
Worst case analysis

of mechanical structures

by interval methods

Arnold Neumaier

(University of Vienna, Austria)

(joint work with Andrzej Pownuk)

Safety

Safety studies in structural engineering are

supposed to guard against failure in all reasonable

situations encountered during the lifetime of a

structure. The uncertainty present in assessing

what is ’reasonable’ has been under discussion

since the dawn of history.

How can we know what will happen to us

when the LORD alone decides? (Proverbs 20:24)

Experience has shown that the LORD decides not

arbitrarily, but in accordance with the laws of

Nature,

Thus one way of knowing what will

happen to us is to compute worst case

bounds on critical response variables,

given time-proven finite element models

together with worst case bounds on the

uncertainties of the input variables.

This leads to finite element calculations

involving interval parameters.

Finite element structural analysis

The finite element analysis of mechanical

structures amounts in many cases to the solution

of a large and sparse linear system with a

symmetric, positive definite coefficient matrix.

Uncertainties in the material parameters or the

execution of a given design result in linear

systems with uncertain coefficients.

However, as Cramer’s rule shows, the

uncertainties enter nonlinearly into the equations.

• FEM equations become nonconvex

when data are uncertain

• Several percent errors in elasticiy

modules, and much larger errors in

forces are not uncommon

• Current safety regulation laws require

worst case analysis

A nonconvex toy problem

−2 −1 0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5
quartic image of nested circles

−2 −1 0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5
quartic image of nested squares

The graphs depict the image of a family of

concentric circles and squares (indicating

increasing amounts of uncertainty) under the

harmless looking function y = F (x) defined by

only two nonlinear operations (squaring),

u = x2 − x2
1, z1 = cx1 − su, z2 = sx1 + cu,

v = z2 − z2
1 , y1 = cz1 − sv, y2 = sz1 + cv,

for c = 0.4, s =
√

1− c2.

Typical finite element computations are

far more complex.

Large uncertainties imply large nonlinearities and

require new methods.

• Monte Carlo techniques underestimate worst

case

• Monotonicity-based methods underestimate

worst case

• Local optimization methods underestimate

worst case

• ⇒ interval analysis, global optimization

The goal verification problem

A goal verification problem is the quest for

verifying that for all parameter combinations in

some feasible region, a family of constraints are

satisfied, or exhibiting a feasible parameter

combination for which some constraint is violated.

In many applications involving the design

of a structure, a factory, or a machine, it

is important that certain goals are met

under a variety of conditions that cannot

be known in advance.

Violating the goals may mean physical

danger (risk of failure, often

life-threatening) or financial danger (loss

of money).

Generally, these conditions determining

the goal can be specified in terms of a

vector x of parameters whose components

are unknown.

If x is known to lie in a box x = [x, x], and

all choices of x ∈ C are meaningful

scenarios, a deterministic worst case

analysis is appropriate.

Given the conditions x, the goals are assumed to

be expressible in the form of vector constraints

F (x) ∈ int F for all x ∈ x, (1)

where F is a vector-valued function, int F is an

open box of acceptable values of F , and int

denotes the interior.

We call (1) the safety constraint(s) since, in the

majority of applications, their satisfaction implies

that it is safe (for both the designing and the

using party) to build and use the structure,

factory, or machine, while violation of (1) implies

potential danger.

The goal verification problem is to show that

F (x) ∈ int F for all x ∈ x, (2)

or find a counterexample.

The fact that there are infinitely many constraints

in (2) makes the problem hard and nonstandard.

Past practice is to check (2) only for a number of

randomly or systematically generated sample

cases.

This makes it quite possible that the worst case is

overlooked. For safety critical applications, a

complete search seems imperative, though it is

usually regarded as infeasible to do.

Condition (2) is equivalent to checking that the

range of F over the box x is contained in the

interior of F. In principle, this can be checked by

a computation of the range. Using interval

analysis, one can often get fairly cheaply

enclosures for the range.

However, the wrapping effect produces often

overly pessimistic enclosures.

Moreover, if the computation of F (x) involves the

solution of linear systems (as in finite element

applications), the enclosure algorithms may even

fail completely due to overestimation in

intermediate results.

Linear systems with uncertain coefficients

We consider the uncertain linear system

B(x)u(x) = b(x),

where the coefficient matrix B(x) and/or the right

hand side b(x) depend on a parameter vector

x ∈ x.

For simplicity, we assume a single safety

constraint, expressed in terms of the displacement

vector u(x),

F (x, u(x)) < 0.

Centered form approach

To solve B(x)u(x) = b(x), we choose a center x0 and

write x = x0 + s, s ∈ s = x− x0.

For an arbitrary preconditioning matrix J, we

compute enclosures

JB(x0 +Ds) ∈ B0 + D
∑

Blsl for all s ∈ s,

Jb(x0 +Ds) ∈ b0 + D
∑

blsl for all s ∈ s,

{u0 | B0u0 ∈ b0 for some B0 ∈ B0} ⊆ u0.

If an interval enclosure
(
B0 + D

∑
Blsl

)−1

⊆ S

exists and

X := S[b1 −B1u0, . . . ,bn −Bnu0],

then

u(x) ∈ u0 + X(x− x0) for all x ∈ x.

This can be used to check the safety constraint

F (x, u(x)) < 0 by another centered form.

This works well if uncertainties are only in the

right hand side (Muhanna & McMullen), but not

for uncertainties in the coefficient matrix.

A counterexample

B(x) =
1

2

0
@ x1 + x2 x1 − x2

x1 − x2 x1 + x2

1
A, x ∈ x =

0
@ [0.5, 1.5]

[0.5, 1.5]

1
A

With x0 = mid x =
ą

1
1

ć
, we have

s =

0
@ [−0.5, 0.5]

[−0.5, 0.5]

1
A, J = B(x0)−1 = I,

B0 =

0
@ 1 0

0 1

1
A, B1 =

0
@ 0.5 0.5

0.5 0.5

1
A, B2 =

0
@ 0.5 −0.5

−0.5 0.5

1
A,

B0 + B1s1 + B2s2 =

0
@ [0.5, 1.5] [−0.5, 0.5]

[−0.5, 0.5] [0.5, 1.5]

1
A

contains the singular matrix

0
@ 0.5 0.5

0.5 0.5

1
A although

detB(x) = x1x2 > 0 for all x ∈ x.

In higher dimensions, the same problem

tends to appear already for much smaller

uncertainties.

Finite element applications therefore call

for a modified approach, which exploits

the special form of the finite element

equations.

Representing FEM matrices

In many finite element problems, the only

uncertainty in the coefficient matrix is in the

element stiffness coefficients xl.

(Additional uncertainty in the forces

= right hand sides is allowed, too.)

For example, in a truss structure,

xl = Elal/Ll > 0

where l is the element index, El the Young

modulus describing material properties of the lth

bar, al its cross section area and Ll its length.

In general, the coefficient matrix depends both on

the element stiffness coefficients and on lengths

and angles, but if the geometry is assumed fixed

then the dependence takes a simple form:

B(x) =
m∑

l=1

xlA
T
l Al (3)

with extremely sparse matrices Al with few rows.

An important special case is where each Al has a

single row only. This is the case for truss

structures, but not for beams and more complex

elements.

In the case of truss structures, we may rewrite (3)

as

B(x) = ATD(x)A,

where

A =

A1

...

Am

 , D(x) = Diag(x1, . . . , xm).

A is a sparse rectangular matrix, and D(x)

diagonal with positive diagonal entries.

Unfortunately, even this special form of B(x) is

not enough to make the traditional methods

work. The example

(
x1 + x2 x2

x2 x1 + x2

)
u =

(
60

61

)
, x ∈

(
[1− δ, 1 + δ]

[5− δ, 5 + δ]

)
,

has a coefficient matrix of the form KATD(x)A

with diagonal D(x) with positive diagonal entries,

although not constructed from finite elements.

We display the boundaries of the solution set for

δ = 0.05, 0.1, 0.15, 0.2, 0.25

4.7 4.8 4.9 5 5.1 5.2 5.3
5.4

5.6

5.8

6

6.2

6.4

6.6

The monotonicity method and the vertex

sensitivity method fail to find the

maximum of u1 since the maximizer is

not a corner.

A local optimization may get stuck in the

nonglobal minimum. when trying to

minimize u1.

Similar problems can be seen in

(higher-dimensional) finite element

problems.

However, coefficient matrices of the form

ATD(x)A allow one to iteratively improve

the centered form, leading to excellent

interval enclosures.

We consider more generally uncertain

linear systems of the form

(K +BDA)u = a+ Fb,

with uncertainties in D and b only.

Main Theorem

Let D0 ∈ Rn×n be such that C := (K +BD0A)−1 exists, and

put d = (D0 −D)v, where v = Au. If there are vectors w ≥ 0,

w′ > 0 and w′′ such that

w′ ≤ w − |D0 −D||ACB|w, w′′ ≥ |D0 −D||ACa+ACFb|,

then

d ∈ d := [−αw,αw], α = max
i

w′′i
w′i
, (4)

and the solution u of (K +BDA)u = a+ Fb is related to v

and d by the equations

u = Ca+ CFb+ CBd, (5)

v = ACa+ACFb+ACBd. (6)

Proof of (5)–(6):

Since d = (D0 −D)v, and (K +BDA)u = a+ Fb,

equation u = Ca+ CFb+ CBd follows from

CBd = CB(D0 −D)Au

= C(K +BD0A)u− C(K +BDA)u

= u− C(a+ Fb).

Multiplication with A gives

v = Au = ACa+ ACFb+ ACBd.

Proof of (4):

Put β = maxi |di|/wi, so that |d| ≤ βw,

with equality in some component i.

The definition of α = maxi
w′′i
w′i

implies w′′ ≤ αw′, hence

|d| = |(D0 −D)(ACa+ACFb+ACBd)|
≤ |D0 −D||ACa+ACFb|+ |D0 −D||ACB|βw
≤ w′′ + β(w − w′) ≤ αw′ + β(w − w′).

Thus βwi = |di| ≤ αw′i + β(wi − w′i), hence βw′i ≤ αw′i.
Since w′ > 0, we conclude that β ≤ α, and the desired

conclusion d ∈ d := [−αw,αw] follows.

We now assume

D ∈ D, b ∈ b

as interval bounds for the data uncertainties.

If we take D0 = mid D and w as the all-one vector then

w′ := w − |D0 −D||ACB|w, w′′ := |D0 −D||ACa+ACFb|,

are small and satisfy the required conditions if w′ > 0

(which is a very moderate condition).

By the theorem, d ∈ d := [−αw,αw], a narrow box.

Using the formulas of the theorem one gets narrow

enclosures u for u, v for v and a generally improved

enclosure for d.

The enclosures can be further improved by iterating this

and intersecting with the previously computed enclosures.

To get realistic bounds on quantities z = Z(u)

(such as safety constraints) dependent linearly or

nonlinearly on the solution u of the uncertain

linear system, one should intersect the simple

enclosure z = Z(u) with the enclosure obtained

from the centered form

z′ = Z(CF mid b) + (SCF)(b−mid b) + (SCB)d,

where S = Z[mid u,u] is a slope matrix for Z.

We implemented a Matlab interface to the

ANSYS finite element modeling system.

The set of ANSYS commands which describe a

particular truss structure can be created by using

a standard ANSYS GUI.

Then, using the algorithm presented here it is

possible to calculate the interval solution.

Finally it is possible to plot the interval solution

in the ANSYS GUI.

The following calculations were done in

Matlab, using the Intlab package of Rump

for the interval calculations.

The computer used was an AMD Athlon

MP 2000+ with a 1680 MHz CPU and

3GB memory, running under LINUX.

10-bay 10-floor truss structure used in work by

Muhanna & Mullen

Test case: 10-bay 10-floor truss

• 230 equations

(FEM equations for displacements of 121

nodes)

• 420 two-sided bound constraints

(stiffness uncertainties, one per element)

• total of 650 variables

(230 linear and 420 nonlinear ones)

• stiffness uncertainty α = 5%

α defines search region

Sizes increase proportional to the number of bays

and to the number of floors.

The monotonicity method is too slow

(exponential amount of work).

The vertex sensitivity, although faster and

sharper than Monte Carlo methods,

underestimates the worst case.

The monotonicity assumption is no longer valid

at the specified range of uncertainty (already for

the 5× 5 grid).

Traditional interval methods already fails for tiny

search regions (uncertainty of α = 0.1%).

The relative uncertainty in the stiffness (diagonal

entries of D) is varied to be able to assess the

degradation of the bounds as the uncertainty

increases.

The following table lists the widths of the

enclosures of the displacements in horizontal (ux)

and vertical (uy) direction of the upper right

corner, and compares it with the widths u′x and u′y
of the enclosure obtained by the

element-by-element method of Muhanna &

Mullen.

uncertainty 1% 2% 3% 4% 5%

wid u′x 0.301 0.744 1.423 2.521 4.457

wid ux 0.254 0.516 0.788 1.070 1.362

wid u′y 0.168 0.438 0.879 1.638 3.045

wid uy 0.136 0.278 0.425 0.578 0.737

With increasing uncertainty, our bounds are

increasingly better than those from the

element-by-element method.

The times for the computation of the enclosures

of all components of the solution were 20–25

times the time needed for the computation of the

solution with the midpoint stiffness coefficients.

This compares very favorably with Monte Carlo

simulations, the monotonicity method and the

vertex sensitivity method, although all these only

give inner enclosures of the solution set.

For smaller examples where it was feasible to run

the vertex sensitivity method, the comparison of

the resulting inner enclosure with our outer

enclosure shows that for the range of

uncertainties considered here, our bounds are

optimal within a few percent of the width.

To see how work and results scale with dimension

and uncertainty, we consider a n-bay n-floor truss

with variable n, with the same other

specifications as in the previous example.

truss size n× n, n = 10 20 30 40 50 60

number of rows of A 420 1640 3660 6480 10050 14520

number of columns of A 230 860 1890 3320 5150 7380

For n = 60, the memory capacity (about 1GB of

free memory) of Matlab, with which we did our

tests, was insufficient to store the dense matrix

ACAT (with 145202 ≈ 2.1 · 108 entries) needed in the

iteration for our bounds.

n = 10, uncertainty 1% 5% 10% 15% 20% 25%

ux 22.02 21.46 20.64 19.60 18.21 16.13

ux 22.28 22.83 23.66 24.70 26.08 28.17

CPU time 0.19 0.22 0.25 0.28 0.28 0.28

time ratio 21 25 29 32 32 32

n = 20, uncertainty 1% 5% 10% 15% 20% 25%

ux 51.40 50.09 48.05 45.27 40.61 27.55

ux 52.00 53.31 55.35 58.13 62.80 75.85

CPU time 3.94 4.56 4.98 5.15 5.13 5.16

time ratio 86 102 110 114 114 114

n = 30, uncertainty 1% 5% 10% 15% 20% 25%

ux 83.81 81.66 78.22 73.13 61.08 −0.69

ux 84.78 86.93 90.37 95.46 107.51 169.28

CPU time 42.90 44.98 47.67 47.78 47.61 47.81

time ratio 358 379 397 403 402 402

n = 40, uncertainty 1% 5% 10% 15% 20% 25%

ux 118.20 115.16 110.18 102.07 73.22 −136.94

ux 119.56 122.60 127.59 135.69 164.54 374.71

CPU time 2m:55 3m:04 3m:09 3m:09 3m:09 3m:09

time ratio 663 704 728 723 730 738

n = 50, uncertainty 1% 5% 10% 15% 20% 25%

ux 231.98 226.39 217.63 202.90 127.98 −522.85

ux 234.52 240.11 248.87 263.59 338.51 989.35

CPU time 9m:18 8m:56 9m:13 9m:09 9m:10 9m:10

time ratio 1280 1115 1154 1151 1143 1120

In the table, lower and upper bounds are outward

rounded. CPU times are given in seconds or

minutes : seconds.

The time ratio (significant only in the leading

digits, due to random variations under repetition)

indicates the number of trial point evaluations

(using the direct sparse linear solver of Matlab)

that can be made in the same time.

As can be seen, it is much smaller than the

dimensions of the problem, leading to a time

advantage over all current methods for

approximate worst case analysis.

For uncertainties up to about 15%, the enclosures

are of high quality.

On the other hand, one can see that the

enclosures get wider as either the problem size or

the uncertainty get larger.

In extremal cases (25% uncertainty for n ≥ 30),

not even the sign of the displacement is

guaranteed, probably an artifact of the method

caused by overestimation of the worst case.

Conclusion

The new method gives fast, reliable and accurate

worst case bounds for uncertain linear systems.

The method scales without difficulties to

high-dimensional problems, hence appear to be

suitable for many previously untractable instances

of worst case analysis in structural engineering.

The method works not only for truss structures

but applies apply to all kinds of finite element

equations. Applications to other mechanical

structures are in preparation.

Further details can be found in the

manuscript

A. Neumaier and A. Pownuk, Linear

systems with large uncertainties, with

applications to truss structures, 2004

A preprint is available from

http://www.mat.univie.ac.at/∼neum/papers.html#linunc

