Global minimization of rational functions using semidefinite programming

Etienne de Klerk†, Dorina Jibetean‡

†Delft University of Technology, ‡CWI, Amsterdam
Rational function minimization

Let \(p, q, p_1, \ldots, p_k \in \mathbb{R}[x_1, \ldots, x_n] \) (polynomials with real coefficients defined on \(\mathbb{R}^n \)) with \(p \) and \(q \) relatively prime.
Rational function minimization

Let \(p, q, p_1, \ldots, p_k \in \mathbb{R}[x_1, \ldots, x_n] \) (polynomials with real coefficients defined on \(\mathbb{R}^n \)) with \(p \) and \(q \) relatively prime. We will consider the optimization problem:

\[
p^* := \inf_{x \in S} \frac{p(x)}{q(x)}
\]

where \(S \) is the \textit{semi-algebraic set} given by

\[
S := \{ x \in \mathbb{R}^n : p_i(x) \geq 0, \ i = 1, \ldots, k \}.
\]
Rational function minimization

Let \(p, q, p_1, \ldots, p_k \in \mathbb{R}[x_1, \ldots, x_n] \) (polynomials with real coefficients defined on \(\mathbb{R}^n \)) with \(p \) and \(q \) relatively prime. We will consider the optimization problem:

\[
p^* := \inf_{x \in S} \frac{p(x)}{q(x)}
\]

where \(S \) is the semi-algebraic set given by

\[
S := \{ x \in \mathbb{R}^n : p_i(x) \geq 0, \ i = 1, \ldots, k \}.
\]

\(p^* \) is not necessarily attained or finite!
Applications

- Least squares approximation of data using rational functions (least squares Padé approximation);
Applications

- Least squares approximation of data using rational functions (least squares Padé approximation);
Applications

- Least squares approximation of data using rational functions (least squares Padé approximation);
- stability analysis of certain dynamical systems, including biochemical reactor models.
Possible approaches

- If the infimum is attained one can solve the first order optimality condition equations. Modern review: B. Sturmfels, *Solving Systems of Polynomial Equations*, AMS, 2002. If the inf is not attained ...
Possible approaches

- If the infimum is attained one can solve the first order optimality condition equations. Modern review: B. Sturmfels, *Solving Systems of Polynomial Equations*, AMS, 2002. If the inf is not attained ...

- Global optimization codes — can converge to local minima.
Possible approaches

• If the infimum is attained one can solve the first order optimality condition equations. Modern review: B. Sturmfels, *Solving Systems of Polynomial Equations*, AMS, 2002. If the inf is not attained ...

• Global optimization codes — can converge to local minima.

• Today’s talk: approaches involving semidefinite programming (SDP).
What is SDP?

SDP is a generalization of LP and interior point algorithms for LP can be extended to SDP.
What is SDP?

SDP is a generalization of LP and interior point algorithms for LP can be extended to SDP.

\[
\inf_{\mathbf{x}_{ij}} \sum_{i,j=1}^{n} c_{ij} x_{ij}
\]
What is SDP?

SDP is a generalization of LP and interior point algorithms for LP can be extended to SDP.

\[
\begin{align*}
\inf_{x_{ij}} & \sum_{i,j=1}^{n} c_{ij} x_{ij} \\
\text{subject to} & \sum_{i,j=1}^{n} a_{ij}^{(k)} x_{ij} = b_k \quad \forall \ k = 1, \ldots, m,
\end{align*}
\]
What is SDP?

SDP is a generalization of LP and interior point algorithms for LP can be extended to SDP.

\[
\inf_{\begin{bmatrix} x_{ij} \end{bmatrix}} \sum_{i,j=1}^{n} c_{ij} x_{ij}
\]

subject to \(\sum_{i,j=1}^{n} a^{(k)}_{ij} x_{ij} = b_k \quad \forall \ k = 1, \ldots, m, \)

\(X := [x_{ij}] \succeq 0 \) (p.s.d.)
What is SDP?

SDP is a generalization of LP and interior point algorithms for LP can be extended to SDP.

\[
\inf_{[x_{ij}]} \sum_{i,j=1}^{n} c_{ij} x_{ij}
\]

subject to
\[
\sum_{i,j=1}^{n} a_{ij}^{(k)} x_{ij} = b_k \quad \forall \ k = 1, \ldots, m,
\]

\[
X := [x_{ij}] \succeq 0 \text{ (p.s.d.)}
\]

If the data matrices diagonal \Rightarrow LP
Different cases

We investigate SDP-based approaches for the following cases of \(\inf_{x \in S} p(x)/q(x) \):

- \(S = \mathbb{R}^n \) and \(n = 1 \) (Unconstrained minimization: univariate case);
Different cases

We investigate SDP-based approaches for the following cases of $\inf_{x \in S} \frac{p(x)}{q(x)}$:

- $S = \mathbb{R}^n$ and $n = 1$ (Unconstrained minimization: univariate case);
- $S = \mathbb{R}^n$ and general n (Unconstrained minimization: general case);
Different cases

We investigate SDP-based approaches for the following cases of $\inf_{x \in S} p(x)/q(x)$:

- $S = \mathbb{R}^n$ and $n = 1$ (Unconstrained minimization: univariate case);
- $S = \mathbb{R}^n$ and general n (Unconstrained minimization: general case);
- S is compact, connected and general n (Constrained case);
Unconstrained case

Consider the unconstrained problem.

\[p^* := \inf_{x \in \mathbb{R}^n} \frac{p(x)}{q(x)} \]

\[= \sup \left\{ \rho : \frac{p(x)}{q(x)} - \rho \geq 0 \quad \forall x \in \mathbb{R}^n \right\} \]
Unconstrained case

Consider the unconstrained problem.

\[p^* := \inf_{x \in \mathbb{R}^n} \frac{p(x)}{q(x)} \]

\[= \sup \left\{ \rho : \frac{p(x)}{q(x)} - \rho \geq 0 \; \forall x \in \mathbb{R}^n \right\} \]

We can replace the nonnegativity condition by a simpler one ...
Unconstrained case (ctd)

Theorem (Jibetean) Assume $p^* > -\infty$. Then q does not change sign on \mathbb{R}^n.

This leads us to the theory of nonnegative polynomials.
Theorem (Jibetean) Assume $p^* > -\infty$. Then q does not change sign on \mathbb{R}^n. Assuming $q(x) \geq 0$ on S one has:

$$\frac{p(x)}{q(x)} - \rho \geq 0 \quad \forall x \in \mathbb{R}^n$$

iff

$$p(x) - \rho q(x) \geq 0 \quad \forall x \in \mathbb{R}^n.$$
Unconstrained case (ctd)

Theorem (Jibetean) Assume $p^* > -\infty$. Then q does not change sign on \mathbb{R}^n. Assuming $q(x) \geq 0$ on S one has:

$$\frac{p(x)}{q(x)} - \rho \geq 0 \quad \forall x \in \mathbb{R}^n$$

iff

$$p(x) - \rho q(x) \geq 0 \quad \forall x \in \mathbb{R}^n.$$

Unconstrained case (ctd)

Theorem (Jibetean) Assume $p^* > -\infty$. Then q does not change sign on \mathbb{R}^n. Assuming $q(x) \geq 0$ on S one has:

$$\frac{p(x)}{q(x)} - \rho \geq 0 \quad \forall x \in \mathbb{R}^n$$

iff

$$p(x) - \rho q(x) \geq 0 \quad \forall x \in \mathbb{R}^n.$$

This leads us to the theory of nonnegative polynomials.
Nonnegativity vs SOS

Let $p \in \mathbb{R}[x_1, \ldots, x_n]$.
Nonnegativity vs SOS

Let \(p \in \mathbb{R}[x_1, \ldots, x_n] \).

\(p \) is called a \textit{sum of squares} (SOS) if there exist polynomials \(p_i \) such that \(p = \sum_i p_i^2 \).

Nonnegativity and sum of squares are the same if:

- \(n = 1 \) (univariate polynomials) (result by Markov);
- \(d = 2 \) (quadratic polynomials on \(n \) variables);
- \(n = 2 \) and \(d \leq 4 \) (bivariate polynomials of degree at most 4) (result by Hilbert);

In all other cases counterexamples exist.
Nonnegativity vs SOS

Let $p \in \mathbb{R}[x_1, \ldots, x_n]$.

p is called a sum of squares (SOS) if there exist polynomials p_i such that $p = \sum_i p_i^2$.

Nonnegativity and sum of squares are the same if:

- $n = 1$ (univariate polynomials) (result by Markov);
- $d = 2$ (quadratic polynomials on n variables);
- $n = 2$ and $d \leq 4$ (bivariate polynomials of degree at most 4) (result by Hilbert);
- In all other cases counterexamples exist.
Nonnegativity vs SOS

Let $p \in \mathbb{R}[x_1, \ldots, x_n]$.

p is called a *sum of squares* (SOS) if there exist polynomials p_i such that $p = \sum_i p_i^2$.

Nonnegativity and *sum of squares* are the same if:

- $n = 1$ (univariate polynomials) (result by Markov?);
Nonnegativity vs SOS

Let $p \in \mathbb{R}[x_1, \ldots, x_n]$.

p is called a sum of squares (SOS) if there exist polynomials p_i such that $p = \sum_i p_i^2$.

Nonnegativity and sum of squares are the same if:

- $n = 1$ (univariate polynomials) (result by Markov);
- $d = 2$ (quadratic polynomials on n variables) (result by Hilbert);

In all other cases counterexamples exist.
Nonnegativity vs SOS

Let $p \in \mathbb{R}[x_1, \ldots, x_n]$.

p is called a *sum of squares* (SOS) if there exist polynomials p_i such that $p = \sum_i p_i^2$.

Nonnegativity and *sum of squares* are the same if:

- $n = 1$ (univariate polynomials) (result by Markov?);
- $d = 2$ (quadratic polynomials on n variables);
- $n = 2$ and $d \leq 4$ (bivariate polynomials of degree at most 4) (result by Hilbert);
Nonnegativity vs SOS

Let $p \in \mathbb{R}[x_1, \ldots, x_n]$.

p is called a sum of squares (SOS) if there exist polynomials p_i such that $p = \sum_i p_i^2$.

Nonnegativity and sum of squares are the same if:

- $n = 1$ (univariate polynomials) (result by Markov);
- $d = 2$ (quadratic polynomials on n variables);
- $n = 2$ and $d \leq 4$ (bivariate polynomials of degree at most 4) (result by Hilbert);

In all other cases counterexamples exist.
The sum of squares cone

We fix a basis of monomials

\[\tilde{x}_{n,d} := (1, x_1, \ldots, x_n, x_1^2, \ldots, x_n^d) \quad \text{dim:} \binom{n + d}{d}. \]
The sum of squares cone

We fix a basis of monomials

\[\tilde{x}_{n,d} := (1, x_1, \ldots, x_n, x_1^2, \ldots, x_n^d) \quad \text{dim:} \binom{n + d}{d}. \]

Notation: We denote the convex cone generated by squares of polynomials on \(\mathbb{R}^n \) of degree at most \(d \) by \(\Sigma_{n,2d}^2 \) (**sum-of-squares (SOS) cone**).
The sum of squares cone

We fix a basis of monomials

$$\tilde{x}_{n,d} := (1, x_1, \ldots, x_n, x_1^2, \ldots, x_n^d) \quad \text{dim:} \binom{n + d}{d}.$$

Notation: We denote the convex cone generated by squares of polynomials on \mathbb{R}^n of degree at most d by $\Sigma_{n,2d}^2$ (sum-of-squares (SOS) cone).

(We drop the subscripts when they are clear from the context.)
The sum of squares cone (cdt.)

Theorem: For a given $f \in \mathbb{R}[x_1, \ldots, x_n]$ of degree $2d$, one has $f \in \Sigma_{n,2d}$ iff

$$f = \tilde{x}_{n,d}^T M \tilde{x}_{n,d}$$

for some $M \succeq 0$ (size $(n+d)^d \times (n+d)^d)$.
The sum of squares cone (cdt.)

Theorem: For a given \(f \in \mathbb{R}[x_1, \ldots, x_n] \) of degree \(2d \), one has \(f \in \Sigma_{n,2d}^2 \) iff

\[
f = \tilde{x}_{n,d}^T M \tilde{x}_{n,d}
\]

for some \(M \succeq 0 \) (size \(\binom{n+d}{d} \times \binom{n+d}{d} \)).

Implication: Conic linear optimization over the cone \(\Sigma_{n,d}^2 \) can be done using *semidefinite programming* (SDP);
The sum of squares cone (cdt.)

Theorem: For a given \(f \in \mathbb{R}[x_1, \ldots, x_n] \) of degree \(2d \), one has \(f \in \Sigma_{n,2d}^2 \) iff

\[
f = \tilde{x}_{n,d}^T M \tilde{x}_{n,d}
\]

for some \(M \succeq 0 \) (size \(\binom{n+d}{d} \times \binom{n+d}{d} \)).

Implication: Conic linear optimization over the cone \(\Sigma_{n,d}^2 \) can be done using *semidefinite programming* (SDP);

Unconstrained univariate case

If q is nonnegative on \mathbb{R}, then

$$\inf_{x \in \mathbb{R}} \frac{p(x)}{q(x)} = \sup_{t,x} \left\{ t : p(x) - tq(x) \geq 0 \ \forall x \in \mathbb{R} \right\}$$

$$= \sup_{t,x} \left\{ t : p(x) - tq(x) \in \Sigma^2 \right\}$$

$$= \sup_{t,x} \left\{ t : p(x) - tq(x) = \tilde{x}^T M \tilde{x} \right\}$$

for some $M \succeq 0$, where

$$\tilde{x}^T = [1 \ x \ x^2 \ldots \ x^{\frac{1}{2} \max\{\deg(p),\deg(q)\}}].$$
Unconstrained univariate case

Let $p(x) - tq(x) = \sum_\alpha a_\alpha(t) x^\alpha$. NB: $a_\alpha(t)$ is affine in t.
Unconstrained univariate case

Let $p(x) - tq(x) = \sum_{\alpha} a_\alpha(t)x^\alpha$. NB: $a_\alpha(t)$ is affine in t. Then the optimization problem becomes: maximize t such that

$$a_\alpha(t) = \sum_{i+j=\alpha} M_{ij}, \quad M \succeq 0.$$

This is an SDP problem!
Unconstrained univariate case

Let \(p(x) - tq(x) = \sum_{\alpha} a_{\alpha}(t)x^{\alpha} \). NB: \(a_{\alpha}(t) \) is affine in \(t \). Then the optimization problem becomes: maximize \(t \) such that

\[
a_{\alpha}(t) = \sum_{i+j=\alpha} M_{ij}, \quad M \succeq 0.
\]

This is an SDP problem! (Result already obtained by Nesterov for \(q(x) \equiv 1 \).)

Example

\[
\frac{p(x)}{q(x)} := \frac{x^2 - 2x}{(x + 1)^2}.
\]
Example (ctd)

\[
\frac{p(x)}{q(x)} := \frac{x^2 - 2x}{(x + 1)^2}.
\]
Example (ctd)

\[
p(x) = \frac{x^2 - 2x}{q(x)} = \frac{x^2 - 2x}{(x + 1)^2}.
\]

Equivalent problem: \(\sup t\) such that

\[
(1-t)x^2 - 2(1+t)x - t = \begin{bmatrix} 1 \\ x \end{bmatrix}^T \begin{bmatrix} M_{00} & M_{01} \\ M_{10} & M_{11} \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix},
\]

(2)

for some \(M \succeq 0\).
Example (ctd)

From (2):

\[M_{00} = -t, \quad M_{01} = M_{10} = -(1 + t), \quad M_{11} = 1 - t. \]
Example (ctd)

From (2):

\[M_{00} = -t, \quad M_{01} = M_{10} = -(1 + t), \quad M_{11} = 1 - t. \]

We therefore get

\[
\min_{x \in \mathbb{R}} \frac{p(x)}{q(x)} = \max_{t, M} \frac{p(x)}{q(x)} = \max_t \quad \text{such that}
\]

\[
M = \begin{bmatrix} -t & -(1 + t) \\ -(1 + t) & 1 - t \end{bmatrix} \succeq 0.
\]
Example (ctd)

From (2):

\[M_{00} = -t, \quad M_{01} = M_{10} = -(1 + t), \quad M_{11} = 1 - t. \]

We therefore get

\[
\min_{x \in \mathbb{R}} \frac{p(x)}{q(x)} = \max_{t, M} t
\]

such that

\[
M = \begin{bmatrix}
-t & -(1 + t) \\
-(1 + t) & 1 - t
\end{bmatrix} \succeq 0.
\]

Note that the optimal value is \(p^* = -1/3. \)
Constrained case

Consider a semi-algebraic set

\[S = \{ x \in \mathbb{R}^n : p_i(x) \geq 0 \ (i = 1, \ldots, k) \} . \]
Constrained case

Consider a semi-algebraic set

\[S = \{ x \in \mathbb{R}^n : p_i(x) \geq 0 \ (i = 1, \ldots, k) \} . \]

General constrained problem: find

\[p^* = : \inf_{x \in S} \frac{p(x)}{q(x)} . \]
Constrained case

Consider a *semi-algebraic set*

\[S = \{ x \in \mathbb{R}^n : p_i(x) \geq 0 \ (i = 1, \ldots, k) \} . \]

General constrained problem: find

\[p^* = \inf_{x \in S} \frac{p(x)}{q(x)} . \]

One can treat the *unconstrained multivariate problem* by adding an *artificial constraint* \[\|x\|^2 \leq R \] for some ‘large’ \(R \).
Constrained case

Theorem (Jibetean) Assume that S is open and connected (or the (partial) closure of such a set). If $p^* > -\infty$ then q does not change sign on S.

Assuming $q(x) \geq 0$ on S, then

$$\frac{p(x)}{q(x)} \geq \alpha \ \forall x \in S \iff p(x) - \alpha q(x) \geq 0 \ \forall x \in S.$$
Constrained case

Theorem (Jibetean) Assume that S is open and connected (or the (partial) closure of such a set). If $p^* > -\infty$ then q does not change sign on S. Assuming $q(x) \geq 0$ on S, then

$$\frac{p(x)}{q(x)} \geq \alpha \ \forall x \in S \iff p(x) - \alpha q(x) \geq 0 \ \forall x \in S.$$

Constrained case

Theorem (Jibetean) Assume that S is open and connected (or the (partial) closure of such a set). If $p^* > -\infty$ then q does not change sign on S. Assuming $q(x) \geq 0$ on S, then

$$\frac{p(x)}{q(x)} \geq \alpha \ \forall x \in S \iff p(x) - \alpha q(x) \geq 0 \ \forall x \in S.$$

Consequence

$$\inf_{x \in S} \frac{p(x)}{q(x)} = \sup \{ \rho : p(x) - \rho q(x) \geq 0 \ \forall x \in S \}.$$
Constrained multivariate case

Technical assumption: S is compact and there exists a

$$\bar{p} \in \Sigma^2 + p_1 \Sigma^2 + \ldots + p_k \Sigma^2$$

such that $\{x : \bar{p}(x) \geq 0\}$ is compact.
Constrained multivariate case

Technical assumption: S is compact and there exists a

$$\bar{p} \in \Sigma^2 + p_1 \Sigma^2 + \ldots + p_k \Sigma^2$$

such that $\{x : \bar{p}(x) \geq 0\}$ is compact.

Theorem (Putinar): For a given polynomial p_0 one has $p_0(x) > 0$ for all $x \in S$ iff

$$p_0 \in \Sigma^2 + p_1 \Sigma^2 + \ldots + p_k \Sigma^2.$$
Constrained multivariate case

Technical assumption: S is compact and there exists a

$$
\bar{p} \in \Sigma^2 + p_1 \Sigma^2 + \ldots + p_k \Sigma^2
$$

such that $\{x : \bar{p}(x) \geq 0\}$ is *compact*.

Theorem (Putinar): For a given polynomial p_0 one has $p_0(x) > 0$ for all $x \in S$ iff

$$
p_0 \in \Sigma^2 + p_1 \Sigma^2 + \ldots + p_k \Sigma^2.
$$

Constrained multivariate case

Consider the minimization problem

\[p^* = \inf_{x \in S} \frac{p(x)}{q(x)}. \]
Constrained multivariate case

Consider the minimization problem

\[p^* = \inf_{x \in S} \frac{p(x)}{q(x)}. \]

If \(p \) and \(q \) have no common roots in \(S \), then by Putinar’s and Jibetean’s theorems:

\[p^* = \sup \left\{ \rho : p(x) - \rho q(x) > 0 \; \forall x \in S \right\} \]
\[= \sup \left\{ \rho : (p - \rho q) \in \Sigma^2 + p_1 \Sigma^2 + \ldots + p_k \Sigma^2 \right\} \]
\[\geq \sup \left\{ \rho : (p - \rho q) \in \Sigma_{1,t}^2 + p_1 \Sigma_{1,t}^2 + \ldots + p_k \Sigma_{1,t}^2 \right\} \]
\[:= \rho_t \quad \text{(for any integer } t \geq 1). \]
Constrained multivariate case

We have that $\rho_i \leq \rho_{i+1} \leq p^*$ and – if p and q have no common roots in S –

$$\lim_{{t \to \infty}} \rho_t = p^*.$$
Constrained multivariate case

We have that $\rho_i \leq \rho_{i+1} \leq p^*$ and – if p and q have no common roots in S –

$$\lim_{t \to \infty} \rho_t = p^*.$$

Computation of ρ_t: SDP problem with matrices of size $\binom{n+t}{t} \times \binom{n+t}{t}$ and at most $\max\{\deg(p),\deg(q)\}$ constraints — "polynomial" complexity for $t = O(1)$.
Constrained multivariate case

We have that $\rho_i \leq \rho_{i+1} \leq p^*$ and — if p and q have no common roots in S —

$$\lim_{t \to \infty} \rho_t = p^*.$$

Computation of ρ_t: SDP problem with matrices of size $\binom{n+t}{t} \times \binom{n+t}{t}$ and at most $\max\{\deg(p), \deg(q)\}$ constraints — "polynomial" complexity for $t = O(1)$.

These results by already obtained by Lasserre for $q(x) \equiv 1$ (polynomial objective function).

Unconstrained multivariate case

Return to the unconstrained case

\[
\inf_{x \in \mathbb{R}^n} \frac{p(x)}{q(x)}.
\]
Unconstrained multivariate case

Return to the unconstrained case

$$\inf_{x \in \mathbb{R}^n} \frac{p(x)}{q(x)}.$$

Artificial constraint $\|x\|^2 \leq R$ for some ‘sufficiently large’ R.

Global minimization of rational functions using semidefinite programming – p.22/24
Unconstrained multivariate case

Return to the unconstrained case

\[\inf_{x \in \mathbb{R}^n} \frac{p(x)}{q(x)} . \]

Artificial constraint \(\|x\|^2 \leq R \) for some ‘sufficiently large’ \(R \).

Now we have \(\min_{x \in S} \frac{p(x)}{q(x)} \) where \(S \) is the compact semi-algebraic set

\[S := \left\{ x \in \mathbb{R}^n : R - \|x\|^2 \geq 0 \right\} . \]
Unconstrained multivariate case

Return to the unconstrained case

\[\inf_{x \in \mathbb{R}^n} \frac{p(x)}{q(x)}. \]

Artificial constraint \(\|x\|^2 \leq R \) for some ‘sufficiently large’ \(R \).

Now we have \(\min_{x \in S} \frac{p(x)}{q(x)} \) where \(S \) is the compact semi-algebraic set

\[S := \{ x \in \mathbb{R}^n : R - \|x\|^2 \geq 0 \}. \]

No a priori choice for \(R \) available in general.
Software

- Lasserre’s approach implemented in the software *GloptiPoly*.
Software

- Lasserre’s approach implemented in the software *GloptiPoly*.
- Optimization over Σ^2 implemented in *SOStools* by Parrilo et al.
Software

- Lasserre’s approach implemented in the software *GloptiPoly*.
- Optimization over Σ^2 implemented in *SOSTools* by Parrilo et al.

These are add-on routines for the SDP solver *SeDuMi* by Sturmi.
Software

- Lasserre’s approach implemented in the software *GloptiPoly*.

- Optimization over Σ^2 implemented in *SOStools* by Parrilo et al.

These are add-on routines for the SDP solver *SeDuMi* by Sturm. All freely available via Helmberg’s SDP page:

http://www-user.tu-chemnitz.de/~helmberg/semidef.html
Software

- Lasserre’s approach implemented in the software *GloptiPoly*.
- Optimization over Σ^2 implemented in *SOStools* by Parrilo et al.

These are add-on routines for the SDP solver *SeDuMi* by Sturm. All freely available via Helmberg’s SDP page:

http://www-user.tu-chemnitz.de/~helmberg/semidef.html

GloptiPoly and *SOStools* extremely useful to prove *global optimality* in small problems.
Discussion

- We have extended results by Nesterov, Lasserre and Parrilo to include rational objective functions.
Discussion

- We have extended results by Nesterov, Lasserre and Parrilo to include rational objective functions.

- Techniques from real algebraic geometry available to compute all KKT points, but SDP approach computationally attractive.

Discussion

- We have extended results by Nesterov, Lasserre and Parrilo to include rational objective functions.
- Techniques from real algebraic geometry available to compute all KKT points, but SDP approach computationally attractive.
- SDP approach competitive with state-of-the-art global optimization software.
Discussion

- We have extended results by Nesterov, Lasserre and Parrilo to include rational objective functions.
- Techniques from real algebraic geometry available to compute all KKT points, but SDP approach computationally attractive. See: P. Parrilo and B. Sturmfels. Minimizing polynomial functions, 2001. (Available at arXiv.org e-Print archive)
- SDP approach competitive with state-of-the-art global optimization software.
- Need for large-scale (parallel?) SDP solvers to solve the large SDP relaxations.