL}(\infty, \mathbf{C}) \times \mathrm{GL}(\infty, \mathbf{C}))$$

(the subgroup $\operatorname{GL}(\infty, \mathbb{C}) \times \operatorname{GL}(\infty, \mathbb{C})$ consists of matrices that preserve the subspaces $H_{\alpha,n}^{\pm}$).

b) We denote by $L_{\alpha,n}^+$ the space $H_{\alpha,n}^+$ with a complex conjugate structure. Then the identity mapping $H_{\alpha} \to H_{\alpha,n}^- \oplus L_{\alpha,n}^+$ defines an imbedding of $(GL(2^{\infty}, \mathbb{C}), GL(\infty, \mathbb{C}) \times GL(\infty, \mathbb{C}))$ into $(O(2^{\infty}, \mathbb{C}), GL(\infty, \mathbb{C}))$ (see also [2]).

c) Restricting the spinor representation to Diff[~], we obtain a series $A(\alpha, \omega, n)$ of representations of V. All the irreducible representations of V with highest weight are contained among its subfactors.

d) Each Diff-subrepresentation in $A(\alpha, \omega, n)$ is the closure of the set of its finitary vectors.

5. Affine algebras. Let G be a complex Lie group, \mathfrak{G} its Lie algebra, and K a maximal compact subgroup. The standard construction for imbedding $C^{\infty}(S^1, \mathrm{SO}(n))$ into $(\mathrm{O}(2^{\infty}, \mathbb{R}), \mathrm{U}(\infty))$ (Vershik, Frenkel, and Ismagilov; see, for example, [4]) can be continued to an imbedding of $C^{\infty}(S^1, \mathrm{SO}(n, \mathbb{C}))$ into $(\mathrm{O}(2^{\infty}, \mathbb{C}), \mathrm{GL}(\infty))$. The next theorem follows from this.

THEOREM 4. A basis representation of the affine algebra $C^{\infty}(S^1, \mathfrak{G})$ can be integrated to a projective representation of $C^{\infty}(S^1, G)$ that is unitary on $C^{\infty}(S^1, K)$.

In the case of the series $C^{\infty}(S^1, \mathfrak{sl}(n, \mathbb{C}))$ integrability follows for all representations with highest weight.

6. REMARK 1. For a Weyl representation of the group $\text{Sp}_0 = (\text{Sp}(2^{\infty}, \mathbf{R}), U(\infty))$ the analogs of Theorems 1 and 2 are false. However, the standard representation of the group $\text{Sp}_0 \ltimes H$, where H is an infinite-dimensional Heisenberg group, can be continued holomorphically to a representation of $\text{Sp}_0 \ltimes H_C$ by unbounded operators in Fock's space. We consider the standard holomorphic realization of Fock's boson space (see [1]). Then $\text{Sp}_0 \ltimes H_C$, an invariant dense subset of Ω , forms finitary linear combinations of functions of the form

$$P(z_1, z_2, \ldots) \exp\left(\sum \alpha_i z_i\right) \exp(\langle Az, z \rangle),$$

where P is a homogeneous form in $z_1, z_2, \ldots, \sum |\alpha_i|^2 < \infty$, and A is an antilinear Hilbert-Schmidt operator. $||A|| < \frac{1}{2}$. The author is not aware of any natural topology on Ω . The restriction of our representation to the subgroup $U(\infty) \ltimes H_C$ is continuous in the topology of uniform convergence on balls. REMARK 2. For infinite-dimensional classical groups Theorem 2 has consequences of two types. First, Ol'shanskii's fermion representations (see [2]) of real groups can be continued holomorphically to representations of the corresponding complex groups. Second, any series of fermion representations [2] (for certain groups the construction in [2] is equivalent to the Thoma-Voiculescu-Vershik-Kerov construction of quotient representations; see [3] or [2]) that depends on real parameters can be continued holomorphically to a series of representations (already nonunitary) that depends on a complex parameter. It follows from Remark 1 that the same holomorphic continuations also exist for the "intermediate" representations in [2]. It would be interesting to construct analogs of the limit theorems [3] for these series.

REMARK 3. The subgroups of $O_r(2^{\infty})$ and $(O(2^{\infty}, \mathbb{C}), GL(\infty, \mathbb{C}))$ on which the spinor representation can be chosen to be two-valued are distinguished by the condition that $A - E \in \mathcal{L}_1$ and $D - E \in \mathcal{L}_1$ $(\theta = \pm \sqrt{\det A} \text{ in } (1))$.*

REMARK 4. The representations constructed in Theorems 3 and 4 cannot be realized in a Banach space. For this reason it was assumed that integrability can hold only in the unitary case (on unitary integrability see [5]-[8]).

Moscow Institute of Electronic Machine Construction Received 5/MAY/85

REFERENCES

1. F. A. Berezin, The method of second quantization, "Nauka", Moscow, 1965; English transl., Academic Press, 1966.

2. G. I. Ol'shanskiĭ, Dokl. Akad. Nauk SSSR 269 (1983), 33-36; English transl. in Soviet Math. Dokl. 27 (1983).

3. A. M. Vershik and S. V. Kerov, Dokl. Akad. Nauk SSSR 267 (1982), 272-276; English transl. in Soviet Math. Dokl. 26 (1982).

4. I. B. Frenkel, J. Functional Anal. 44 (1981), 259-327.

5. Yu. A. Neretin, Funktsional. Anal. i Prilozhen. 17 (1983), no. 3, 85–86; English transl. in Functional Anal. Appl. 17 (1983).

6. ____, Candidate's Dissertation, Moscow State Univ., Moscow, 1983. (Russian)

7.* Roe Goodman and Nolan R. Wallach, J. Reine Angew. Math. 347 (1984), 69-133; 352 (1984), 220.

8.* ____, J. Functional Anal. 63 (1985), 299-321.

9. A. M. Vershik, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 123 (1983), 3-35; English transl. in J. Soviet Math. 28 (1985), no. 4.

10. David Shale and W. Forrest Stinespring, J. Math. Mech. 14 (1965), 315-322.

Translated by R. LENET

^{*} Editor's note. The Russian cites preprints of these items.