
Complete Search

in Continuous Global Optimization

and Constraint Satisfaction

Arnold Neumaier

Institut für Mathematik, Universität Wien
Strudlhofgasse 4, A-1090 Wien, Austria
email: Arnold.Neumaier@univie.ac.at

WWW: http://www.mat.univie.ac.at/∼neum/

November 28, 2003

A chapter for

Acta Numerica 2004 (A. Iserles, ed.), Cambridge University Press 2004.

Abstract. This survey covers the state of the art of techniques for solving general purpose con-
strained global optimization problems and continuous constraint satisfaction problems, with em-
phasis on complete techniques that provably find all solutions (if there are finitely many). The core
of the material is presented in sufficient detail that the survey may serve as a text for teaching
constrained global optimization.

After motivation for and important examples of applications of global optimization, a precise prob-
lem definition is given, and a general form of the traditional first order necessary conditions for a
solution. Then more than a dozen software packages for complete global search are described.

A quick review of incomplete methods for bound constrained problems and recipes for their use
in the constrained case follows, an explicit example is discussed, introducing the main techniques
used within branch and bound techniques. Sections on interval arithmetic, constrained propagation
and local optimization are followed by a discussion of how to avoid the cluster problem. Then
a discussion of important problem transformations follows, in particular of linear, convex, and
semilinear (= mixed integer linear) relaxations that are important for handling larger problems.

Next, reliability issues – centering around rounding error handling and testing methodology –

are discussed, and the COCONUT framework for the integration of the different techniques is

introduced. A list of challenges facing the field in the near future concludes the survey.

1

Contents

1 Introduction 3

2 Why global optimization? 7

3 Basic ideas 9

4 Problem formulation 11

5 First order optimality conditions 13

6 Software for complete global optimization 16

7 Incomplete methods for simple constraints 19

8 Bound constrained approximation 22

9 Pure branching methods 25

10 Box reduction – an example 27

11 Interval arithmetic 29

12 The branch and bound principle 33

13 The role of local optimization 36

14 Constraint propagation 38

15 The cluster problem and second-order information 43

16 Linear and convex relaxations 47

17 Semilinear constraints and MILP 52

18 Semilinear relaxations 58

2

19 Other problem transformations 61

20 Rigorous verification and certificates 63

21 Test problems and testing 65

22 The COCONUT environment 67

23 Challenges for the near future 68

References 70

1 Introduction

Consider everything. Keep what is good. Avoid evil
whenever you recognize it.
St. Paul, ca. 50 A.D. (The Bible, 1 Thess. 5:21–22)

Early history. As the above quote shows, continuous global optimization or constraint
satisfaction and the associated global search methods are since antiquity part of the art of
successful living. In the mathematical literature published before 1975, there are occasional
references related to the topic, few and important enough to mention them individually.
(Please inform me about other significant work on continuous global optimization published
before 1975 not mentioned here!) Several independent strands of work (probably done in
ignorance of each other) are discernible:

• Markowitz & Manne [213] in 1957, and Dantzig et al. [66, 65] in 1958 and
1960, used piecewise linear approximations for the approximate global minimzation of
separable nonconvex programs, formulating them as mixed integer linear programs.
Land & Doig [193] and Little et al. [201] introduced in 1960/63 the branch and
bound technique for discrete optimization, applicable to mixed integer linear programs.
Motzkin & Strauss [233] showed in 1965 that solving the (discrete) maximum
clique problem is equivalent to finding the global minimum (or maximum) of a special
nonconvex quadratic program. In 1969, Falk & Soland [80] gave the first piecewise
linear relaxations of nonconvex problems, thus making them available for obtaining
bounds in a branch and bound scheme. In 1970, Beale & Tomlin [26, 312] introduced
special ordered sets, defining the way piecewise linear functions are handled till today
in mixed integer linear programming solvers. In 1972, McCormick [214] introduced
the now frequently used linear relaxations for products and quotients, which made the
solution of general factorable global optimization problems accessible to the branch
and bound technique.

3

• Moore [229] showed in 1962 in Part 4 of his Ph.D. thesis, which introduced interval
arithmetic to numerical analysis (following an unpublished 1959 technical report by
Moore & Yang[228]), that by repeated subdivision and simple interval evaluation,
the range – hence in particular the global minimum – of a rational function over a
box can be determined in principle to arbitrary accuracy. Skelboe [301] improved
1974 this basic but excessively slow method by embedding it into (what would today
be called) a branch and bound scheme for continuous variables, giving (what is now
called) the Moore-Skelboe algorithm. Moore’s thesis [229] also showed that interval
methods can be used to prove the nonexistence of solutions of nonlinear systems in
a box (which nowadays is used to discard boxes in a branch and bound scheme) and
to reduce the region where a solution can possibly lie (which is now used to avoid
excessive splitting). Kahan [168] discovered in 1968 that interval techniques can also
be used to prove the existence of solutions of nonlinear systems in a box (and hence to
verify feasibility). Krawczyk [188] simplified in 1969 Moore’s methods for systems
of equations; the Krawczyk operator based on his paper is used in several state of the
art global solvers. (See also the historical remarks in [129, 205].) In 1972, Piyavskii
[272] introduced complete global optimization methods based on Lipschitz constants,
which are in flavor similar to interval methods.

• In 1964, Tsuda & Kiono [319] introduced the Monte Carlo method for finding solu-
tions of systems of equations; and in 1966, the thesis by Mockus [223] applied it to
global optimization. Becker & Lago [27] first used clustering methods in 1970, and
Törn [314, 315] suggested in his 1974 thesis to combine these with local optimization,
a combination which currently defines the most efficient class of stochastic global opti-
mization algorithms [151]. Holland [139] introduced in 1973 genetic algorithms, till
today a popular (although usually slow) stochastic heuristics for global optimization.

As a recognizable mathematical discipline with diverse solution methods for precisely formu-
lated problems involving continuous variables, the field essentially dates back to 1975 when
the first book containing exclusively global optimization papers appeared, the volume ’To-
wards Global Optimization’, edited by Dixon & Szegö [69]. In the almost 30 years since
the publication of this landmark volume, tremendous progress has been made, and many
signs indicate that the field is now ripe for manifold applications in science and engineering.

Scope. Global optimization is the task of finding the absolutely best set of admissible
conditions to achieve an objective under given constraints, assuming that both are formu-
lated in mathematical terms. It is much more difficult than convex programming or finding
local minimizers of nonlinear programs, since the gap between the necessary (Karush-Kuhn-
Tucker) conditions for optimality and known sufficient conditions for global optimality is
tremendous.

Many famous hard optimization problems, such as the traveling salesman problem or the
protein folding problem, are global optimization problems. The truth of the famous unre-
solved conjecture P 6= NP [101] would imply [236, 264] that there are no general algorithms
that solve a given global optimization problem in time polynomial in the problem description
length. However, some large-scale global optimization problems have been solved by current

4

methods, and a number of software packages are available that reliably solve most global
optimization problems in small (and sometimes larger) dimensions. The author maintains
a web site on Global (and Local) Optimization [108] that contains many links to online
information about the subject.

The different algorithms can be classified according to the degree of rigor with which they
approach the goal:

• An incomplete method uses clever intuitive heuristics for searching but has no safe-
guards if the search gets stuck in a local minimum.

• An asymptotically complete method reaches a global minimum with certainty or
at least with probability one if allowed to run indefinitely long, but has no means to
know when a global minimizer has been found.

• A complete method reaches a global minimum with certainty, assuming exact com-
putations and indefinitely long run time, and knows after a finite time that an approx-
imate global minimizer has been found (to within prescribed tolerances).

• A rigorous method reaches a global minimum with certainty and within given toler-
ances even in the presence of rounding errors, except in near-degenerate cases, where
the tolerances may be exceeded.

(Often, the label deterministic is used to characterize the last two categories of algorithms;
however, this label is slightly confusing since many incomplete and asymptotically complete
methods are deterministic, too.)

Complete search. Complete methods (and a fortiori rigorous ones) are (in exact arith-
metic) guaranteed to find the global minimizer (within some tolerances) with a predictable
amount of work. Here predictable only means relative to known problem characteristics
such as Lipschitz constants or other global information (needed for the convergence proof,
but usually not for the algorithm itself). The bound on the amount of work is usually very
pessimistic – exponential in the problem characteristics. It is only a weak guarantee that
does not ensure that the algorithm is efficient in any sense, but it guarantees the absence of
systematic deficiencies that prevent finding (ultimately) a global minimizer.

The simplest complete method for bound constrained problems is grid search, where all
points on finer and finer grids are tested, and the best point on each grid is used as a starting
point for a local optimization. Since the number of points on a grid grows exponentially with
the dimension, grid search is efficient only in one and two dimensions. More efficient complete
methods generally combine branching techniques with one or several techniques from local
optimization, convex analysis, interval analysis and constraint programming.

Generally, complete methods (including approximation methods that reduce the problem
to one treated by complete methods) are more reliable than incomplete methods since, to
the extent they work (which depends on the difficulty of the problem), they have built in
guarantees.

5

Complete methods with finite termination require more or less detailed access to global
information about the problem. In most complete codes, this is obtained using interval
arithmetic (which provides global control of nonlinearities) in an automatic-differentiation-
like manner (cf. Section 16), traversing a computational graph either explicitly, or implicitly
by operator overloading. If only black box function (and sometimes gradient) evaluation
routines are available, complete methods will find the global minimizer with certainty after
a finite time, but will know when this is the case only after an exponentially expensive dense
search, cf. Theorem 9.1 below. Thus for complete black box algorithms, stopping must be
based on heuristic recipes.

Good heuristics and probabilistic choices (similar to but usually simpler than those for
incomplete methods) also play a role in complete methods, mainly to cheaply provide good
feasible points that benefit the complete search.

About the contents. In this survey, the reader will be introduced to theory and techniques
that form the backbone of the packages implementing complete or even rigorous algorithms.
The core of the material is presented in sufficient detail that the survey may serve as a text
for teaching constrained global optimization.

Deliberately excluded are methods that are specific to special problem classes (such as dis-
tance geometry or protein folding [246]), and methods specific to combinatorial optimization
[239, 240]. Moreover, the discussion of incomplete methods is limited to a short overview,
and to techniques that remain useful for complete methods.

No attempt has been made to be objective in selection and evaluation of the material; even
for the topics I discuss, there is often much more in the references quoted. Instead I have
tried to give personal value judgments whenever I found it appropriate. At the present state
of the art, where so many methods compete and reliable comparative information only just
begins to become available, this seems justified. Thus I discuss the methods that I find most
interesting, most useful, and most promising. I hope that my selection bias will be justified
by the future. Also, while I try to give accurate references, I do not always refer to the
first paper discussing a concept or method but rather quote convenient books or articles
summarizing the relevant information, where available.

As one can see from the list of current codes for complete global optimization given in Section
6, none of these codes makes use of all available state-of-the-art techniques. Indeed, in the
past, many research groups on global optimization worked with little knowledge of or care
for what is going on in related areas. It is hoped that this survey helps to change this lack
of communication across the borders of the various traditions in global optimization.

Reviews from other perspectives, less emphasizing the complete search aspect, are given in
[117, 270, 316, 318]. For recent books and other basic references, see Section 3.

Acknowledgments. I want to thank the Mathematics Department of the University of
Colorado at Denver, and in particular Weldon Lodwick, for the opportunity to give there (in
April/May 2001) a course with the same title, and the Mathematics and Computer Science
Division of the Argonne National Laboratory, in particular Sven Leyffer, for the invitation

6

to present my vision of the current techniques and challenges in global optimization in a
lecture within the Global Optimization Theory Institute [110] (in September 2003).

I also want to thank Hermann Schichl for many discussions and for comments on earlier
versions of this survey, and Christian Jansson and Nick Sahinidis for additional comments
that improved the paper.

This survey is part of work done in the context of the COCONUT project [54] sponsored by
the European Union, with the goal of integrating various existing complete approaches to
global optimization into a uniform whole (cf. Section 22). Funding by the European Union
under the IST Project Reference Number IST-2000-26063 within the FET Open Scheme is
gratefully acknowledged. A preliminary version of the survey was contained in Chapter 4 of
the unpublished COCONUT report [38].

2 Why global optimization?

Superficially, global optimization is just a stronger version of local optimization, whose great
usefulness in practice is undisputed. Instead of searching for a locally unimprovable feasible
point one wants the globally best point in the feasible region. In many practical applications,
finding the globally best point is desirable but not essential, since any sufficiently good feasi-
ble point is useful and usually an improvement over what is available without optimization.
For such problems, there is little harm in doing an incomplete search; and indeed, this is
all that can be achieved for many large-scale problems or for problems where function val-
ues (and perhaps derivatives) are available only through a black box routine that does not
provide global information.

However, there are a number of problem classes where it is indispensable to do a complete
search. This is in particular the case for

• hard feasibility problems (e.g., robot arm design, cf. Lee et al. [197, 198]), where
local methods do not return useful information since they generally get stuck in local
minimizers of the merit function, not providing feasible points (though continuation
methods are applicable for polynomial systems in low dimensions);

• computer-assisted proofs (e.g., the proof of the Kepler conjecture by Hales [128]),
where inequalities must be established with mathematical guarantees;

• safety verification problems, where treating nonglobal extrema as worst cases may
severely underestimate the true risk (emphasized in the context of robust control by
Balakrishnan & Boyd [19]);

• many problems in chemistry (cf. below), where often only the global minimizer (of the
free energy) corresponds to the situation matching reality;

• semi-infinite programming, where the optimal configuations usually involve global min-
imizers of auxiliary problems.

7

These problems, as well as the fact that algorithms doing a complete search are significantly
more reliable and give rise to more interesting mathematics, justify our focus on complete
solution techniques.

To show the relevance of global optimization for both pure and applied mathematics, we
sketch here a number of typical applications. Of course, this is only the tip of an iceberg. . . .

(i) Many problems in graph theory are global optimization problems. For example, the
maximum clique problem asks for the maximal number of mutually adjacent vertices
in a given graph. By a well-known theorem of Motzkin & Strauss [233], an equivalent
formulation is the indefinite quadratic program

max xTAx

s.t. eTx = 1, x ≥ 0,

where A is the adjacency matrix of the graph and e is the all-one vector. Since the maximum
clique problem is NP -hard, the same holds for all classes of global optimization problems
that contain indefinite quadratic programming.

(ii) Packing problems. The problem is to place a number of k-dimensional (k ≤ 4) objects
of known shape within a number of larger regions of k-space of known shape in such a
way that there is no overlap and a measure of waste is minimized. The simplest packing
problem is the knapsack problem where a maximal number of objects of given weights is
to be placed into a container with given maximum weight capacity. Many packing problems
arise in industry; but there are also a number of famous packing problems in geometry, of
which the 300 year old Kepler problem of finding the densest packing of equal spheres
in Euclidean 3-space was only solved recently by Hales [128] (reducing the problem to
several thousand linear programs and some interval calculations to ensure rigorous handling
of rounding errors). (The proof is still disputed because of the difficulty to check it for
correctness; cf. Lagarias [191]. A proof based on rigorous global optimization algorithms
would probably be more transparent.)

(iii) Scheduling problems. The problem is to match tasks (or people) and slots (time
intervals, machines, rooms, airplanes, etc.) such that every task is handled in exactly one
slot and additional constraints are satisfied. If there are several feasible matchings, one which
minimizes some cost or dissatisfaction measure is wanted. Simple scheduling problems such
as the linear assignment problem can be formulated as linear programs and are solved
very efficiently, but already the related quadratic assignment problem is one of the
hardest global optimization problems, where already most instances with about 30 variables
are at the present limit of tractability, cf. Anstreicher [16].

(iv) Nonlinear least squares problems. In many applications, one needs to fit data to
functional expressions. This leads to optimization problems with an objective function of a
form such as

f(θ) =
∑

l

‖yl − F (xl, θ)‖2,

8

where xl, yl are given data vectors and θ is a parameter vector. Under certain assumptions,
the most likely value of θ is the global minimizer; it generally must have a small objective
function value at noise level if the model is to be deemed adequate. If the Fl are nonlinear
in θ, a nonconvex optimization problem results that frequently has spurious local minima
far above the noise level. A particularly obnoxious case is obtained for data fitting problems
in training neural networks.

(v) Protein folding. The protein folding problem [246] consists in finding the equilibrium
configuration of the N atoms in a protein molecule with given amino acid sequence, assuming
the forces between the atoms are known. These forces are given by the gradient of the 3N -
dimensional potential energy function V (x1, . . . , xN), where xi denotes the coordinate vector
of the ith atom, and the equilibrium configuration is given by the global minimizer of V .
Because short-range repulsive forces act like packing constraints, there are numerous local
minima.

(vi) Chemical equilibrium problems [87, 216]. The task here is to find the number and
composition of the phases of a mixture of chemical substances allowed to relax to equilib-
rium. Local optimization of the associated Gibbs free energy is notorious for giving wrong
(nonglobal) solutions, and the need to solve such problems was one of the main driving forces
for the development of constrained global optimization packages in the chemical engineering
community, which till today is among the leaders in the field.

(vii) For applications in robotics, see Neumaier [251]. Many more applications can be
found in the books by Pinter [269], Floudas & Pardalos [88, 92], Jaulin et al. [158].

3 Basic ideas

In the following, we discuss complete methods for finding the global minimizer(s) of an
objective function subject to constraints. Such problems are typically much more difficult
than local optimization problems, since it is often hard to decide whether a local minimizer
found is global, and since one needs nonlocal space covering techniques to avoid being trapped
in a region with only nonglobal local minimizers.

Basic to almost all complete global optimization algorithms is the branching principle
(Section 9). This technique consists in splitting (branching) the original problem recursively
into subproblems which are sooner or later easy to solve. In pure branching methods, the
more prospective branches are split more frequently, while in branch and bound methods
one computes for each subproblem bounds on the objective function in the hope of being
able to eliminate many subproblems at an early stage.

The very useful technique of constraint propagation, discussed in Section 14, allows to
reduce the feasible region in many cases by exploiting properties of separable constraints
of the form ∑

k∈K
qk(xk) ∈ b

9

with simple, often linear or quadratic functions qk of a single variable only. This technique
may save a lot of branching steps and thus speeds up the branch and bound procedure. This
is a reason why special care should be taken in presenting (or transforming) the problem in a
form which has as much separability as possible, and we introduce the notion of a semisep-
arable program adapted to this feature. Section 18 addresses ways to transform general
problems into semiseparable form by introducing appropriate extra variables. Semisepara-
ble programs are also amenable to approximation by a mixed integer linear program
(MILP), the only class of global optimization problems that has a long reputation of being
successfully solvable even for large problem instances. We shall not discuss techniques for
solving MILPs (see, e.g., [34, 239, 240, 338]), but we show how to approximate (and indeed
rigorously relax) general global optimization problems by MILPs in Sections 17 and 18.

In order to be able to quickly eliminate subproblems it is important that one can easily
locate good feasible points. This is usually done by local optimization (often in a somewhat
rudimentary form); see Section 13. However, especially for problems with many local ex-
trema, it is important to use some heuristics which (hopefully) prevents that a local method
is trapped in a high-lying local minimum. A suitable such tunneling technique is discussed
in Section 13.

Another basic principle, discussed in Section 16, is that of outer approximation of the
feasible domain and underestimation of the objective function, in order to obtain relaxed
problems which are convex and hence solvable by local methods. Indeed, this is the tra-
ditional way to obtain the bounds on the subproblem. In particular, we consider the use of
cutting planes and more general cutting surfaces. Nonconvex relaxations are also of
interest if they can be solved efficiently.

A useful tool for the automatic construction of tight bound constraints, outer approximations
and underestimating functions in nonlinear problems is interval arithmetic. Though little
known in the optimization community, interval arithmetic is an elegant way of calculating
with bound constraints, intervals, and simple higher dimensional geometric shapes like boxes
and parallelepipeds. Its most prominent feature is that it allows strict estimates of the
approximation error in linear and quadratic approximations of nonlinear functions over a
box, thereby providing non-local information even in large boxes. In Section 11, we shall give
a very short introduction to this subject (just sufficient for writing programs); a more leisurly
introduction embedded into a standard numerical analysis course can be found in Neumaier
[250], and a much more extensive treatment is in Neumaier [243]. Interval arithmetic can
also be used to rigorously certify the validity of calculations with finite precision arithmetic,
and some such applications to optimization are briefly treated in Section 20. The state of
the art in 1996 of certified global optimization with interval methods is in Kearfott [173].

Basic references. A basic reference on most aspects of global optimization is the Handbook
of Global Optimization by Horst & Pardalos [142]. It contains chapters written by the ex-
perts in the respective subfields, on global optimality conditions, complexity issues, concave
minimization, dc methods, indefinite quadratic programming, complementarity problems,
minimax problems, multiplicative programming, Lipschitz optimization, fractional program-
ming, network problems, continuation methods, interval methods, and stochastic methods

10

(including simulated annealing).

Some more recent books present the state of the art in deterministic global optimization
from different perspectives: The interval point of view is in Kearfott’s 1996 book Rigorous
Global Search [173]. The constraint propagation point of view is in the book Numerica by
Van Hentenryck et al. [328]; see also the tutorial by Lustig & J.-F. Puget [204]. The
convex analysis point of view is in the books Deterministic Global Optimization by Floudas
[86] and Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear
Programming by Tawarmalani & Sahinidis [309]. An attempt to give a synthetic view of
the field (but mostly restricted to discrete optimization) is in the book Logic-based Methods
for Optimization by Hooker [141]; see also his survey [140].

A comprehensive background on local optimization (needed as part of most good global
optimization algorithms) can be found in the book Numerical Optimization by Nocedal &
Wright [256]. For interior point methods, this should be complemented by [339].

Other books on global optimization methods include [94, 131, 143, 144, 224, 263, 269, 276,
277, 317, 330, 343], and proceedings of conferences on global optimization include [39, 42,
69, 89, 90, 91, 124]. The Journal of Global Optimization is devoted exclusively to papers on
global optimization and its applications.

4 Problem formulation

In the present context, a global optimization problem is specified in the form

min f(x)

s.t. x ∈ x, F (x) ∈ F, xI integral.
(1)

Here
x = [x, x] = {x ∈ Rn | x ≤ x ≤ x},

is a bounded or unbounded box in Rn (with x ∈ (R∪{−∞})n, x ∈ (R∪{∞})n, x ≤ x), and
xI denotes the subvector (xi1 , . . . , xil)

T of x when I = (i1, . . . , il) is a list of indices. Inequal-
ities between vectors are interpreted componentwise. f : x → R is a continuous objective
function, F : x → Rm a vector of m continuous constraint functions F1(x), . . . , Fm(x), and
F is a box in Rm defining the constraints on F (x).

C = {x ∈ x | xI integral, F (x) ∈ F} (2)

is the feasible domain. Points x ∈ C are called feasible, and a solution of (1) is a feasible
point x̂ ∈ C such that

f(x̂) = min
x∈C

f(x). (3)

A local minimizer only satisfies f(x̂) ≤ f(x) for all x ∈ C in some neighborhood of x̂, and
the solutions are precisely the global minimizers, i.e., the local minimizers with smallest
objective function value. A local (global) solver is an algorithm or programming package

11

designed for finding a local (global) minimizer. (We avoid the ambiguous term optimizer
which may denote either a minimizer or a solver.)

The difficulties in global optimization stem mainly from the fact that there are generally
many local minimizers but only one of them is the global minimizer (or just a few), and that
the feasible region may be disconnected. (Consider, e.g., the set of positions in the Rocky
Mountains above a certain altitude.) Already a linear objective function has one minimizer
in each connected component of the feasible domain, and local descent methods usually fail
if they start in the wrong component.

Even the constraint satisfaction problem, i.e., the problem of deciding whether the
feasible set is nonempty (and finding a feasible point) is frequently highly nontrivial, and
may be essentially as difficult as the optimization problem itself (cf. Section 13). The usual
device of minimizing a suitable measure of infeasibility does not work when the constraints
are sufficiently nonlinear since this measure has itself local minima in which descent methods
often get stuck.

Usually, it is possible to reformulate a global optimization problem such that f and F are
smooth, i.e., twice continuously differentiable. Note that (1) is sufficiently flexible to take
care of

• free variables xi: take xi = −∞, xi =∞;

• nonnegative variables xi: take xi = 0, xi =∞;

• binary variables xi: take xi = 0, xi = 1, i ∈ I;

• equality constraints Fi(x) = 0: take F i = F i = 0;

• inequality constraints Fi(x) ≤ 0: take F i = −∞, F i = 0.

If I is not empty then, if f and F are linear then (1) is called a mixed integer linear
program (MILP); and if f and F are convex, and F i = −∞ for all nonlinear Fi, (1) is
called a mixed integer nonlinear program (MINLP). Strictly speaking, this term should
apply for all problems (1); however, the current techniques for MINLP use the convexity in
an essential way, so that it is appropriate to reserve the term for the convex case. Nonconvex
mixed integer global optimization problems have received little attention, but see, e.g., [85,
284, 309]

The only class of global optimization problems that can be reliably solved for many large
problem instances (say, ≈ 105 variables and |I| ≈ 103) is the class of MILPs. This is due
to the fact that after fixing the integer variables one is left with a linear program, which
can be solved efficiently. Instead of trying all integer combinations separately, branching
techniques (branch and bound, branch and cut) combined with preprocessing the resulting
linear programs drastically cut down the number of cases to be looked at. MINLP shares
with MILP the feature that fixing all integer variables leads to a tractable problem, in this
case a convex nonlinear program, for which every local minimizer is a solution; however, the

12

dimensions are here more limited since nonlinear programming codes are significantly slower
than their linear counterparts.

Most of constrained global optimization is nowadays best viewed as an adaptation of mixed
integer programming technology to nonlinear problems. Historically, however, many of the
techniques were devised independently by groups working in integer programming, com-
binatorial optimization, unconstrained optimization, interval analysis, and constraint logic
programming.

Other important classes of global optimization problems:

• simply constrained: if dimF = 0,

• continuous: if I = ∅,

• bound constrained: if simply constrained and continuous,

• separable: if f(x) =
n∑

k=1

fk(xk) and F (x) =
n∑

k=1

Fk(xk),

• factorable: if f and F are obtained by applying a finite sequence of arithmetic oper-
ations and unary elementary functions to constants and the xk,

• reverse convex: if f , F are concave, and F i = −∞ for all nonlinear Fi,

• DC: if f , F are differences of convex functions.

5 First order optimality conditions

Traditional nonlinear programming provides the following necessary (Karush-John) opti-
mality conditions for local minimizers. We assume that f , F are continuously differen-
tiable, and denote by f ′(x) and F ′(x) the derivatives at x. Note that f ′(x) is a row vector
and F ′(x) a matrix, the Jacobian.

5.1 Theorem. (Karush [170], John [162])

For every local minimizer x̂ of (1) (which defines the notation) there are a number κ ≥ 0
and a vector y, not both zero, such that the row vector

gT = κf ′(x̂) + yTF ′(x̂) (4)

satisfies

gi





≥ 0 if xi = x̂i < xi, i 6∈ I,
≤ 0 if xi < x̂i = xi, i 6∈ I,
= 0 if xi < x̂i < xi, i 6∈ I,

(5)

13

yi





≥ 0 if F i < Fi(x̂) = F i,

≤ 0 if F i = Fi(x̂) < F i,

= 0 if F i < Fi(x̂) < F i.

(6)

Note that there is no restriction on gi if i ∈ I or xi = xi, and no restriction on yi if
F i = Fi(x̂) = F i. Buried implicitly in results of Mangasarian [209], and spelled out
explicitly in Neumaier & Schichl [254], is the observation that one may in fact assume
that either κ or the subvector yJ of y is nonzero, where J is the set of indices i such that either
Fi(x) is nonconvex and Fi(x̂) = F i or Fi(x) is nonconcave and Fi(x̂) = F i. (In particular, J
does not contain any index i such that Fi(x) is linear.) In view of the homogeneity of the
statement of the theorem, one can therefore scale the multipliers such that

κ+ yTJDyJ = 1, (7)

where D is an arbitrary diagonal matrix with positive entries. This condition is relevant for
the application of exclusion box techniques (cf. Section 15).

We say that x̂ satisfies a constraint qualification (CQ) if (4)–(6) hold for some κ > 0.
In this case, one can scale g, κ, y to enforce κ = 1 and obtains the more frequently used
Kuhn-Tucker conditions (Kuhn & Tucker [189, 190]). A sufficient condition for the
constraint qualification is that the rows of F ′(x̂) are linearly independent; various weaker
conditions guaranteeing CQ are known.

If κ = 1 then y is called an optimal Lagrange multiplier corresponding to x̂ (it need not
be unique). In this case, g is the gradient of the associated Lagrangian (Lagrange [192])

L(x, y) = f(x) + yTF (x)

at x = x̂.

Note that minimizers with huge Lagrange multipliers are best considered as points nearly
violating the constraint qualification, so that (4) holds with y = O(1) and tiny κ.

If there are only nonnegativity constraints and equality constraints,

C = {x ≥ 0 | F (x) = b},

corresponding to xi = 0, xi =∞, F i = F i = bi then the conditions (6) are vacuous, and (5)
reduces to the traditional complementarity condition

min(gi, xi) = 0 for all i.

5.2 Example. We consider the problem

min f(x) = −x1 − 2x2

s.t. F (x) = (x1 − 1)2 + (x2 − 1)2 = 1, x1, x2 ∈ [−1, 1].
(8)

14

Figure 1: Feasible region and contour lines for Example 5.2.

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..........................

.......................

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...

•

•

•P Q

R

0
x1

x2

HHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHH

f = −3

f = −2

f = −1

f = 0

f = 1

f = 2

The feasible region is a quarter circle, and the contour lines of the objective function are
linear, decreasing in the direction indicated in Figure 1. This implies that there is a unique
maximizer at P , a local minimizer at Q and a global minimizer at R. The solution is therefore
x̂ =

(
0
1

)
. Since there are only two variables, we analyzed the problem graphically, but we

could as well have proceeded symbolically as follows.

Assuming for simplicity the validity of the CQ, we find for the gradient of the Lagrangian

g =

(−1

−2

)
+ y

(
2x1 − 2

2x2 − 2

)
.

The Kuhn-Tucker conditions require that gi ≥ 0 if x̂i = −1, gi ≤ 0 if x̂i = 1, and gi = 0
otherwise. This leaves three cases for each component, and a total of 3 · 3 = 9 cases. If
we assume |x̂1|, |x̂2| < 1 we must have g = 0, hence x̂1 = 1 + 1/2y, x̂2 = 1 + 1/y. Since x̂
must be feasible, y < 0, and since F (x̂) = 1, y = − 1

2

√
5, x̂ = (1− 1/

√
5, 1− 2/

√
5)T , which

is the local maximizer P . If we assume x̂1 = −1 or x̂2 = −1, or x̂1 = x̂2 = 1, we find a
contradiction with F (x̂) = 1. (These are 6 cases!) If we assume |x̂2| < 1 = x̂1 we find Q, and
for |x̂1| < 1 = x̂2 we find R. Thus we have three feasible points satisfying the Kuhn-Tucker
conditions, and a comparison of their function values shows that R is the global minimizer.

In general, we have three cases for each two-sided inequality and two for each one-sided
inequality; since the number of independent choices must be multiplied, the total number
of cases grows exponentially with the number of inequalities in the problem formulation.
Hence this symbolical approach is limited to problems with few inequality constraints. Even
then it only works if the resulting nonlinear equations are symbolically solvable and have
few solutions only. Thus, in general, we need to resort to numerical methods.

We draw several conclusions from the example. First, there is a combinatorial aspect to
the continuous global optimization problem, so that it resembles a mixed integer problem.

15

Second, several cases can often be excluded by a single argument, which is the basis for
the branch and bound approach to global optimization. Third, the Karush-John or Kuhn-
Tucker conditions do not distinguish between maxima and minima (and other “stationary”
points); all these would have to be enumerated in a naive approach. Since there may be an
exponential number of Kuhn-Tucker points, additional techniques are needed to reduce the
search space. Lagrange multiplier techniques involving second order conditions will address
this last point; cf. Theorem 15.1.

6 Software for complete global optimization

Here we list some of the better complete global optimization codes available on the WWW,
with short comments on scope and method. Several of the codes (LGO, BARON, SBB,
DICOPT) can be called from the GAMS modeling system [100], allowing for very convenient
input. Input from the AMPL modeling system [97] will be possible through an AMPL to
GAMS translator available within the COCONUT environment; cf. Section 22. Only two of
the codes (GlobSol and Numerica) are rigorous solvers.

Some branching codes using function values only. The codes listed use black box
function evaluation routines, and have heuristic stopping rules, so that the actual implemen-
tation yields an incomplete search only.

(i) DIRECT, Divide Rectangles (in Fortran, by Gablonsky [99])
ftp://ftp.math.ncsu.edu/FTP/kelley/iffco/DIRECTv204.tar.gz

Direct.m, a Matlab implementation of DIRECT
http://www4.ncsu.edu/∼definkel/research/

Implementations of a simple and efficient global optimization method by Jones et al. [165]
for bound constrained problems. DIRECT is based on branching and a Pareto principle for
box selection.

(ii) MCS, Multilevel Coordinate Search (by Huyer & Neumaier [145])
http://www.mat.univie.ac.at/∼neum/software/mcs/

A Matlab program for bound constrained global optimization using function values only.
MCS is based on branching and sequential quadratic programming.

(iii) LGO, Lipschitz Global Optimization (commercial, by Pintér [269, 271])
http://is.dal.ca/∼jdpinter/l s d.htm

An integrated development environment for global optimization problems with Lipschitz
continuous objective and constraints. LGO is based on branching and stochastic estimation
of Lipschitz constants; constraints other than simple bounds are handled by L1 penalty
terms, but interior convex constraints by projection penalties. (LGO also has options for
incomplete search methods; these give generally better results than the branching option.)

16

Some branch and bound codes. The codes listed use global information (generally from
required symbolic problem input). They have finite termination with guarantee that the
global minimizer is found within certain tolerances; in difficult cases storage or time limits
may be exceeded, however, leading to appropriate error messages. All codes use at least
basic constraint propagation, but differ considerably in the other techniques implemented.

Not listed are the many MILP codes available (see the Global Optimization Web Page
mentioned in the introduction).

(i) BARON, Branch-And-Reduce Optimization Navigator (commercial, by Sahini-
dis et al. [282, 284, 285, 286, 309, 310])
http://archimedes.scs.uiuc.edu/baron/baron.html

A general purpose solver for optimization problems with nonlinear constraints and/or inte-
ger variables. Fast specialized solvers for many linearly constrained problems. BARON is
based on branching and box reduction using convex and polyhedral relaxation and Lagrange
multiplier techniques.

(ii) GlobSol, Global Solver (in Fortran 90, by Kearfott [173, 174])
http://www.mscs.mu.edu/∼globsol/

Branch and bound code for global optimization with general factorable constraints, with
rigorously guaranteed results (even roundoff is accounted for correctly). GlobSol is based on
branching and box reduction using interval analysis to verify that a global minimizer cannot
be lost.

(iii) LINGO (commercial, by Gau & Schrage [103])
http://www.lindo.com/cgi/frameset.cgi?leftlingo.html;lingof.html

Branch and bound code for global optimization with general factorable constraints, includ-
ing nondifferentiable expressions. LINGO is based on linear relaxations and mixed integer
reformulations. C and Excel interfaces are available.

(iv) Frontline Interval Global Solver (commercial, by Nenov & Fylstra [241])
http://www.solver.com/technology5.htm

This solver is based on interval methods and linear relaxations. Visual Basic and Excel
interfaces are available.

(v) ALIAS (in C, by Merlet [7, 218])
http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++/ALIAS-C++.html

Branch and bound environment for solving constraint satisfaction problems (and rudimen-
tary global optimization). A toolkit of interval analysis and constraint programming tech-
niques with a Maple interface for symbolic preprocessing.

(vi) Numerica (by van Hentenryck, Michel & Deville [328])

Branch and bound code for constrained optimization (with mathematically rigorous results).
This code (no longer available) was based on branching and box reduction using interval

17

analysis and deeper constraint propagation techniques. The box reduction and interval
analysis algorithms of Numerica are now available in ILOG Solver (commercial) at
http://www.ilog.com/products/solver/

(vii) αBB (by Adjiman, Floudas and others [3, 2, 4, 15])
http://titan.princeton.edu/soft.html#abb

Branch and bound code for nonlinear programs. The site has currently the description only;
no code. αBB is based on branch and bound by convex underestimation, using interval
analysis to write nonlinearities in DC (difference of convex functions) form.

(viii) LaGO (by Nowak, Alperin & Vigerske [257])
http://www-iam.mathematik.hu-berlin.de/∼eopt/#Software

Branch and bound code for mixed integer nonconvex nonlinear programming, using block-
separable structure and convex underestimation. The site has currently the description only;
no code.

(ix) GloptiPoly (in Matlab, by Henrion & Lasserre [135, 136, 137])
http://www.laas.fr/∼henrion/software/gloptipoly/

Global optimization of polynomial nonlinear programs, using semidefinite relaxations. Cur-
rently limited to problems with less than 20 variables.

(x) SOSTOOLS (in Matlab, by Prajna et al. [273])
http://control.ee.ethz.ch/∼parrilo/sostools/index.html

Matlab toolbox for solving sums of squares (SOS) optimization programs. Allows the solution
of polynomial global optimization problems.

(xi) cGOP (by Visweswaran & Floudas [83, 84])
http://titan.princeton.edu/soft.html

Branch and bound code for linearly constrained global optimization problems with an ob-
jective containing linear, bilinear, and convex terms, using convex relaxations.

(xii) MINLPBB (commercial, by Fletcher & Leyffer [83, 84])
http://www-unix.mcs.anl.gov/∼leyffer/solvers.html

Branch and bound code for mixed integer nonlinear programming; finding the global opti-
mum is guaranteed only if all constraints become convex when all integer variables are fixed.
Problems with AMPL input can be solved online via NEOS at
http://www-neos.mcs.anl.gov/neos/solvers/MINCO:MINLP-AMPL/

MINLP uses standard mixed integer programming techniques and filter methods for the local
subproblems.

(xiii) DICOPT (commercial, by Grossmann [74, 182])
http://www.gams.com/solvers/dicopt/main.htm

Solver for mixed integer monlinear programming (MINLP) problems. Finding the global

18

optimum is guaranteed only if all constraints become convex when all integer variables are
fixed.

(xiv) SBB (commercial, by Bussiek & Drud [47])
http://www.gams.com/solvers/solvers.htm#SBB

Branch and bound code for mixed integer nonlinear programming; finding the global opti-
mum is guaranteed only if all constraints become convex when all integer variables are fixed.
Problems with GAMS input can be solved online via NEOS at
http://www-neos.mcs.anl.gov/neos/solvers/MINCO:SBB-GAMS/

SBB uses standard mixed integer programming techniques and sequential quadratic pro-
gramming methods for the local subproblems.

MINLPBB, DICOPT and SBB are borderline cases in our list since they do not use truly
global techniques for the continuous variables, and will not be discussed further.

7 Incomplete methods for simple constraints

As mentioned in the introduction, numerical methods for global optimization can be classi-
fied into four categories according to the available guarantees. We shall be mainly concerned
with complete methods; however, since incomplete and asymptotically complete methods
are frequently successful and, for many difficult problems, the only feasible choice, we give
an overview of the main possibilities. In these categories are several deterministic and most
stochastic methods. For some of the latter, it is possible to prove convergence with prob-
ability arbitrarily close to 1 (if running arbitrarily long), but this does not yet guarantee
convergence. (Moreover, the assumptions underlying the convergence proofs are frequently
not verifiable for particular examples.)

The simplest incomplete method is multiple random start, consisting of picking random
starting points and performing local optimizations from these points, in the hope that one of
them is in the basin of attraction of the global minimizer. Most stochastic techniques can be
regarded as devices for speeding up this basic method, by picking the points more carefully
and by doing only rudimentary local optimization, or optimizing only selectively.

Most of the research on incomplete search has been concentrated on global optimization
methods for simply constrained problems only. Many different incomplete methods are
known for simply constrained problems, and we sort them into four categories: local de-
scent techniques, including among others multiple random start, clustering [41], tunnel-
ing [200], and smoothing methods [126, 187, 232, 304]; response surface techniques,
including Bayesian stochastic techniques [224, 225] and related techniques [35, 164, 166];
nonmonotonic search techniques, including among others tabu search [111, 112], simu-
lated annealing [181, 149, 330], and deterministic variants such as threshold accepting [73];
ensemble methods, including genetic algorithms [139, 95, 221] and variants such as ant
colony minimization [72].

No attempt is made to be representative or complete on referencing or describing the large

19

literature on incomplete techniques; we only mention the 1975 book by Dixon & Szegö
[69], which marks the start of a tradition of comparing different global optimization methods,
an excellent exposition of stochastic global optimization methods for bound constrained
problems on the WWW by Törn [316], and another WWW-survey of (mainly incomplete)
methods by Hart [117]. For incomplete search in combinatorial optimization (where the
underlying ideas are also called metaheuristics), see, e.g., [1, 340].

Instead of describing technical details of the various methods (these vary from author to
author and even from paper to paper), we give an informal view of the ideas, strengths and
weaknesses of one method from every category, each based on analogies to natural processes
where more or less global optima are reached. While these techniques are motivated by
nature it is important to remember that processes in nature need not be the most efficient
ones; at best they can be assumed to be efficient given the conditions under which they have
to operate (namely an uncertain and changing environment that is potentially hazardous
to those operating in it). Indeed, much of our present technology has vastly surpassed
natural efficiency by unnatural means, and it would be surprising if it were different in
global optimization. Even assuming that nature solves truly global optimization problems
(a disputable assumption), simple lower estimates for the number of elementary steps –
roughly corresponding to function evaluations – available to natural processes to converge
are (in chemistry and in biology) in the range of 1015 or even more. This many function
evaluations are unacceptable for present day computers, and will be so in the near future.

With a limited number of function evaluations, the quality of incomplete methods depends a
lot on details of the implementation; comparisons on relative efficiency are virtually missing.
Indeed, the techniques must generally be tuned to special classes of applications in order to
be fast and competitive, which makes general purpose comparisons difficult and inconclusive.

Smoothing (= homotopy = continuation) methods are based on the intuition that, in
nature, macroscopic features are usually an average effect of microscopic details; averaging
smoothes out the details in such a way as to reveal the global picture. A huge valley seen
from far away has a well-defined and simple shape; only by looking more closely, the many
local minima are visible, more and more at smaller and smaller scales. The hope is that by
smoothing a rugged objective function surface, most or all local minima disappear, and the
remaining major features of the surface only show a single minimizer. By adding more and
more details, the approximations made by the smoothing are undone, and finally one ends
up at the global minimizer of the original surface.

In mathematical terms, one has to define a homotopy by introducing an additional param-
eter t into the problem in such a way that t = 0 gives the original problem, while t = 1
gives either a related convex problem or a related problem with a unique and known global
minimizer. (There are various ways of doing this; homotopies whose parameter has a nat-
ural interpretation in the context of the original problem usually perform better.) Then
a sequence of local problems is solved for t = t1, t2 . . . , tN , where the ti form a decreasing
sequence starting at 1 and ending at 0. Each time, the solution of the previous problem is
taken as the starting point for the current problem. The quality of the final local minimizer
depends on the homotopy, and frequently is the global or at least a good local minimizer.

20

There is no theoretical work on conditions that would ensure convergence to the global
minimum. In particular, it is quite possible for such a method to miss the global minimum.
However, for properly chosen homotopies, smoothing methods at least give good local minima
with a small number of function evaluations. (For more theory on homotopy methods, see,
e.g., [126, Section 6.3].)

Response surface techniques are designed specifically for the global optimization of func-
tions that are very expensive to evaluate. They construct in each iteration an interpolation
or approximation surrogate function of known analytic form. The surrogate function is
then subjected to global optimization, e.g., by some form of multiple random start (started
at a selection of the current points). The resulting optimizers (or some points where the
feasible region has been only sparsely explored) are taken as new evaluation points. Since
this is sequential global optimization, each step is much more expensive than the others,
but the reduction of the number of function values needed gives (for sufficiently expensive
function evaluations) a net gain in speed.

In principle, these methods may have convergence guarantees if the point selection strategy
is well-chosen; but this is irrelevant in view of the fact that for expensive functions, only few
(perhaps up to 1000) function evaluations are admissible.

Simulated annealing takes its intuition from the fact that the heating (annealing) and slow
cooling of a metal brings it into a more uniformly crystalline state that is believed to be the
state where the free energy of bulk matter takes its global minimum. (Incidentally, even for
the simplest potential energy functions, it is still an unsolved problem whether this is indeed
true with mathematical rigor. Apart from that, even very pure crystals still have defects;
i.e., the global minimum is not quite achieved in nature.) The role of temperature is to allow
the configurations to reach higher energy states with a probability given by Boltzmann’s
exponential law, so that they can overcome energy barriers that would otherwise force them
into local minima. This is quite unlike line search methods and trust region methods on
which good local optimization programs are based.

In its original form, the simulated annealing method is provably convergent in a probabilistic
sense but exceedingly slow; various ad hoc enhancements make it much faster. In particular,
except for simple problems, success depends very much on the implementation used.

Genetic algorithms make use of analogies to biological evolution by allowing mutations
and crossing over between candidates for good local optima in the hope to derive even better
ones. At each stage, a whole population of configurations is stored. Mutations have a
similar effect as random steps in simulated annealing, and the equivalent of lowering of the
temperature is a rule for more stringent selection of surviving or mating individuals.

The ability to leave regions of attraction to local minimizers is, however, drastically enhanced
by crossing over. This is an advantage if, with high probability, the crossing rules produce
offspring of similar or even better fitness (objective function value); if not, it is a severe
disadvantage. Therefore the efficiency of a genetic algorithm (compared with simulated

21

annealing type methods) depends in a crucial way on the proper selection of crossing rules.
The effect of interchanging coordinates is beneficial mainly when these coordinates have a
nearly independent influence on the fitness, whereas if their influence is highly correlated
(such as for functions with deep and narrow valleys not parallel to the coordinate axes),
genetic algorithms have much more difficulties. Thus, unlike simulated annealing, successful
tuning of genetic algorithms requires a considerable amount of insight into the nature of the
problem at hand.

Both simulated annealing methods and genetic algorithms are, in their simpler forms, easy
to understand and easy to implement, features that invite potential users of optimization
methods to experiment with their own versions. The methods often work, if only slowly, and
may be useful tools for applications where function values are not very expensive and the
primary interest is to find (near-)solutions now, even when the reliability is uncertain and
only subglobal optima are reached.

To make simulated annealing methods and genetic algorithms efficient, clever enhancements
exploiting expert knowledge about the problem class at hand are essential. Theoretical work
on explaining the effectiveness of useful enhancements is completely lacking. I also haven’t
seen careful comparisons of the various options available and their comparative evaluation
on standard collections of test problems.

In general, incomplete methods tend to fail systematically to find the global optimum on the
more difficult problems in higher dimensions, but they frequently give relatively good points
with a reasonable amount of effort. Beyond a certain number of function evaluations (that
depends on the problem), progress slows down drastically if the global optimum has not yet
been located already. This is unlikely to change in the future, although new heuristics and
variations of old ones are discovered almost every year.

For general purpose global optimization, the most promising incomplete methods appear
to be clustering methods (see the recent comparison by Janka [151]), being fairly robust
and fast. In particular, the multilevel clustering algorithm by Boender et al. [41], as
implemented by Csendes [62], can be recommended. Among incomplete algorithms adapted
to problem structure, I would favor smoothing methods (if a natural homotopy is available)
and tabu search like strategies (since these have a kind of memory).

8 Bound constrained approximation

For general constraints, incomplete techniques are much less developed. Only the smoothing
techniques extend without difficulties to general constraints. To use the other incomplete
techniques, it is customary to rewrite problems with general constraints in an equivalent or
approximately equivalent form with either simple constraints only, for which the methods
of the previous section apply, or into a mixed integer linear problem (MILP), since highly
efficient software is available for solving the latter [34]. Both transformations are of great
practical importance and widely used. Solving the transformed (equivalent or approximate)

22

problem yields an approximate solution for the original problem, and local optimization
from this approximate solution gives the global minimizer of the original problem if the
approximation was good enough, and usually a good local minimizer otherwise.

In this section we treat the approximation of general constrained problems by bound con-
strained problems using penalty and barrier functions. The approximation of nonlinear
problems by mixed integer linear programs is treated in Section 18.

Penalty and barrier formulations. Traditionally (see Fiacco & McCormick [82]),
constraints that cannot be handled explicitly are accounted for in the objective function,
using simple l1 or l2 penalty terms for constraint violations, or logarithmic barrier terms
penalizing the approach to the boundary. In both cases, the reformulation changes the
solution, so that this is an instance of an approximation method, and the result should be
used as a starting point for a subsequent local optimization of the original problem. There
are also so-called exact penalty functions whose optimization gives the exact solution (see,
e.g., Nocedal & Wright [256]); however, this only holds if the penalty parameter is large
enough, and what is large enough cannot be assessed without having global information.

The use of more general transformations gives rise to more precisely quantifiable approxi-
mation results. In particular, if it is known in advance that all constraints apart from the
simple constraints are soft constraints only (so that some violation is tolerated), one may
pick a transformation that incorporates prescribed tolerances into the reformulated simply
constrained problem, using the following variation of a similar, but less flexible result of
Dallwig et al. [64], given in Huyer & Neumaier [147].

8.1 Theorem. (Soft optimality theorem)

Given ∆, σi, σi > 0, f0 ∈ R, let

q(x) =
f(x)− f0

∆ + |f(x)− f0|
,

δi(x) =





(Fi(x)− F i)/σi if Fi(x) ≤ F i,

(Fi(x)− F i)/σi if Fi(x) ≥ F i,

0 otherwise,

r(x) =
2
∑
δ2
i (x)

1 +
∑
δ2
i (x)

.

Then the merit function
fmerit(x) = q(x) + r(x)

has its range bounded by]−1, 3[, and the global minimizer x̂ of fmerit in x either satisfies

Fi(x̂) ∈ [F i − σi, F i + σi] for all i, (9)

f(x̂) ≤ min{f(x) | F (x) ∈ F, x ∈ x}, (10)

or one of the following two conditions holds:

{x ∈ x | F (x) ∈ F} = ∅, (11)

f0 < min{f(x) | F (x) ∈ F, x ∈ x}. (12)

23

(9) says that a soft version of the constraints is satisfied. The numbers σi and σi measure
the degree to which the lower and upper bounds in the constraint Fi(x) ∈ Fi may be
softened; suitable values are in many practical applications available from the meaning of
the constraints.

(10) says that fmerit has a lower global minimum value (attained at a point satisfying the
soft constraints) than the global minimum value of the original problem (on the hard version
of the constraints). Thus little is lost from a practical point of view.

The degenerate cases (11)–(12) account for the possibility of an empty feasible set (11), and
for a choice of f0 that was too small. If a feasible point is already known we may choose f0

as the function value of the best feasible point known (at the time of posing the problem),
thus eliminating the possibility (11). If none is known, f0 should be chosen as a fairly large
value to avoid (12); it can be reset (and the optimization restarted) when a feasible point
becomes available during the search.

In spite of the absolute value in the definition of q(x), fmerit is continuously differentiable if
f and F have this property. A suitable value for ∆ is the median of the values |f(x) − f0|
for an initial set of trial points x (in the context of global optimization often determined by
a space-filling design [217, 260, 261, 283, 306]).

Projection penalties. A little known result by Pinter [269] may be used to get in certain
cases (in particular, for linear and convex quadratic constraints) an exact reformulation as
a nonsmooth but Lipschitz continuous simply constrained problem. The idea is to project
infeasible points to the feasible domain.

To accommodate linear constraints (or convex quadratic ones), Pinter assumes that x0 is a
known interior point. For arbitrary γ > 0 he now defines the modified objective function

f(x) := f(x) + γ‖x− x‖2, (13)

where
x = λx0 + (1− λ)x (14)

and λ = λx ≥ 0 is smallest such that x satisfies the linear constraints. This is well-defined,
since λ = 1 always works by the choice of x0. Each constraint contributes a lower bound
∈ [0, 1] for λ, and the largest of these bounds is the desired value. In particular, a linear
constraint aTx ≤ α contributes a nonzero lower bound

λ ≥ (aTx− α)/(aTx− aTx0)

if both numerator and denominator of the right hand side are positive. A convex quadratic
constraint similarly yields a quadratic inequality that can easily be solved for λ. (Convexity
can be weakened to star-shapedness with respect to x0.)

The modified objective function (13) is Lipschitz continuous, but nonsmooth at all points
where the ray (14) hits a lower-dimensional face of the feasible domain. Note that to evaluate
(13), function values are needed only at points satisfying the linear (or convex quadratic)
constraints.

24

An interior point can be found by solving a linear program or a convex second order cone
program. If no interior point exists since the feasible set is in a lower-dimensional subspace,
each feasible point has the form x = x0 +Cz with z ∈ z, where x0 is in the relative interior of
the feasible domain, and z a box with 0 ∈ int z. Both x0 and C can be found by techniques
from convex analysis for finding a maximal independent set of points in the affine subspace
spanned by the feasible set. Reposing the optimization problem in terms of z reduces the
dimension and yields a problem in which 0 is an interior point.

9 Pure branching methods

We begin our analysis of complete methods for global optimization by looking at the options
for methods that can access no global information about a problem. The information is made
available via black box routines that provide local information only, i.e., function values
and possibly gradients or Hessians at single points. A necessary and sufficient condition
for complete methods based on local information only is given by the following important
density theorem due to Törn & Zilinskas [317]. It formalizes the simple observation
that after finitely many local evaluations there are still many ‘holes’, i.e., balls not containing
an already evaluated point, and there are many functions [249] that have the known function
values, gradients and Hessians at the evaluation points but an arbitrarily low function value
at the center of such a ball.

9.1 Theorem. Any method based on local information only that converges for every con-
tinuous f to a global minimizer of f in a feasible domain C must produce a sequence of
points x1, x2, . . . that is dense in C.

Conversely, for any such method,

lim inf
l→∞

f(xl) = min{f(x) | x ∈ C}.

A global optimization method based on local information only is called convergent if it
satisfies the hypothesis of the density theorem. (Actual implementations of a convergent
global optimization method usually are not truly convergent since they must have built in
termination criteria that are necessarily heuristic.)

Convergence is a minimal requirement and does not make an algorithm good! For example,
exhaustive grid search is convergent but far too slow in dimensions > 2. (Compare with
local optimization with line searches along the steepest descent direction, which is globally
convergent but frequently very slow.) In a sense, the density theorem says that any conver-
gent method must be ultimately exhaustive, though it may delay the detailed exploration
of unpromising regions. Since, in practice, only a limited number of points can be explored,
the behavior of a pure branching method is governed by its ability to find a good ordering
of the points to be evaluated for which premature termination has no severe effect.

Three good complete general purpose global optimization algorithms based on local infor-
mation only are currently available: DIRECT [165], MCS [145] and LGO [269]. All work for

25

bound constrained problems only and need the approximation techniques of Section 8 for
more general problems. (Some of these are built in into LGO, but must be coded by the user
for DIRECT and MCS.) All three algorithms enforce convergence by employing a branching
scheme. They differ in how and when to split, and what is done within each box.

A branching scheme generates a sequence of rooted trees of boxes whose leaves cover the
feasible set. At least one point in each box is evaluated. The first tree just has the original
box as root and only leaf. Each other tree is obtained from the previous one by splitting one
or several leaves. If the diameters of all boxes at all leaves converge to zero, convergence of
the algorithm is straightforward.

The convergence to zero of the diameters is ensured by appropriate splitting rules that
define when and how a box is split. For example, convergence is guaranteed when in each of
a sequence of rounds, one

• always splits the oldest box along the oldest side, and possibly splits finitely many
other boxes, or

• always splits the longest box along the longest side, and possibly splits finitely many
other boxes (where length = sum of length of sides),

provided that each split of the oldest (or longest) box produces boxes whose volume is at
most a fixed fraction < 1 of the unsplit box. The possibility of ‘and finitely many other
boxes’ (but not many if the code is to be robust!) can be used with considerable flexibility
without destroying the convergence property.

Apart from the convergence requirement, the key to efficiency is a proper balance of global
and local search. This is achieved in DIRECT by splitting in each round all boxes for which
the pair (v, f) (where v is the volume and f the midpoint function value) is not dominated
by another such pair. Here (v, f) is dominated by (v′, f ′) if both v′ < v and f ′ > f . In
particular, the box of largest volume and the box with the best function value are never
dominated and hence always split. MCS uses instead domination of pairs (l, f), where l is a
suitably assigned level, and in addition employs local optimization steps (using line searches
and sequential bound constrained quadratic programs) from appropriate candidate points.
LGO uses lower bounds

L ≥ max
k,l
‖f(xk)− f(xl)‖/‖xk − xl‖

on Lipschitz constants L obtained from the previous function evaluations to decide on the
promising boxes to split first. (Upper bounds on L, and hence bounds on function values,
cannot be obtained from local information only.)

The combination of a suitable branching strategy with the heuristic methods discussed earlier
would make the latter complete, and appears to be a fruitful research direction.

To improve on the density theorem we must find ways to throw away irrelevant parts of the
feasible domain that are guaranteed not to contain a global minimizer. To be able to do
this reliably, some kind of global information is necessary. This is utilized by box reduction
techniques, discussed in Section 10 using a simple example, and afterwards in more depth.

26

10 Box reduction – an example

Box reduction techniques are based on a more or less sophisticated interplay of several com-
ponents: logical constraint propagation, interval analysis, convex relaxations and duality
arguments involving Lagrange multipliers. Before giving a more formal treatment, we illus-
trate simple arguments of each of these components by reconsidering Example 5.2.

Suppose that a local solver has already produced the local minimizer x̂ =
(

0
1

)
for the problem

(8) discussed in Example 5.2, perhaps as the best local minimizer found by minimizing from
a few random starting points. We use box reduction to check whether there is possibly a
better feasible point. In fact, we know already that this is not the case, but we obtained this
knowledge in a way that works only for very simple problems. Thus we want to do it again,
using only techniques of wide applicability.

The idea of box reduction is to use various arguments that allow to shrink the box without
losing any feasible point that is at least as good as the best point found already. Since x̂ is
feasible with objective function value −2, any such point satisfies

f(x) = −x1 − 2x2 ≤ −2, (15)

F (x) = (x1 − 1)2 + (x2 − 1)2 = 1, (16)

x1 ∈ [−1, 1], x2 ∈ [−1, 1]. (17)

Constraint propagation (see Section 14) is a very cheap and easily formalizable process
that gives important initial range reductions in many otherwise difficult problems. It consists
in deducing better bounds for a variable by using the other bounds and one of the constraints.
In particular, (15) implies x2 ≥ 1 − x1/2 ≥ 0.5 since x1 ≤ 1, and x1 ≥ 2 − 2x2 ≥ 0 since
x2 ≤ 1, reducing the bounds to

x1 ∈ [0, 1], x2 ∈ [0.5, 1].

Similarly, (16) implies (x1−1)2 = 1−(x2−1)2 ≥ 1−0.25 = 0.75, hence x1 ≤ 1−
√

0.75 < 0.14,
giving the improved bound

x1 ∈ [0, 0.14].

This bound could be used to improve again x2 using (15); and by alternating use of (15)
and (16) one would obtain a sequence of boxes shrinking towards x̂. This is a special feature
of this simple example. In most cases, this simple substitution process gives no or only
very little improvements after the first few good reductions. (Look at a problem with the
constraints x1 + x2 = 0, x1 − x2 = 0, x1, x2 ∈ [−1, 1] to see why.)

Interval analysis (see Section 11) can be applied in a number of different ways. Here we
use it to produce linear relaxations of the nonlinear constraint. The Jacobian of F (x) at
x ∈ x = ([0, 0.14], [0.5, 1])T is

F ′(x) = (2x1 − 2, 2x2 − 2) ∈ ([−2,−1.72], [−1, 0]) = F ′(x).

27

The mean value theorem implies that, for any x̃ ∈ x,

F (x) ∈ F (x̃) + F ′(x)(x− x̃) if x ∈ x.

Using x̃ = x̂ we find

1 ∈ 1 + [−2,−1.72]x1 + [−1, 0](x2 − 1) = [1− 2x1, 2− 1.72x1 − x2];

the interval evaluation needs no case distinction since x1 and x2−1 happen to have constant
sign. The lower bound gives no new information, but the upper bound leads to the new
constraint

1.72x1 + x2 ≤ 1.

By its derivation, this constraint is weaker than (16).

But since it is linear, the constraint is quite useful for relaxation techniques (see Section
16). It allows us to create a convex relaxation of the problem. Indeed, we may look at the
relaxed linear program

min −x1 − 2x2

s.t. 1.72x1 + x2 ≤ 1, 0 ≤ x1 ≤ 0.14, 0.5 ≤ x2 ≤ 1.
(18)

By construction, every feasible point better than the best point is feasible for (18), hence the
minimum of (18) will be a lower bound on the best possible objective function value of the
original problem. Solving (18) gives the solution x̂ =

(
0
1

)
with function value −2. Since this

lower bound equals the best function value found so far for the original problem, the original
problem has global minimum −2. This is a happy accident due to special circumstances:
Our problem had already a linear objective function, and the global minimizer was at a
corner of the feasible set. (But as we shall see, we can adapt the technique to work much
more generally if the box is narrow enough.)

It might still be the case that there is a second, undiscovered global minimizer. This can
be checked with multiplier techniques. We use the Lagrange multiplier λ̂ = 2 associated
with the linear constraint of (18) at the solution. The associated linear combination −x1 −
2x2 + 2(1.72x1 + x2 − 1) is bounded by the best known function value −2 of the original
problem, giving 2.44x1 − 2 ≤ −2, hence x1 ≤ 0. Thus we must have x1 = 0, and constraint
propagation using (15) implies x2 = 1. Thus the box has been reduced to x̂, showing that it
is the only global minimizer.

What generalizes? The problem discussed was deliberately kept simple so that the com-
plete solution process could be demonstrated explicitly. In general, constraint propagation
only gives limited reduction. Similarly, relaxed linear or convex programs usually only give
a lower bound on the smallest possible objective function value, but the linear combination
derived from the Lagrange multipliers frequently contains useful information that can be
exploited by constraint propagation to get a further significant box reduction.

If the reduction process stalls or becomes slow, the box is split into two or more smaller
boxes. On the smaller boxes, the same techniques may prove effective, and one alternates box

28

reduction and box splitting until all box sizes are below some termination threshold. Usually,
only very few boxes remain if good enough reduction techniques are used (pathological
exceptions include min x− x s.t. x ∈ [0, 1]). If no box remains, the problem is guaranteed
to have no feasible point.

The total number of boxes processed is a measure of the difficulty of a problem for the
particular algorithm used. Simple problems (like the example discussed above) only need a
single box; in the worst case, an exponential number of boxes may be needed. In the latter
case, time and storage limitations may force a premature termination; in this case the best
point found is not verified to be a global minimizer.

11 Interval arithmetic

Interval analysis, the study of theory and algorithms for computing with intervals, is a
large subject; see Moore [230] (introductory), Neumaier [250] (embedded in a numerical
analysis context) and Neumaier [243] (advanced). Its importance for global optimization
stems from several, interrelated facts:

• Interval analysis gives easily computable (though sometimes only very crude) bounds
on the range expressions.

• Interval analysis allows one to control nonlinearities in a simple way (via centered
forms).

• Interval analysis extends classical analysis in its ability to provide semilocal existence
and optimality conditions, valid within a pre-specified local region around some point,
while classical analysis generally only asserts the existence of such neighborhoods with-
out providing a simple way to find them.

We give here a short introduction to the basics and mention the main techniques useful for
global optimization. General references on interval methods in global optimization include
[4, 29, 30, 31, 64, 77, 78, 152, 156, 157, 130, 131, 173, 176, 245, 276, 277, 328].

If a and b are two intervals we define for ◦ ∈ {+,−, ∗, /,ˆ } the binary operation

a ◦ b := ut{ã ◦ b̃ | ã ∈ a, b̃ ∈ b}, (19)

provided the right hand side is defined. Here

utS = [inf S, supS]

denotes the interval hull of a set of real numbers, i.e., the tightest interval containing S.
A monotonicity argument gives for addition and subtraction

a + b = [a+ b, a+ b], (20)

a− b = [a− b, a− b], (21)

29

and for multiplication and division

a ∗ b = ut{ab, ab, ab, ab}, (22)

a/b = ut{a/b, a/b, a/b, a/b} if 0 6∈ b; (23)

in most cases only two of these products or quotients need to be computed. We also define
elementary functions ϕ ∈ {sqr, sqrt, exp, log, sin, cos, abs, . . .} of an interval a (and similarly
−a, a+, etc.) by

ϕ(a) := ut{ϕ(ã) | ã ∈ a} (24)

whenever the right hand side is defined. Again ϕ(a) can be computed from the value of
ϕ at the endpoints of a and the interior extremal values, depending on the monotonicity
properties of ϕ. Note that, however, |a| is defined as sup abs(a), since this expression figures
prominently in estimates involving interval techniques.

For interval vectors (=boxes) x, analogous definitions apply. We also need the interior

int x = {x̃ ∈ Rn | x < x̃ < x}

of a box x ⊆ Rn.

For details and a systematic study of interval operations see Neumaier [243]; we only
remark here that some rules familiar from real arithmetic fail, and in particular the interval
evaluation of different expressions equivalent in real arithmetic may give different results.
E.g., (with −a := 0− a = [−a,−a])

a + (−a) = a− a 6= 0 except when a = a.

Therefore, we also use the converse inner operations

a⊕ b := [a+ b, a+ b], (25)

aª b := [a− b, a− b]. (26)

Here, expressions of the form ±∞∓∞ in (25) or (26) must be interpreted as −∞ for the
lower bounds and as +∞ for the upper bounds. Note that the result of an inner operation
is not necessarily an interval since it may happen that the lower bound is larger than the
upper bound; giving an empty “interval”.

All these operations are very simple to program. Note that many implementations of inter-
val arithmetic are rather slow since they take care to guarantee correct (and often optimal)
outward rounding, needed when interval arithmetic is used for mathematically rigorous cer-
tification (see Section 20). For global optimization without certification, unsafe interval
arithmetic, which uses the standard rounding for floating point operations, and hence is
significantly faster but may lose containment of points that lie too close to the boundary,
usually suffices if certain safety measures are taken. But it is significantly harder to ensure
robust behavior with unsafe interval arithmetic since occasionally the solution is lost, too.

Important: When using unsafe interval arithmetic, proper safeguards must be taken at
places (such as inner operations and intersections) where intervals might become (spuriously)

30

empty due to accumulation of roundoff errors. In place of an empty result, a thin interval
formed from the arithmetic mean of the two intersecting bounds should be returned in a safe
implementation.

As already mentioned, an interval evaluation f(x) of some expression f often overestimates
the desired range

Range(f,x) = {f(x) | x ∈ x}
of a function. However, under very mild conditions [243, Section 1.4], the evaluation over
small boxes satisfies

f(x) ⊆ Range(f,x) +O(ε) if x− x = O(ε);

we refer to this as the linear approximation property of simple interval evaluation.

Better enclosures, especially for small ε, can be obtained by centered forms; the simplest
of these (but not the most efficient one, see [243, Chapter 2] for better methods based on
slopes) is the mean value form: Due to the mean value theorem, we have

f(x) ∈ f(z) + f ′(x)(x− z) if x, z ∈ x. (27)

In particular, Range(f,x) is contained in f(z) + f ′(x)(x − z), and it can be shown that,
under mild conditions,

f(z) + f ′(x)(x− z) ⊆ Range(f,x) +O(ε2) if x− x = O(ε);

we say that the mean value form (as other centered forms) has the quadratic approxi-
mation property. Recently, centered forms based on higher order Taylor expansions have
found considerable attention; these are able to give significantly sharper bounds in cases
where simple interval evaluation suffers from severe dependence. See the survey Neumaier
[252] and the numerical comparisons in Makino & Berz [208]; cf.also Carrizosa et al.
[50].

Apart from interval evaluation and centered forms, we need interval Newton methods for
verifying solutions of nonlinear systems of equations. The prototype (but again not the most
efficient method; see [243, Chapter 5] for better methods based on slopes and Gauss-Seidel
iteration) is Krawczyk’s [188] method. To check for solutions of F (x) = 0 with x ∈ x,
Krawczyk multiplies the vector version of (27) by a matrix C and subtracts it from x to find

x ∈ K(x, z) := z − CF (z) + (I − CF ′(x))(x− z).

For z ∈ x, the resulting Krawczyk operator K(x, z) (cf. Krawczyk [188], Kahan [168])
has the following properties, typical for interval Newton operators:

(i) Any zero x ∈ x of F lies in x ∩K(x, z).

(ii) If x ∩K(x, z) = ∅ then x contains no zero of F .

(iii) If K(x, z) ⊆ int x then x contains a unique zero of F .

31

(i) and (ii) follow directly from the above derivation, while (iii) is a simple consequence of
Banach’s fixed point theorem.

The most important part is (iii), since, applied to the Karush-John conditions, it allows the
elimination of large regions around a local minimizer; cf. Section 15. However, (i) and (ii)
are also useful as ways of reducing a box or eliminating it, if it contains no zero. This is
implemented in GlobSol [173] and Numerica [328].

Another useful interval Newton operator with analogous properties is

x ∈ N(x, z) := z − (CF [x, z])H(CF (z)),

where C is an approximate inverse of the interval slope F [x, z] and AHb is an enclosure for
the set of solutions of Ax = b, A ∈ A, b ∈ b computed, e.g., by the Hansen-Bliek method
[36, 132, 248].

Convexity check. Interval analysis can be used to check the convexity of a function f : x→
R in some box x. Let G be a matrix of intervals (usually simply called an interval matrix),
calculated as an enclosure of f ′′(x) for x ∈ x, then, with r = max{xk−xk | k = 1, . . . , n}, the
linear approximation property implies that |G− G| = O(r). Such a statement implies that
|G − G̃| = O(r) for all individual matrices G̃ ∈ G, with absolute values taken component-
wise. In particular, if Ĝ is positive definite then, provided the underlying box is not too
wide, all matrices in G are definite, too; and if this is the case, f is convex in x. The
following constructive criterion for simultaneously checking the definiteness of all members
of an interval matrix was given in Neumaier [245].

11.1 Theorem. (Sufficient conditions for convexity)

Let f : x→ R be twice continuously differentiable on the compact box x, and suppose that
G is a symmetric interval matrix such that

f ′′(x) ∈ G for all x ∈ x. (28)

(i) If some symmetric matrix G0 ∈ G is positive definite and all symmetric matrices in G
are nonsingular then they are all positive definite, and f is uniformly convex in x.

(ii) In particular, this holds if the midpoint matrix

Ǧ = (sup G + inf G)/2

is positive definite with inverse C, and the preconditioned radius matrix

∆ = |C| rad G,

where |C| is the componentwise absolute value of C and

rad G = (sup G− inf G)/2,

satisfies the condition
‖∆‖ < 1 (29)

(in an arbitrary norm).

32

Proof. (i) Since the eigenvalues are continuous functions of the matrix entries and the product
of the eigenvalues (the determinant) cannot vanish, no eigenvalue changes sign. Hence the
eigenvalues of all matrices in G are positive, since this is the case for the positive definite
member. Thus all symmetric matrices in G are positive definite. By well-known results,
uniform convexity of f now follows from (28).

(ii) G0 = Ǧ belongs to G, and condition (29) implies strong regularity of the interval matrix
G ([243], Section 4.1) and hence nonsingularity of all matrices in G. Thus (i) applies. ut

In many cases, the Hessian of the augmented Lagrangian can be shown to have the form

f ′′(x) =
∑

uiAi, ui ∈ ui,

with constructively available real matrices Ai and intervals ui = [ǔi − ri, ǔi + ri]. In this
case, the above result can be strengthened (with virtually the same proof) by replacing Ǧ
and ∆ with

Ǧ =
∑

ǔiAi

and
∆′ =

∑
ri|CAi|,

respectively. Indeed, it is not difficult to see that for G =
∑

uiAi, we always have 0 ≤ ∆′ ≤
∆, so that the refined test is easier to satisfy.

Other sufficient conditions for convexity based on scaled Gerschgorin theorems and semidef-
inite programming, form the basis of the αBB method [2, 15] and are given in Adjiman et
al. [4, 3].

12 The branch and bound principle

The branch and bound principle is a general label (invented in [193, 201]) to denote methods
to split a problem recursively into subproblems which are sooner or later eliminated by
showing that the subproblem cannot lead to a point better than (or as least as good as)
the best point found so far. The latter is often checked by computing lower bounds on the
objective function, and the splitting produces new branches in the tree of all subproblems
tried, according to so-called branching rules; hence the name “branch and bound”. But
in practice, the subproblems are best treated in a more flexible fashion, allowing also to
eliminate subproblems only partially.

General references for branch and bound in global optimization include [23, 24, 31, 77, 78,
85, 123, 143, 156, 173, 269, 328]. A thorough discussion of branch and bound in discrete
optimization, with many algorithmic choices that are of potential interest in general global
optimization, is given in Parker & Rardin [265].

33

For a global optimization problem

min f(x)

s.t. x ∈ xinit, F (x) ∈ F, xI integral,
(30)

a natural way to define subproblems is to choose boxes x ⊆ xinit of the initial box xinit, and
to consider the subproblems

min f(x)

s.t. x ∈ x, F (x) ∈ F, xI integral,
(31)

i.e., each subproblem is characterized by (and stored as) the box over which the problem is
solved. The branching process then consists in splitting a box x into two or several smaller
boxes whose union is x. The most typical branching rule is to select a bisection coordinate
j and to split the j-th component of the box at a bisection point ξ. Thus, the current box
x is replaced by two subboxes xlow,xupp with

xlow
k = xupp

k = xk if k 6= j,

xlow
j = [xj , ξ], xupp

j = [ξ, xj].
(32)

This branching rule is termed bisection. The bisection point ξ is often taken as the mid-
point ξ = (xj + xj)/2 of the interval xj; but this fails when there are infinite bounds and
is inefficient when the interval ranges over several orders of magnitude. In this case, a more
useful bisection point is a safeguarded geometric mean, defined by

ξ = sign xj
√
xjxj if 0 < xjxj <∞,

and otherwise
ξ = 0 if xj < 0 < xj,

ξ = min(µ, qxj) if xj = 0,

ξ = max(−µ, qxj) if xj = 0,

ξ = q−1xj if xj > 0,

ξ = q−1xj if xj < 0,

where q ∈]0, 1[is a fixed constant (such as q = 0.01) and variables whose initial interval
contains 0 are assumed to be most likely of magnitude µ.

The branching coordinate is more difficult to choose, but the speed of a branch and bound
algorithm may be heavily affected by this choice. For a good algorithm, the choice should
be scaling invariant, but the details depend on how the algorithm treats the individual
subproblems.

Sometimes, a trisection branching rule is used which splits some component of a box into
three intervals. Also, multisection branching rules may be employed; only one natural
choice is described here. Suppose we know that a subbox x0 of x cannot contain a solution

34

of (30). (In practice, x0 would be the intersection of an exclusion box, cf. Section 11, with
x.) Then we can cover x \ x0 by (at most) 2n subboxes, namely, for j = 1, . . . , n,

x2j−1
k = x2j

k = x0
k if k < j,

x2j−1
j = [xj, x

0
j], x2j

j = [x0
j , xj],

x2j−1
k = x2j

k = xk if k > j.

(33)

However, this may yield long and thin slices and is then rather inefficient.

For a comparison of some branching rules for bound constrained problems see [63, 278, 279].

The bounding rule in its classical variant requires the solution of a convex relaxation,
i.e., a convex (and often linear) optimization problem whose feasible set contains the feasible
set of the subproblem (outer approximation) and whose objective function is at no feasible
point larger than the original objective function (underestimation). If the convex problem
is infeasible, the subproblem is infeasible, too, and can be discarded. If the convex problem
is feasible, its solution provides a lower bound on f(x), and when this lower bound is larger
than the value of fbest for some feasible point xbest known (stored in a list of best feasible
points found so far) we conclude that the subproblem does no longer contribute to the
solution of the global optimization problem and hence can be discarded.

Clearly, this procedure is equivalent to adding the constraint f(x) ≤ f best to the definition
of the subproblem and checking infeasibility of the resulting reduced subproblem. This
suggests a more general approach to defining subproblems by adding other cuts, i.e., derived
inequalities that have to be satisfied at a global minimizer. If these inequalities are linear,
the cuts define hyperplanes and are referred to as cutting planes, cf. Section 16. Branch
and bound methods using cuts are frequently labelled branch and cut.

Another important approach to handling subproblems uses constraint propagation and re-
lated techniques that define reduction (also called tightening, narrowing, filtering or
pruning) rules which serve to reduce (as much as easily possible) the box defining a subprob-
lem without changing its feasible set. If reduction results in an empty box, the subproblem is
eliminated; if not, the subproblem may still have been reduced so much that many branching
steps are saved. Fast and simple reduction rules use constraint propagation, discussed in
Section 14; more expensive rules are discussed in Section 15. The balancing of work done
in reduction versus work saved through less branching is a delicate matter, which at present
more or less depends on ad hoc recipes.

Note that reduction techniques may be applied not only to the original constraints but to
all constraints that must be satisfied at the global minimizer. This includes cutting planes
(see Section 16) and the equations and inequalities derived from the Karush-John optimality
conditions (see Section 5). In particular, software based on interval techniques (GlobSol
[173], Numerica [328]) make essential use of the latter.

35

13 The role of local optimization

Local optimization routines are an important part of most global solvers. They are used for
two different purposes:

(i) to find feasible points if the feasible domain has a complicated definition, and to find
better local minimizers when (after successful tunneling) a feasible point better than the
previously best local minimizer has been found;

(ii) to solve auxiliary optimization problems such as relaxations of the original problem (for
generating improved bounds) or bound constrained approximations (for tunneling).

Relaxation. The auxiliary local optimization problems that need to be solved are simpler
in structure since they ‘relax’ the problem in some way. A relaxation is a modification
of the original problem whose solution is tractable and gives some information about the
possible location of the global minimizer. In the past, mainly linear and convex relaxation
have been used, since for these, local optimization provides global solutions, which usually
implies useful global information about the original problem. We shall discuss various ways
of obtaining and using linear and convex relaxations in Section 16. Nonconvex relaxations
may be useful, too, if they are reliably solvable to global optimality. We therefore discuss
semilinear relaxations – which can be solved by MILP techniques – in Section 18.

Tunneling. One may consider solving a global optimization problem as a sequential
nonlinear programming method (SNLP), where local optimization (NLP) steps that
improve a feasible point to local optimality alternate with tunneling steps that produce
better (nearly) feasible points by some tunneling procedure. For complete methods based
on branching, the ‘tunneling’ is done by finding nearly feasible points during inspection of
the subproblems.

The success of the tunneling step depends on the details of looking for such points. One
strategy (Dallwig et al. [64]) proceeds by solving on selected subboxes nonlinear least
squares problems that minimize the sum of squares of the constraint violations, and (if a best
feasible point with function value f best is already available) the violation of f(x) ≤ f best−∆,
where ∆ ≥ 0 is some measure of minimal gain in function value. Alternatively, one may
use the soft optimality theorem (Theorem 8.1) in place of least squares. (See also [126]
for tunneling by continuation.) Thus, in a sense, the global optimization of (1) consists in
solving a sequence of harder and harder feasibility problems

find x

s.t. x ∈ x, F (x) ∈ F, xI integral,

f(x) ≤ fbest −∆.

(34)

Typical global optimization methods spend perhaps 5% of their time on finding a global
minimizer, and the remaining 95% on the verification that there is no significantly better
feasible point, i.e., showing that the feasibility problem (34) has no solution. Also, hard

36

problems need a significant amount of time to find the first feasible point. Thus the initial
and final (dominant) stages of a global optimization solution process are essentially identical
with that for a feasibility problem.

In particular, general feasibility problems, also called constraint satisfaction problems,
can be as hard as general global optimization problems, and the techniques needed for
solving constraint satisfaction problems are essentially the same as those for solving global
optimization problems.

General considerations. Considerations of superlinear convergence of local optimization
algorithms imply that one generally uses sequential quadratic programming (SQP)
techniques, which solve a sequence of related quadratic programs whose solution converges
(under certain conditions, cf. below) to a local minimizer of the original problem; if the
starting point is feasible (which, initially, need not be the case), the function value of the
local minimizer is at or below that of the starting point.

To give the reader a rough idea of times and difficulties, here are some (completely unreliable
but catchy) rules of thumb. If the time needed to solve a linear program of a certain size is
LP then solving a problem of comparable size and sparsity structure may take perhaps the
time

QP = 5 ∗ LP
for a convex quadratic program,

QP ′ = 10 ∗ LP
for a local minimizer of a nonconvex quadratic program,

SQP = 30 ∗QP

for a convex nonlinear program,
SQP ′ ≥ 200 ∗QP

for a local minimizer of a nonconvex nonlinear program,

GLPf ≥ 100 ∗ SQP

for finding a global minimizer of a nonconvex nonlinear program, and

GLPv ≥ 1000 ∗ SQP

for verifying that it is a global minimizer.

We now comment on the properties of local optimization software that are important for
their use in global optimization. Usually, it is more important that the local solver is fast
than that it is very robust (i.e., guaranteed to succeed), since lack of robustness in some of
the local optimizations is made up for by the structure of the global solution process. To help
control the amount of work done in the local part, it should be possible to force a premature
return with a less than optimal point when some limit (of time or number of function values)

37

is exceeded. Nevertheless, the local solver should be good to ensure that solving a problem
with a unique minimizer (which is automatically global) by the global solver does not take
much longer than a good local solver would need.

Modern nonlinear programming codes are usually “globally convergent” in some sense. The
global convergence proofs (to a local minimizer only!) usually make more or less stringent
assumptions that imply the absence of difficulties in finding feasible points. Formally, we
may say that a local optimization algorithm is globally convergent if there is a continuous
function dfeas : Rn → R (defining a ‘distance to feasibility’) such that

dfeas(x) ≥ 0, with equality iff x is feasible

and the algorithm produces for arbitrary continuous problems and arbitrary starting points
a sequence of xl ∈ Rn satisfying one of the following conditions:
(i) xl converges to the set of points satisfying the Karush-John conditions (and, possibly,
second order necessary conditions);
(ii) dfeas(x

l)→ 0 and f(xl)→ −∞;
(iii) xl converges to the set of points where the objective or some constraint function is not
continuously differentiable;
(iv) dfeas(x

l)→ 0, ‖xl‖ → ∞;
(v) dfeas(x

l) converges to a nonzero local minimum of dfeas.

Conditions (i) and (ii) characterize the achievement of the optimization goal, while conditions
(iii)–(v) characterize various modes of unavoidable failure. Failures of type (iii) or (iv) are
usually attributed to bad modeling or bad choice of the optimization methods. Some methods
such as bundle methods can cope with lack of differentiability hence do not lead to case (iii).

A failure of type (v) is unavoidable if there is no feasible point. However, failures of type
(v) may happen for problems with nonconvex constraints even though feasible points exist.
One could say that from a local point of view, an optimization problem is easy (for an
algorithm) if (v) cannot occur whenever a feasible point exists. A local algorithm may
be considered good if among its easy problems are all problems with convex constraints
only, and all problems satisfying certain strong versions [46] of the Mangasarian-Fromovitz
[210] constraint qualification. Ideally, a good local algorithm would provide in these cases a
certificate of infeasibility whenever it detects case (v).

14 Constraint propagation

In many cases, general constraints can be used to reduce the size of a box in the branch-
ing scheme. The general technique is called constraint propagation and was pioneered
in constraint logic (Cleary [53], Older & Vellino [258]) and interval analysis (Neu-
maier [242]), but has also forerunners in presolve techniques in mathematical programming
(Mangasarian & McLinden [211], Lodwick [202], Anderson & Anderson [14]). See
[18, 29, 30, 51, 127, 148, 171, 326, 327, 328] for further developments, and the COCONUT
report [38] for an extensive recent survey.

38

We follow here the setup by Dallwig et al. [64], which handles linear constraints (and more
generally block separable constraints) without the need to decompose the constraints into
primitive pieces defined by single operations. (In the following, if J is a list of indices, xJ
denotes the subvector of x formed by the components with index in J .)

14.1 Proposition. Let the qk be real-valued functions defined on xJk .

(i) If (for suitable qk, s)

qk ≥ sup{qk(xJk) | xJk ∈ xJk}, s ≥
∑

k

qk, (35)

then, for arbitrary a,

x ∈ x, a ≤
∑

k

qk(xJk) ⇒ qk(xJk) ≥ a− s+ qk for all k. (36)

(ii) If

q
k
≤ inf{qk(xJk) | xJk ∈ xJk}, s ≤

∑

k

q
k
, (37)

then, for arbitrary a,

x ∈ x,
∑

k

qk(xJk) ≤ a ⇒ qk(xJk) ≤ a− s+ q
k

for all k. (38)

Proof. The assumptions of (i) imply

qk(xJk) ≥ a−
∑

l 6=k
ql(xJl) ≥ a−

∑

l 6=k
ql ≥ a+ qk − s,

hence the conclusion in (36) holds. (ii) is proved in the same way. ut

The proposition is applied as follows to reduce the size of boxes by tightening bound con-
straints. Suppose that x ∈ x. For any constraint of the form

a ≤
∑

k

qk(xJk) (39)

we form the quantities (35). (This is straightforward if the qk depend on a single variable
xk only, Jk = {k}; in the most important cases, qk is linear or quadratic in xk, and the
supremum is very easy to calculate; in more complicated cases, upper resp. lower bounds
can be calculated with interval arithmetic.) Then one checks the condition

a ≤ s ; (40)

if it is violated then (39) is clearly inconsistent with x ∈ x (and in the branch and bound
application, the corresponding subproblem can be discarded). If (40) holds, one can exploit

39

the conclusion in (36), provided that one can compute the set of xJk ∈ xJk (or a superset)
such that

qk(xJk) ≥ qk + a− s. (41)

If a is sufficiently close to s then xJk will be forced to be close to the global maximum
of qk over the interval xJk , thus reducing the component xJk and hence the box x. This
procedure can be applied for each k in turn to get an optimally reduced box. One can
similarly proceed for block separable constraints of the form

∑
qk(xJk) ≤ a. (The reader

might wish to reconsider the example in Section 10 in the light of the above result.)

In the separable case (Jk = {k}), computing the set of xk with (41) is easy, especially
for linear or quadratic qk. If qk is nonmonotonic, it may happen that the resulting set is
disconnected; then one has to make a choice between taking its convex hull – which is an
interval –, or of considering splitting the box into subboxes corresponding to the connected
components.

In case of two-sided constraints
∑
qk(xJk) ∈ a, which includes the equality constraint∑

qk(xJk) = q0 for a = q0, one can combine (36) and (38) using interval arithmetic as
follows. (See (25) for the inner addition ⊕.)

14.2 Proposition. Suppose that

qk ⊇ ut{qk(xJk) | xJk ∈ xJk}, r ⊇ a−
∑

k

qk. (42)

(i) If 0 6∈ r then the conditions

x ∈ x,
∑

k

qk(xJk) ∈ a (43)

are inconsistent.

(ii) Any x satisfying (43) also satisfies

qk(xJk) ∈ r⊕ qk for all k. (44)

Proof. (43) implies 0 ∈ a−∑ qk(xJk) ⊆ a−∑qk, hence 0 ∈ r. Now suppose that 0 ∈ r. In
the notation of the previous proposition we have

qk(xJk) ∈ [a− s+ qk, a− s+ q
k
] = [a− s, a− s]⊕ qk,

and since r = a− [s, s] = [a− s, a− s], this implies (44). ut

Again, condition (44) can be used to reduce xJk whenever

qk 6⊆ r⊕ qk. (45)

We give details for the most important case of quadratic (and including linear) functions,
dropping indices for a moment.

40

14.3 Proposition. Let c be an interval, a, b ∈ R, and put

d := (b2 + 4ac)+, w :=
√

d (if d 6= ∅)

Then

{x ∈ R | ax2 + bx ∈ c} =





∅ if d = ∅,
∅ if a = b = 0 6∈ c,

R if a = b = 0 ∈ c,
c

b
if a = 0,

−b−w

2a
∪ −b+ w

2a
otherwise.

Proof. ax2 +bx = c̃ ∈ c is equivalent to x = c̃/b when a = 0, and to x = (−b±
√
b2 + 4ac̃)/2a

otherwise; in the latter case, the expression under the square root must be nonnegative and
hence lies in d. Since the varying c̃ occurs in these formulas only once, the range over c̃ ∈ c
is given by c/b if a = 0 and by (−b±

√
d)/2a otherwise (use monotonicity!). ut

Note that the differences in Proposition 14.1 and the numerators in Proposition 14.3 may
suffer from severe cancellation of leading digits, which requires attention in an actual imple-
mentation.

In the application to reducing boxes, one must of course intersect these formulae with the
original interval. If the empty set results, the subproblem corresponding to the box x can
be eliminated. (But remember to be cautious when using unsafe interval arithmetic!) If a
disjoint union of two intervals results one either splits the box into two boxes corresponding
to the two intervals or one leaves xk unchanged; the first alternative is advisable only when
the gap in the interval is quite large.

All reduction techniques may be used together with the technique of shaving, which may
be seen as an adaptation of the probing technique in mixed integer programming. The idea
is to try to remove a fraction of the range [xi, xi] of some variable xi by restricting the range
to a small subrange [xi, ξ] or [ξ, xi] at one of the two end points of that variable, and testing
whether reducing the small slab obtained in this way results in an empty intersection. If
this is the case, the range of xi can be restricted to the complementary interval [ξ, xi] and
[xi, ξ], respectively. While more expensive, it reduces the overestimation in the processing
of constraints which contain a variable several times. In practice, one would perhaps try to
shave away 10% of the length of an interval.

Consistency concepts. In constraint logic programming (see the book [328] and the
references at the beginning of this section), there are a number of consistency concepts that
describe the strength of various reduction techniques. Essentially, a box is consistent with
respect to a set of reduction procedures if their application does not reduce the box. A
simple recursive argument invoking the finiteness of machine-representable boxes shows that
every box can be reduced to a consistent box with finitely many applications of the reduction
procedures in an arbitrary order. (Depending on the rules used, the resulting reduced box –

41

called a fixed point of the reduction procedures – may or may not depend on the order of
applying the rules.)

From a practical point of view, it is not advisable to apply the available rules until the fixed
point is reached. The reason is that frequently the first few reductions are substantial, and
later ones only reduce the box by tiny fractions; the convergence speed may be arbitrarily
slow. For example, for the pair of constraints x1 + x2 = 0, x1− qx2 = 0 with q ∈]0, 1[, where
the unique fixed point (with respect to the simple reduction described above) reduces the
volume in each step by a factor of q. For q close to one, this is very inefficient compared to,
say, a linear programming relaxation (which gives the result immediately).

Thus one has to be selective in practice, using suitable strategic rules for when to use which
reduction strategy. The choice is usually done by various ad hoc recipes that balance the
likely gain and the amount of work needed. Moreover, fine-grained interaction between
different computations to avoid some unnecessary computation, such as that described in
Granvilliers [116] may be decisive in getting optimal performance.

Semiseparable constraints. With some more work, the above techniques can be utilized
also for semiseparable constraints. We need the following result.

14.4 Lemma. If A is a rectangular matrix such that ATA is nonsingular then

|uk| ≤
√

((ATA)−1)kk‖Au‖2 for all u.

Proof. Let A = QR be an orthogonal factorization of A with QTQ = I and R square
nonsingular. Then ATA = RTR and ‖Au‖2 = ‖Ru‖2. Since

|uk| = |(R−T e(k))TRu| ≤ ‖R−T e(k)‖2‖Ru‖2,

‖R−T e(k)‖2
2 = (e(k))TR−1R−T e(k) = ((RTR)−1)kk,

the assertion follows. ut

Now suppose that we have a semiseparable inequality of the form

∑

k

qk(xk) + (x− x0)TH(x− x0) ≤ a, (46)

with possibly nonsymmetric H. Using a modified Cholesky factorization [107, 290]

H +HT = RTR−D

with a (nonnegative) diagonal matrix D, we can rewrite (46) as

0 ≤ 1

2
‖R(x− x0)‖2

2 ≤ a−
∑

k

qk(xk) +
1

2
(x− x0)TD(x− x0). (47)

42

The right hand side of (47) is a separable quadratic form, hence can be written as a−∑ q̃k(xk)
with q̃k(xk) = qk(xk) − 1

2
Dkk(xk − x0

k)
2. Therefore, Proposition 14.1(ii) applies. Moreover,

one gets the extra inequality
‖R(x− x0)‖2

2 ≤ 2(a− s),
which, together with the lemma gives the further inequalities

|xk − x0
k| ≤

√
2(a− s)((RTR)−1)kk, (48)

which may help to reduce xk.

Block separable constraints. For only block-separable constraints (|Jk| > 1), the qk are
multivariate, and one needs to resort to suboptimal interval techniques.

How to exploit the enclosures from Proposition 14.1 and 14.2 to reduce the box depends on
the special form of the qk. In many cases, one can in turn solve the conditions directly for
each variable involved, substituting an enclosing interval for all other variables.

If this is not possible directly one can use the mean value form (or another centered form)
to rewrite a constraint Fi(x) ∈ Fi as

Fi(ξ) + F ′(x)(x− ξ) ∩ Fi 6= ∅;

this is now a separable expression with interval coefficients that can be processed as above
to reduce the box. This way of proceeding, dating back to Neumaier [242], is called
conditioning in [328], and used in the Numerica [328] package. Similarly, by using a Taylor
expansion to second order with an interval Hessian, one gets a semiseparable expression
with interval coefficients that can in principle be processed as above. (However, the interval
coefficients cause here additional complications.) In the context of Taylor models of arbitrary
order, a variation of this (with thin coefficients and an interval remainder term) has been
used in the linear dominated bounder of Makino [207]; cf. the discussion in [208, 252].

15 The cluster problem and second-order information

When programming a simple branch and bound algorithm for global optimization, one
quickly notices that it is fairly easy to eliminate boxes far away from the global minimizer,
while, especially in higher dimensions, there remains a large cluster of tiny boxes in a neigh-
borhood of the global minimizer that is difficult to eliminate. The occurrence of this situation
is called the cluster problem. Often, algorithms try to avoid the cluster problem by pro-
viding only a ∆-optimal solution; i.e., the program stops when it has shown that there is no
feasible point with an objective function value of f best−∆, where fbest is the function value
of the best feasible point found so far. However, when ∆ is small (as one wants to have it)
then the cluster problem is still present, although to a less pronounced degree.

Kearfott & Du [175] studied the cluster problem for unconstrained global optimization,
and discovered that the source of the problem was the limited accuracy with which the

43

function values were bounded. In particular, they showed that the cluster problem disappears
if, for x in a box of diameter O(ε), one can bound the overestimation of f(xbest)− f(x) by
O(ε3). Here we give a simplified version of their result.

Let x̂ ∈ Rn be a global minimizer of f(x), and let Ĝ be the Hessian at x̂. Near the global
minimizer, we have

f(x) = f(x̂) +
1

2
(x− x̂)T Ĝ(x− x̂) +O(‖x− x̂‖3)

since the gradient vanishes at x̂. Suppose we can bound the objective function value over
a box of diameter ε with an accuracy of ∆ = Kεs+1, s ≤ 2. Then no box of diame-
ter ε containing a point x with 1

2
(x − x̂)T Ĝ(x − x̂) + O(‖x − x̂‖3) ≤ ∆ can be elimi-

nated. For sufficiently small ∆, this describes a nearly ellipsoidal region with volume pro-

portional to

√
(2∆)n/ det Ĝ, and any covering by boxes of diameter ε contains at least

const

√
(2∆)n/(εn det Ĝ) boxes. The number of uneliminated boxes is therefore proportional

to at least

(const/ε)n/2/
√

det Ĝ if s = 0,√
constn/ det Ĝ if s = 1,√
(const · ε)n/ det Ĝ if s = 2.

We see that for s = 0, the number grows immensely as ε gets small. For s = 1, the number of
boxes needed – while (for small ε) essentially independent of ε – may still grow exponentially
with the dimension, and it is especially large for problems where the Hessian at the solution
is ill-conditioned. However, the number is guaranteed to be small (for small ε) when s = 2.

For pure constraint satisfaction problems, a similar cluster effect is present (Schichl &
Neumaier [288]), but with order reduced by one; thus the quadratic approximation prop-
erty available from methods exploiting first order information only (such as centered forms)
already avoids the cluster effect, except in degenerate cases. However, especially near poorly
conditioned solutions, the size of boxes that can be eliminated is significantly larger if second-
order information is used [288]. In case of nonisolated solution sets, some clustering seems
unavoidable, but Lyapunov-Schmidt reduction techniques (Neumaier [247]) might prove
useful. The problem of covering nonisolated solution sets efficiently with a small number of
boxes is discussed in considerable algorithmic detail by Vu et al. [332, 333] for the case of
pure constraint satisfaction problems; see also Chapter 7 of the COCONUT report [38].

For constrained global optimization, similar arguments as for the unconstrained case apply in
a reduced manifold with the result that, in the formulas, n must be replaced by n−a, where
a is the maximal number of constraints active at the solution, with linearly independent
constraint gradients.

Clearly, to bound the overestimation over a box of diameter O(ε) by O(ε3) requires that one
knows the Hessian up to O(ε), and that one is able to bound the deviation from a quadratic
model. (Actually, the above argument shows that o(ε2) is sufficient, but this still requires
the knowledge of the Hessian up to o(1).) Thus it is necessary to have access to second-order

44

information. Unfortunately, in higher dimensions, no cheap method is known that bounds
function values over an arbitrary narrow box of diameter O(ε) close to a minimizer by O(ε3).
In a single dimension, cheap methods are known; see Cornelius & Lohner [58] and [243,
Section 2.4]. In dimension > 1, peeling methods together with Taylor expansions work with
an effort that grows like O(n3 · 3n); see the discussion in Neumaier [252, Section 5].

Fortunately, however, it turns out that by using interval Hessian matrices (which, for 3-times
differentiable functions have the required O(ε) accuracy, see [243, Section 1.4]), there are sev-
eral ways to avoid the cluster problem, at least when the global minimizer is nondegenerate,
i.e., satisfies the second-order sufficient conditions for a local minimizer.

Explicit global Hessian information can be used, as in GlobSol [173] and Numerica [328], by
interval Newton methods (see Section 11) applied to the Karush-John conditions discussed in
Section 5. These may verify the existence of a unique solution of the Karush-John conditions
(Theorem 5.1 and equation (7)) in some box around the best point found, and hence allow
to shrink that box to a single point.

Alternatively, one may use global Hessian information to verify the second-order sufficient
conditions for a global minimizer given in Neumaier [245]. They apply to smooth nonlinear
programs of the form

min f(x)

s.t. x ∈ x, F (x) = 0.
(49)

Thus it is necessary to introduce slack variables to rewrite general inequality constraints as
equality constraints. The sufficient condition is as follows.

15.1 Theorem. Let x̂ be a Kuhn-Tucker point for the nonlinear program (49), with asso-
ciated multiplier z, and let

y := f ′(x̂)T − F ′(x̂)T z, (50)

D = Diag

(√
2|y1|
x1 − x1

, . . . ,

√
2|yn|

xn − xn

)
. (51)

If, for some continuously differentiable function ϕ : Rm → R with

ϕ(0) = 0, ϕ′(0) = zT , (52)

the generalized augmented Lagrangian

L̂(x) := f(x)− ϕ(F (x)) +
1

2
‖D(x− x̂)‖2

2 (53)

is convex in [u, v], then x̂ is a global solution of (49). Moreover, if L̂(x) is strictly convex in
[u, v], this solution is unique.

A choice for ϕ that works in some neighborhood of a strong global minimizer (i.e., one in
which sufficient second-order conditions for local optimality hold) is given in [245], together
with further implementation hints. The convexity can be checked by means of interval

45

arithmetic; see Section 11. If these conditions hold in some box, one can shrink this box to
a single point.

One can use any of these techniques to construct boxes y that are guaranteed to contain no
global minimizer except if already detected, resulting in exclusion constraints. An exclusion
constraint is a constraint of the form

x 6∈ y.

It can be used to reduce an arbitrary box x by intersecting it with y and taking the interval
hull, which may result in a smaller box. If there was no reduction but the intersection is
strictly contained in x, one may also want to resort to multisection, cf. (33). Interesting
exclusion boxes are those that are constructed around local minimizers, since this helps
fighting the cluster problem.

It is possible (though probably not most efficient) to base global optimization algorithms
on exclusion methods alone; see the work of Georg et al. [12, 105, 106], who also give
associated complexity results.

Backboxing. Whenever we have a tentative approximate global minimizer x̃, we try to find
simultaneously a large box x and a tiny box z such that any global minimizer x̂ ∈ x satisfies
x̂ ∈ z. This allows to use x as an exclusion region while z is stored in an output list as a
box containing a putative minimizer. (After terminating the branching process, these boxes
need to be checked again for possible elimination.)

Since we expect that x̃ has a function value optimal within O(ε), but knowing that this only
enforces that x̃ has an accuracy of O(

√
ε) (possibly less in case of singular Hessians), we

start with a box
x = [x̃−√εu, x̃+

√
εu]

for some vector u reflecting the scaling of the variables, and apply the available reduction
techniques until no significant improvement results. Call the resulting box z. If second-order
techniques are used to do the box reduction, then z is usually a tiny box or empty.

If z is empty, x̃ was not a good approximation but we know that x contains no solution.
If z is nonempty, it is likely that z contains a solution. Indeed this is always the case if
only interval Newton-like reduction techniques are used and z ⊆ int x. (This requires some
qualifying conditions that ensure that one can verify sufficient existence conditions such as
those in Neumaier [243, Chapter 5.3-4].) Thus one may store z in a list of output boxes
together with a flag whether existence (and possibly uniqueness) was verified.

If z is still a box of significant size, we must have been close to a degeneracy; splitting would
probably not improve this and lead to an exponential number of boxes; thus it is preferable
to put this box also in the list of output boxes to indicate that a low resolution candidate for
a solution has been found. (This way of handling degeneracies is due to Kearfott [172].)

No matter what case we have been in, we always know that x cannot contain a solution not
yet in the output list. Therefore, we may add the exclusion constraint x /∈ x to the problem

46

description. However, one can often make x even bigger. So we try recursively

x0 = x, z0 = z, but z0 = mid(x) if z = ∅,

xl = 2xl−1 ª zl−1, zl = reduce(xl);

using the available ways of reducing xl, stopping when zl ⊆ xl−1 or zl = xl. (For the inner
subtraction ª, see (26).) Then we have the generally stronger new exclusion constraint
x /∈ xl. (This way of generating exclusion constraints, using interval Newton methods, is
due to Van Iwaarden [329], who calls the technique backboxing, and is part of GlobSol
[173].) Recent methods by Schichl & Neumaier [288] for constructing large exclusion
boxes can be combined with this iterative approach.

Finite termination. Closely related to the cluster problem is the question of finite ter-
mination, i.e., whether branch and bound algorithms find (assuming exact arithmetic) a
global optimizer with a finite amount of branching only. This is not easy to achieve, and
in practice, most algorithms are content with working towards ε-optimality, i.e., finding a
(nearly) feasible point within ε of the true but unknown optimal function value.

Theoretical finite termination guarantees are available only for problems where the optimum
is attained at an extreme points (Al-Khayyal & Sherali [11], Shectman & Sahinidis
[293]). However, in practice, algorithms based on the explicit use of second-order interval
information (either via interval Newton operators or via second-order sufficient conditions)
have finite termination behavior on problems with a nondegenerate global minimizer, and it
is likely that this can be proved theoretically.

In case of degeneracies, behavior of branch and bound methods can become arbitrarily
poor. However, the situation may improve in cases where the degeneracy can be removed
by identifying and eliminating redundant constraints causing the degeneracy. To do this
rigorously requires care; see Huyer & Neumaier [146] for first results in this direction.

16 Linear and convex relaxations

One of the highly developed sides of global optimization is the use of linear and convex
relaxations to find a lower bound for the value of the objective function, which makes it
possible to discard boxes where this lower bound is larger than the function value f best of the
best feasible point found so far. The details are well-covered in several books [85, 86, 309],
so we are brief here and only describe the basic issues and recent extensions that are not
widely known.

Reformulation-linearization. McCormick [215] introduced the notion of a factorable
function (composed of finitely many unary or binary operations), and constructed nonsmooth
convex relaxations for such functions. Kearfott [171] (and perhaps others before him)
noticed that by introducing intermediate variables, every factorable optimization problem
can be rewritten in a form in which all constraints are unary, z = ϕ(x), or binary, z = x ◦ y.
Independently, Ryoo & Sahinidis [282] proposed to use in place of these constraints implied

47

linear constraints (so-called linear relaxations) to generate a set of linear inequalities
defining a polyhedral outer approximation. Since the objective can be represented by a single
variable and another constraint, this allows one to find a linear programming relaxation for
arbitrary factorable optimization problems.

Linear relaxations for unary operations are easily found by a simple graphical analysis of the
various elementary functions. In particular, for a convex function, the secant between the
endpoints of the graph is an overestimate, and any tangent is an underestimate; frequently,
taking the two tangents at the end points is already quite useful. For concave functions, the
reverse situation holds, and in the general case one also may need to consider bitangents,
and tangent secants. Since powers can be written in terms of exp, log and the product, the
only binary operations that need to be analyzed are products and quotients.

Assuming that bounds x ∈ x, y ∈ y for the factors are available, McCormick proposed for
the product z = xy the relaxations

yx+ xy − xy ≤ z ≤ yx+ xy − xy,

yx+ xy − xy ≤ z ≤ yx+ xy − xy,
which follow immediately from (x − x)(y − y) ≥ 0 and three similar inequalities. Al-
Khayyal & Falk [9] showed later that these inequalities are indeed best possible in the
sense that any other generally valid linear inequality is a consequence of these and the bound
constraints. (One says they form the convex and concave envelope.)

For the quotient x = z/y, exactly the same formulas are valid with x = z/y, but remarkably,
one does not get the envelope in this way. For example, the following inequality, due to
Zamora & Grossmann [342], is not implied.

16.1 Proposition. Let x,y, z be nonnegative intervals. If x ∈ x, y ∈ y, and z = xy ∈ z
then

xy ≥
(z +

√
zz

√
z +
√
z

)2

. (54)

(54) describes a convex set in the nonnegative orthant of R3, although the inequality itself is
not convex. However, it is the prototype of a convex conic constraint (see below) and can be
exploited by solvers for second order cone programs. therefore, adding this constraint gives
a relaxation that may be tighter than the McCormick relaxation. The general formulas for
the convex envelope of a quotient, derived explicitly in Tawarmalani & Sahinidis [309],
are quite complicated.

Crama [60] showed that the following bounds define the optimal convex relaxation of a
product of factors bounded in [0, 1].

16.2 Proposition. If xi ∈ [0, 1] (i = 1 : n) and z = x1 · · · xn then

1− n+
n∑

k=1

xk ≤ z, 0 ≤ z ≤ xi ≤ 1 (i = 1 : n). (55)

48

More generally, arbitrary multilinear functions have an optimal convex relaxation (the enve-
lope) defined by finitely many linear inequalities. For this result, and for other methods for
getting linear relaxations of nonconvex programs based on the reformulation-linearization
technique, see Rikun [280], Sherali et al. [294, 296, 297, 298], and Al-Khayyal et al.
[10], Audet et al. [17]. Related is the lift-and-project technique in mixed integer linear
programming; see, e.g., Balas et al. [21].

Note that this approach using the factorable or a nearly factorable form generally results in
problems with many more variables than in the original problem formulation. Nevertheless,
since the resulting linear or convex programs are extremely sparse, the technique can be
very useful, especially for larger problems. In particular, this is the main workhorse of the
global optimization packages BARON [309] and LINGO [103]. Because linear programming
solvers are currently much more reliable and faster than general convex solvers, the convex
envelopes used in BARON [309] are in fact approximated by a number of linear constraints
computed adaptively with a variant of the sandwich algorithm Rote et al. [45, 281].

Independent of the way a linear relaxation is produced (see below for alternatives which work
without additional variables), the information in the linear relaxation can be exploited not
only to get lower bounds on the objective or to eliminate a subproblem, but also to reduce
the box. Based on Lagrangian multipliers cheap marginals-based range reduction techniques
for doing this are described in Tawarmalani & Sahinidis [309] and are implemented
in BARON. Recent results of Lebbah et al. [195, 196] show that the more expensive
approach of minimizing and maximizing each variable with respect to a linear relaxation
(which BARON 5.0 did only at the root node of the branch tree) may give a significant
speedup on difficult constraint satisfaction problems, and are now part of the default strategy
in BARON 6.0.

Semidefinite relaxations. Starting quite recently, a large number of papers, e.g., Chesi
& Garulli [52], Jibetean & De Klerk [161], Kojima et al. [98, 178, 179, 180, 183, 184],
Lasserre [194], Meziat [220], Parrilo et al. [102, 266, 267, 268], appeared that propose
the use of semidefinite relaxations or convex conic relaxations to solve polynomial
constraint satisfaction and global optimization problems. These techniques are implemented
in two software packages, GloptiPoly (Henrion & Lasserre [135, 136, 137]) and SOS-
TOOLS (Prajna et al. [273]). Being developed completely independent from the main-
stream in global optimization, these packages do not incorporate any of the other global
techniques, and hence are currently restricted to problems with few variables (say, below
20). But since they are able to solve many of these problems to global optimality without
doing any branching, their combination with the other techniques, in particular with branch
and bound, appears to be highly promising.

The background of these methods is that constraints of the form
∑

k

xkAk is positive semidefinite, (56)

where the Ak are symmetric (or complex Hermitian) matrices, so-called semidefinite con-
straints, define convex sets, and that constraints of the form

‖Ax− b‖2 ≤ aTx+ α

49

or
‖Ax− b‖2

2 ≤ xixj, xixj ∈ R+,

so-called second-order cone constraints, describe convex conic sections. Problems with a
linear or convex quadratic objective and an arbitrary number of such constraints (in addition
to linear constraints) can be efficiently solved using interior point methods. Therefore, convex
conic and semidefinite relaxations of nonlinear constraints can be efficiently exploited. Books
and surveys emphasizing the nonlinear case include [8, 68, 323, 311, 322, 337]; for software,
see the semidefinite programming homepage (Helmberg [134]) and the package SEDUMI
[291, 305], on which both GloptiPoly and SOSTOOLS are based.

The basic idea behind semidefinite relaxations is the observation that given any set of basis
functions ϕi(x) and any nonnegative weight function w(x), the matrix M with components

Mik = w(x)ϕi(x)ϕk(x)

is always symmetric and positive semidefinite. If the ϕi and w are polynomials then the
entries of M are also polynomials, and by introducing auxiliary variables zj for the elements
of a basis of polynomials of sufficiently high degree, one can write both the entries of M and
any polynomial objective or constraint as a linear combination of the zj. The condition that
M is positive semidefinite gives therefore rise to a semidefinite constraint. Possible choices for
w(x) can be easily made up from the constraints. Moreover, given an equality constraint, any
multiple by a polynomial is another equality constraint, and given two inequality constraints
u(x) ≥ 0 and v(x) ≥ 0, their product is again such a constraint. Thus lots of additional
polynomial constraints can be generated and used. Results from algebraic geometry can
then be invoked to show that infeasibility and ε-optimality can always be achieved by using
sufficiently high degrees, without the need of any problem splitting. Apparently, in many
cases, relatively low degrees suffice, which is fortunate since the number of intermediate
variables would otherwise become excessively large. Moreover, problem symmetry can be
exploited by using basis sets with corresponding symmetry properties (Gatermann &
Parrilo [102]).

The conic and semidefinite relaxations produced in this way also result in problems with
many more variables than in the original problem formulation, but since semidefinite re-
laxations are often much stronger than linear relaxations, the effort required to solve these
large problems may be well spent if a subproblem is solved without the need of splitting
it into many smaller pieces. Since problems with semidefinite constraints involving larger
matrices are more expensive to solve than those with convex conic constraints, the latter
are in principle preferable, but conclusive results on the best way of using or combining the
various possible relaxations are not yet available.

For semidefinite relaxations of certain fractional functions see Tawarmalani & Sahinidis
[307, 308].

Relaxations without extra variables. In place of introducing additional variables for
nonlinear intermediate expressions, it is also possible to relax the original constraints directly.
Apart from McCormick’s [215] nonsmooth convex relaxations, which are difficult to use,
this can be done in two different ways.

50

The first possibility is to write the constraints as a difference of convex functions (DC rep-
resentation). The package αBB (see Adjiman et al. [2, 3, 4, 5, 15]) uses DC-techniques,
by separating in each inequality constraint h(x) ≤ 0 a recognizable linear, convex or con-
cave parts from a ’general’ remainder. Linear and convex parts are kept, concave parts are
overestimated by secant type constructions, and general terms are made convex by adding
a nonpositive separable quadratic function. This ensures that a convex underestimating in-
equality results. More specifically, if f(x) is twice continuously differentiable at all x in a
neighborhood of a box x and D is a diagonal matrix with nonnegative entries then

frel(x) := f(x) +
1

2
(x− x)TD(x− x)

is an underestimator of f(x) on the box, and the amount of underestimation is bounded by

|frel(x)− f(x)| ≤ 1

8
rad xTD rad x, (57)

attained at the midpoint. (At the vertices there is no overestimation.) If the Hessian G(x)
lies in the interval matrix G for all x ∈ x (such a G can be found by interval evaluation
of the Hessian, e.g., using automatic differentiation) and all symmetric matrices in G +
D are positive semidefinite then frel is convex. The latter condition can be checked as
in Theorem 11.1; the difficulty is to choose D in such a way that this condition holds
and the underestimation bound in (57) is kept small but the work for getting D remains
reasonable [3, 4]. Recent, more advanced convexity-enforcing corrections are discussed in
Akrotirianakis & Floudas [6].

More general DC-techniques are treated extensively from a mostly theoretical point of view
in the book by Horst & Tuy [144]; see also the overview in Tuy [320]. Apart from what
is used in αBB (and described above), these techniques have not materialized in available
codes; however, see, e.g., An & Tao [13] for some recent numerical results.

General techniques for recognizing convexity automatically are discussed in forthcoming work
of Fourer [96] and Maheshwari et al. [206]. Other questions related to the semidefinite-
ness of an interval matrix are discussed in Jaulin & Henrion [159].

The second possibility is to use centered forms. The Frontline Interval Global Solver con-
structs linear enclosures based on a centered form (in fact a first order Taylor form),

f(x) ∈ f + cT (x− z), (58)

using forward propagation in an automatic differentiation like manner, described in Kolev
& Nenov [186]. Since the coefficients of the linear term in (58) are real numbers, this
directly gives two parallel linear functions which underestimate and overestimate f(x).

f + cT (x− z) ≤ f(x) ≤ f + cT (x− z).

The COCONUT environment constructs a centered form using slopes and automatic differ-
entiation like backward propagation according to formulas given in Schichl & Neumaier
[289], from which linear enclosures are constructed. Indeed, given a centered form

f(x) = f̃ + s̃T (x− z), f̃ ∈ f , s̃ ∈ s,

51

we have the linear underestimator

f(x) ≥ γ + cT (x− x),

where

γ = f + sT (x− z), ci =
si(xi − zi)− si(xi − zi)

xi − xi
.

A similar formula provides a linear overestimator. Geometrically, the formulas amount to
enclosing the double cone defined by the centered form by a pair of hyperplanes; since linear
functions are separable, the formulas derived from an analysis of the univariate case can be
applied componentwise.

17 Semilinear constraints and MILP

Let us call a constraint semilinear if, for arguments x in a bounded box x, it is equivalent
to a finite list of linear constraints and integer constraints; usually the latter involve addi-
tional auxiliary variables. The objective function f(x) is called semilinear if the inequality
f(x) ≤ x0, where x0 is an additional variable, is semilinear. A semilinear program is an
optimization problem with a semilinear objective function and a bounded feasible domain
defined by semilinear constraints only. Since we can rewrite an arbitrary global optimization
problem

min f(x)

s.t. x ∈ C
in the form

min x0

s.t. x ∈ C, f(x) ≤ x0,

it is clear from the definition that any semilinear program can be rewritten as a mixed integer
linear program by the introduction of additional variables.

The remarkable fact that every factorable optimization problem can be arbitrarily closely
approximated by semilinear programs (see Section 18) implies that one can use MILP soft-
ware to obtain arbitrarily good approximate solutions of factorable optimization problems.
To make this observation computationally useful we need to handle two tasks:

(i) Find interesting classes of semilinear constraints and constructive procedures for trans-
lating such constraints into linear and integer constraints.

(ii) Show how to approximate factorable constraints by semilinear constraints; see Section
18.

In this section we look at task (i). This is in principle well-known, but usually considered
to be part of the modeling process. For good overviews of the modeling related issues see,
e.g., Floudas [85, Section 7.4], Williams [336] and (in German) Kallrath [169]. Here
we simply give the underlying mathematical substance.

52

All linear constraints and integer constraints are trivially semilinear. A binary constraint

z ∈ {0, 1}

is semilinear since it can be written in the equivalent form

z ∈ [0, 1], z ∈ Z.

We call a list xK of variables constrained by

∑

k∈K
xk = 1, xk ∈ {0, 1} (k ∈ K), (59)

where K is some index set, a binary special ordered set (BSOS), cf. [66, 26]. Note that a
BSOS is a special ordered set of type 1, and can be handled efficiently by most MILP codes.
Clearly, the constraint

xK is a BSOS (60)

is also semilinear. Because (59) can hold only if all but one of the xk (k ∈ K) vanish, (60)
is equivalent to requiring that

xK = e(k) for some k, (61)

where e(k) is the unit vector with a one in position k and zeros elsewhere. (A binary special
ordered set of size two is just a pair of complementary binary variables, and one of its variables
is redundant.) Since special ordered sets, defined more generally as sets of variables such
that at most one – type 1 – or two (which then must be adjacent) – type 2 – are nonzero,
are ubiquitous in MILP formulations, any MILP solver has special facilities to make efficient
use of special ordered sets.

Many techniques for translating semilinear constraints are consequences of the following
basic result.

17.1 Theorem. Let Fk : C0 → Rmk(k = 1, . . . , d) be scalar- or vector-valued functions such
that

Fk(x) ≥ F k for all x ∈ C0 (62)

with finite F k ∈ Rmk . Then there is a point x ∈ C0 such that

F1(x) ≥ 0 ∨ . . . ∨ Fd(x) ≥ 0 (63)

if and only if there are z ∈ Rd and x ∈ C0 such that

z is a BSOS, (64)

Fk(x) ≥ F k(1− zk) for all k = 1, . . . , d. (65)

(The symbol ∨ denotes the logical operation or. The operation and is simply given by the
comma, and we follow the convention that the comma is binding stronger than ∨.)

53

Proof. If (63) holds then Fk(x) ≥ 0 for some k, and z = e(k) satisfies (64) and (65).
Conversely, if (64) holds then z = e(k) for some k, and (65) implies Fk(x) ≥ 0; the other
constraints in (65) are automatically satisfied because of (62). ut

Note that (62) can always be satisfied if C0 is bounded and the Fk are continuous.

A constraint of the form (63) is called a disjunctive constraint. The theorem implies that
linear disjunctive constraints, where all Fk(x) are affine functions of x, are semilinear if the
Fk have known, finite lower bounds on the feasible domain (bound qualification), since
then (65) consists of linear constraints. In the following, we shall always silently assume the
bound qualification. (In practice, this is usually enforced where necessary by ad hoc “big M”
domain restrictions. In rigorous solvers, this is of course forbidden.)

More generally, linear disjunctive constraints of the form

A1x ∈ b1 ∨ . . . ∨ Adx ∈ bd (66)

are semilinear since we can rewrite each Akx ∈ bk in the form
(
Akx− bk
bk − Akx

)
≥ 0.

Note that we can rewrite (66) in the equivalent form

Akx ∈ bk for some k ∈ {1 : d}. (67)

Since many practically relevant constraints can be cast in the form (66), this makes the
theorem a very useful tool for recognizing semilinear constraints and translating them into
a MILP formulation. (There is also an extended literature on disjunctive programming not
based on transformations to MILP; for pointers see [20, 160, 295].)

For example, semicontinuous (semiinteger) variables are variables xk constrained by

xk = 0 ∨ xk ∈ a (68)

and
xk = 0 ∨ xk ∈ a; xk ∈ Z, (69)

respectively, which are semilinear constraints.

A numerical special ordered set (NSOS) is a vector λ ∈ Rd such that

λ ≥ 0,
d∑

k=1

λk = 1,

at most two λk are nonzero, and nonzero λk must have adjacent indices. Since the latter
condition can be formulated as

λk + λk+1 = 1 for some k,

54

it is disjunctive; hence the constraint

xK is a NSOS (70)

is semilinear. Note that a NSOS is a special ordered set of type 2, and can be handled
efficiently by most MILP codes.

An exclusion constraint of the form

x 6∈ int x, (71)

where x is a box, is semilinear since it is a disjunction of the constraints

xk ≤ xk ∨ xk ≥ xk.

Propositional constraints. If xk denotes a binary variable which has the value 1 iff a
corresponding logical proposition Pk holds then

P1 ∨ . . . ∨ PK iff x1 + . . .+ xK ≥ 1,

P1 ∧ . . . ∧ PK iff xk = 1 for k = 1 : K,

P1 ⇔ P2 iff x1 = x2,

P1 ⇒ P2 iff x1 ≤ x2,

P1 ∨ . . . ∨ PK ⇒ PK+1 ∨ . . . ∨ PL iff xk ≤ xK+1 + . . .+ xL for k = 1 : K.

Conditional linear constraints of the form

Ax ∈ a if Bx < b (72)

are semilinear since (72) is equivalent to

Ax ∈ a ∨ (Bx)1 ≥ b1 ∨ . . . ∨ (Bx)d ≥ bd,

where d is the number of rows of B and b. (Conditional linear constraints with = or ≤
in place of < in (72) are apparently not semilinear in general since their disjunctive form
contains strict inequalities, which – according to our definition – are not regarded as linear
constraints. However, conditional linear constraints where the condition involves only integer
variables and rational coefficients are semilinear since the condition can be replaced by an
equivalent strict inequality condition.)

Certain minimum and maximum constraints are also semilinear. A constraint of the
form

aTx ≤ min
i=1:d

(Ax− b)i (73)

is equivalent to the linear constraints

aTx ≤ (Ax− b)i for i = 1 : d.

The reverse constraint
aTx ≥ min

i=1:d
(Ax− b)i (74)

55

is equivalent to the linear disjunctive constraint

aTx ≥ (Ax− b)1 ∨ . . . ∨ aTx ≥ (Ax− b)d.

Similarly, a constraint of the form

aTx ≥ max
i=1:d

(Ax− b)i (75)

is equivalent to the linear constraints

aTx ≥ (Ax− b)i for i = 1 : d,

and the reverse constraint
aTx ≤ max

i=1:d
(Ax− b)i (76)

is equivalent to the linear disjunctive constraint

aTx ≤ (Ax− b)1 ∨ . . . ∨ aTx ≤ (Ax− b)d.

The constraints
aTx = min

i=1:d
(Ax− b)i, (77)

aTx = max
i=1:d

(Ax− b)i (78)

are also semilinear, since they are equivalent to (73), (74) and (75), (76), respectively. In
particular, linear complementarity constraints [33], defined by

min(aTx− α, bTx− β) = 0 (79)

are semilinear. Their MILP reformulation needs a single binary variable only since the
associated BSOS has size two.

Linear complementarity constraints arise in bilevel programming, see, e.g., [28, 203, 259, 299,
331], in which the inner optimization problem is a linear program. See, e.g., Grossmann
& Floudas [125] for solving bilevel programs as mixed integer problems.

Constraints of the form
aTx− α ≤ |bTx− β|, (80)

aTx− α = |bTx− β|, (81)

aTx− α ≥ |bTx− β| (82)

are semilinear since we can write the absolute value in the form |bTx − β| = max(β −
bTx, bTx−β); again a single binary variable suffices for the MILP formulation. In particular,
a constraint

α ≤ |x| ≤ β (83)

can be modeled as

(α + β)z − β ≤ x ≤ (α + β)z − α, z ∈ {0, 1}.

56

Certain other piecewise linear constraints are also semilinear. Of particular interest are
those of the form

aTx ≤ ϕ(xi), (84)

where ϕ is a continuous, piecewise linear function of a single variable with a finite number
of derivative discontinuities. Let ξ0 < ξ1 < . . . < ξd be a list of nodes such that xi ∈ [ξ0, ξd]
and ϕ is linear in each interval [ξk−1, ξk]. Then

ϕ(ξ) = ϕk + ϕ′k(ξ − ξk) for ξ ∈ [ξk−1, ξk], (85)

where

ϕk = ϕ(ξk), ϕ′k =
ϕ(ξk)− ϕ(ξk−1)

ξk − ξk−1

.

Therefore, (84) can be rewritten as a disjunction of the d constraints

xi ∈ [ξk−1, ξk], aTx ≤ ϕk + ϕ′k(xi − ξk)

for k = 1, . . . , d. Since these are linear constraints, (84) is equivalent to a linear disjunctive
constraint. The constraints

aTx ≥ ϕ(xi), (86)

aTx = ϕ(xi), (87)

are semilinear by the same argument, with ≥ or = in place of ≤.

Piecewise linear constraints may also be modelled by NSOS (cf. (70)); see Beale [24,
Section 10.3] and [25, 26, 45, 66, 312]. Indeed, if ϕ(x) is piecewise linear with nodes ξ1:d and
corresponding function values ϕk = ϕ(ξk) then we may write an arbitrary argument x as

x =
∑

ξkλk, λ is a NSOS, (88)

and find
ϕ(x) =

∑
ϕkλk.

Therefore, if we add the semilinear constraints (88), we may replace each occurrence of ϕ(x)
by
∑
ϕkλk. This even works for unbounded variables and for general separable constraints∑

ϕl(xl) ∈ a with piecewise linear ϕl. Many modern MILP programs have special features
that allow them to handle piecewise linear constraints using special ordered sets of type 2.

Many combinatorial constraints are semilinear. For example, all-different constraints of
the form

the components of xK are distinct integers (89)

are semilinear, since we can rewrite them as

xk ∈ Z for k ∈ K; |xj − xk| ≥ 1 for j, k ∈ K, j 6= k.

A cardinality constraint

the number of nonzero xk (k ∈ K) is in s

57

is semilinear if we know that xK is integral and nonnegative. Indeed, an equivalent condition
is the existence of binary numbers zk such that

zk = 1 if xk > 0,

zk = 0 if xk < 1,∑

k∈K
zk ∈ s,

and these are semilinear constraints.

Cardinality rules (Yan & Hooker [341]), i.e., constraints of the form

≥ j components of xJ equal 1 ⇒ ≥ k components of xK equal 1

for binary xJ∪K , can clearly be written in terms of cardinality constraints and hence are
semilinear, too.

18 Semilinear relaxations

The preceding results are of importance for general global optimization since every factorable
global optimization problem can be approximated arbitrarily well by semilinear programs.
Even stronger, these approximations can be made in a way to provide rigorous relaxations,
so that solving the resulting semilinear programs after a MILP reformulation can be used to
obtain lower bounds in a branch and bound scheme.

The ideas go back to Markowitz & Manne [213] and Dantzig [65] for approximate
separable nonconvex programming using piecewise linear constraints. (A Lagrangian method
by Falk & Soland [80] gives piecewise linear relaxations, but in general, these do not yield
arbitrarily good approximations.) With a trick due to Pardalos & Rosen [263] (for the
special case of indefinite quadratic programs, but not in the context of approximations) that
allows one to transform multivariate quadratic expressions into separable form, everything
extends easily to the semiseparable case; see (92) below. For indefinite quadratic programs,
this is discussed in detail in Horst et al. [143].

With a suitable reformulation, arbitrary factorable optimization problems (and many non-
factorable ones) can be rewritten in such a way that the objective function is linear and all
constraints are either semilinear, or of the form (84), (86), (87) with continuous functions
of a single variable. To see this, we introduce an auxiliary variable for every intermediate
result; then the objective function is just a variable, hence linear, and the constraints are
simple constraints or equations involving a single operation only,

xk = ϕ(xi), (90)

xk = xi ◦ xj (◦ ∈ {+,−, ∗, /,̂ }). (91)

The problem formulation in terms of constraints of the form (90) and (91) together with a
simple objective min±xi and simple bounds (and possibly integrality constraints) is called
the ternary form of a global optimization problem.

58

To find a semilinear relaxation, we note that the equations (90) have the form (87) and hence
can be handled as in the previous section. The equations (91) are linear if ◦ ∈ {+,−}. For
◦ = /, we get equivalent constraints xi = xkxj, and for ◦ =ˆ(the power), we can rewrite the
constraint xk = x

xj
i as

yk = xjyi, yk = log xk, yi = log xi.

(Powers with constant exponents are treated as a case of (90).) It remains to consider
products. But xk = xixj is equivalent to

αxi + βxj = u, αxi − βxj = v,

w = v2, w + 4αβxk = u2,

for arbitrary α, β 6= 0. The first two are linear constraints in xi, xj, u, v, and the others are
of the form (87). This proves that the reformulation can always be done.

However, it is clear that in most cases many fewer intermediate variables need to be intro-
duced since affine expressions aTx + α can be left intact, as can all expressions depending
only on a single variable. Moreover, as we shall see in a moment, quadratic and bilinear
expressions can be handled more efficiently.

Therefore, it is advisable to do in a first step only those substitutions needed to transform
the problem such that the new objective function f(x) =: F0(x) and the components Fi(x)
(i = 1 : m) of the new constraint function vector F (x) are semiseparable, i.e., of the form

Fi(x) =
∑

(j,k)∈Ki

ϕj(xk) + xTHix+ cTi x+ γi (i = 0 : m) (92)

with nonlinear univariate functions ϕj and (in general extremely sparse) matrices Hi. Note
that linear terms may be absorbed into the sum, and quadratic and bilinear terms into
xTHix.

In a second step, the quadratic terms are rewritten as a weighted sum of squares,

xTHix =
1

2

∑

j∈Ji
dj(r

T
j x)2. (93)

This is always possible, usually in many ways; e.g., by a spectral factorization

Hi +HT
i = QDQT , D diagonal,

which gives

2xTHix = (QTx)TD(QTx) =
∑

Dkk(Q
Tx)2

k.

(For numerical stability one needs to take care of scaling issues, to ensure that no unavoidable
cancellation of significant digits takes place.) Using (93) and substituting new variables for
the rTj x, we see that we can achieve in this second step the separable form

Fi(x) =
∑

(j,k)∈Ki

ϕj(xk) + cTi x+ γi (i = 0 : m) (94)

59

with increased Ki. Constraints of the form Fi(x) ≤ F i are now replaced by

∑

(j,k)∈Ki

yj + cTi x+ γi ≤ F i,

yj ≥ ϕj(xk) for (j, k) ∈ Ki,

and similarly for the objective function. Constraints of the form Fi(x) ≥ F i are replaced by

∑

(j,k)∈Ki

yj + cTi x+ γi ≥ F i,

yj ≤ ϕj(xk) for (j, k) ∈ Ki.

Finally two-sided constraints Fi(x) ∈ Fi with finite Fi are replaced by

∑

(j,k)∈Ki

yj + cTi x+ γi ∈ Fi,

yj = ϕj(xk) for (j, k) ∈ Ki.

Thus, in this third step, the required form has been achieved, and generally much more
parsimoniously. (A few more variables could be saved by leaving in each nonlinear Fi(x) one
of the nonlinear terms unsubstituted.)

So far, no approximation was done; the reformulated problem is equivalent to the original
one. In a final approximation step, constraints of the form (84), (86), (87) are replaced by
piecewise linear constraints. If (as traditionally done [25]) just an approximation is desired,
one simply uses in place of ϕ the piecewise linear function obtained by interpolating some
function values of ϕ.

However, with little more work only, outer approximations can be constructed if we have
two piecewise linear approximations ϕ, ϕ with the same nodes ξ0 < . . . < ξd, satisfying

ϕ(ξ) ≤ ϕ(ξ) ≤ ϕ(ξ) for ξ ∈ [ξ0, ξd]. (95)

To get ξ0 = xi and ξd = xi, one needs good bounds xi on xi, which can usually be calculated
by constraint propagation (see Section 14).

ϕ and ϕ can be found by exploiting convexity properties of ϕ, which are well-known for
elementary functions and can be determined with interval analysis for factorable univariate
functions. Given (95), the constraint (84) implies (and not only approximates) the semilinear
constraints

xi ∈ [ξk−1, ξk], aTx ≤ ϕk + ϕ′k(xi − ξk) for some k,

the constraint (86) implies the semilinear constraints

xi ∈ [ξk−1, ξk], ϕ
k

+ ϕ′
k
(xi − ξk) ≤ aTx for some k,

and the constraint (87) implies the semilinear constraints

xi ∈ [ξk−1, ξk], ϕ
k

+ ϕ′
k
(xi − ξk) ≤ aTx ≤ ϕk + ϕ′k(xi − ξk) for some k.

60

Moreover, by adaptively adding additional nodes one can make the gap between the bounds
in (95) arbitrarily small, and the approximation by these semilinear constraints becomes
arbitrarily good (at the cost of higher complexity, of course).

As one can see, the complexity of the resulting MILP formulation depends on the number of
nonlinear operations (but in a problem-dependent fashion because of the quadratic bilinear
terms), and grows linearly with the number of nodes used in the piecewise linear approxi-
mation. Hence it is an efficient technique only if the number of nonlinear operations is not
too large, and the approximation not too close.

19 Other problem transformations

Linear or convex relaxations of a global optimization problem may be viewed as transforma-
tions of the problem or of its nonlinear (resp. nonconvex) constraints. There are a number
of other useful transformations of constraints or groups of constraints.

General cuts. A redundant constraint, or simply a cut, is an inequality (or sometimes
an equation) not in the original problem formulation that must hold for any global minimizer;
if the inequality is linear, it is called a cutting plane [114]. A lot is known about cutting
planes in mixed integer linear programming; see, e.g., [239, 240, 338]; we are here rather
interested in techniques for the smooth case.

We have already met several kinds of derived constraints that cut off part of the feasible
region:

• The constraint f(x) ≤ f best cuts off points worse than the best feasible point found so
far (with function value f best).

• Exclusion constraints, discussed in Section 15, cut off a region around local minimizers
that do not contain any other, better minimizer.

• The linear, convex and semilinear relaxations of constraints, discussed in Section 16
and Section 18, are of course special cases of cuts.

For bound-constrained indefinite quadratic programs, Vandenbussche [324] generalized
techniques for mixed integer linear programming to find cuts which lead to excellent results
on this problem class.

Surely there is much more to be explored here.

Symbolic transformations. The quality of all techniques considered so far may depend
strongly on the form in which a problem is posed. Symbolic techniques may be employed
to change the given form into another, perhaps more advantageous form. Unfortunately,

61

it is not clear which transformations are most valuable, and the best transformations must
usually be found on a problem-specific ad hoc basis. A recent example of a very difficult
constraint satisfaction problem in robotics that only yielded to such an approach is described
by Lee et al. [198]. We simply list here a few of the techniques that may be of interest.

Frequently, problems involving trigonometric variables can be replaced by equivalent
problems with only polynomial equations, using (as recommended in ALIAS [7]) the addi-
tional constraint

s2 + c2 = 1

together with the substitution

s = sinϕ, c = cosϕ, s/c = tanϕ, c/s = cotϕ,

and similar rules for trigonomentric functions of half or double angles.

Techniques from algebraic geometry can be applied to ’solve’ polynomial equations sym-
bolically or to bring them into a special form that may be useful. In particular, Gröbner
basis methods (see, e.g., Buchberger & Winkler [44], Faugere et al. [81], Stetter
[303]) provide normal forms that have a triangular structure and thus allow a complete enu-
meration of solutions for small polynomial problems. The work grows exponentially with the
number of variables. Elimination theory (see, e.g., Cox et al. [59], Emiris et al. [75, 76],
Jónsson & Vavasis [167], Moller & Stetter [226], Mourrain [43, 234, 235]) provides
different, often less expensive techniques for potential simplifications by the elimination of
variables. The results are often expressed in terms of determinants, and their exploitation
by global solution techniques is not well explored. While the matrices arising in elimination
theory appear to be realated to those in semidefinite relaxations of polynomial systems, the
connection apparently received little attention [67, 133].

Unfortunately, the equations resulting from completely automatic algebraic techniques are
often numerically unstable. If this is the case, function evaluations need either rational
arithmetic or higher precision. In such cases, interval evaluation including their refinements
suffer from excessive cancellation and provide only very weak global information. it would
be very desirable to have flexible tools that do only partial elimination but provide stable
reduced equations of some sort.

Hanzon & Jibetean [133] apply these techniques to find the global minimizer of mul-
tivariate polynomials, giving attention also to the case where the minimum is achieved at
infinity.

Automatic differentiation [32, 57, 119, 120, 121, 122, 321] is a now classical technique for
obtaining high quality derivatives analytically and cheaply by transforming a program for
function evaluation into a program for the evaluation of derivatives. This technique can be
applied directly to create the Karush-John optimality conditions (Theorem 5.1 and equation
(7)) as additional constraints for constraint propagation or for verifying optimality, as done
in the COCONUT environment (cf. Section 22) and (with a weaker form of (7)) in Numerica
[328] and GlobSol [173].

On the other hand, the automatic differentiation techniques can also be adapted to provide
evaluations of interval derivatives, slopes (Bliek [36, 37], with improvements in Schichl

62

& Neumaier [289]), linear enclosures (Nenov & Fylstra [241]), and second-order slopes
(Kolev [185]).

20 Rigorous verification and certificates

The reliability of claimed results is the most poorly documented aspect of current global
optimization software. Indeed, as was shown by Neumaier & Shcherbina [255], even fa-
mous state-of-the-art solvers like CPLEX8.0 (and many other commercial MILP codes) may
lose an integral global solution of an innocent-looking mixed integer linear program. In our
testing of global solvers within the COCONUT project we noticed many other cases where
global solutions were lost or feasible problems were declared infeasible, probably because
of ill-conditioned intermediate calculations that lead to rounding errors not covered by the
built-in tolerances.

For the solution of precise mathematical problems (such as the Kepler problem [128]), but
also for safety-critical optimization problems, it is necessary to have a complete mathematical
guarantee that the global minimizer has been found. This requires special attention since
numerical computations are affected by rounding errors. Fortunately, interval arithmetic, if
performed with directed (outward) rounding, is able to give mathematical guarantees even
in the presence of rounding errors.

Rounding in the problem definition. Many problems contain floating-point constants
in their formulation. Therefore, frequently, the translation of the problems into an internal
format involves floating-point computations which introduce rounding errors. Unfortunately,
none of the currently available modeling systems allows one to control these rounding errors
or any rounding errors made in a presolve phase used to simplify the problem formulation.
The rigorous solvers available (GlobSol and Numerica) have special input modes for con-
stants, but cannot be fed with problems generated from AMPL or GAMS input (the format
for most test problems in the collections available, see Section 21). It is hoped that future
releases of modeling systems provide options that allow for the passing of either symbolic
constants or interval-valued coefficients computed from the input, so that the exact problem
or at least nearly exact but rigorous relaxations of the exact problem can be recovered.

Rounding in the solution process. Most current solvers simply implement algorithms
valid in exact arithmetic, and do not care about rounding errors, except by allowing for
certain nonrigorous ad hoc tolerances in testing feasibility.

On the other hand, certain solvers (in the above list of solvers, GlobSol and Numerica) do only
rigorous computations – by enclosing all numbers in intervals accounting for the rounding
errors. However, they do not make use of convexity arguments leading to linear or convex
programs that can be solved by local techniques, and hence have a competitive disatvantage
for numerous problems. The main reason seems to be that until recently making linear (or
convex) programming rigorous was very expensive compared to the traditional approximate
approach, and time-consuming to implement.

63

Neumaier & Shcherbina [255] showed that it is possible to certify the results of linear
optimization problems with finite bounds by simple pre- and post-processing, without having
to modify the solvers. Jansson [153, 154] extended this to the case of unbounded variables
(where only little more work is needed unless a large number of unbounded variables is
present), and Jansson [155] extended the approach further to the case of convex programs.

The availability of these cheap, easy to use methods for certifying the results of linear and
convex optimization programs is likely to change this in the near future. First results in
this direction are presented by Lebbah et al. [195, 196], who report rigorous results for a
combination of constraint propagation, interval Newton and linear programming methods
that significantly outperform other rigorous solvers (and also the general purpose solver
BARON) on a number of difficult constraint satisfaction problems.

Certification of upper bounds. Apart from controlling rounding errors in the computa-
tion of bounds, care must also be taken in using objective function values as upper bounds
on the objective function. This is permitted only if the argument is feasible. However, es-
pecially in the presence of equality constraints, the arguments are often not exactly feasible
but satisfy the constraints only within certain tolerances. In these cases, a rigorous upper
bound on the objective can be obtained only if the existence of a feasible point in a small box
around the approximate point can be proved rigorously, and the objective function is then
evaluated at this box. This requires the use of interval Newton techniques (cf. Section 11).
However, since there are frequently fewer equality constraints than variables, the standard
existence tests must be modified to take account of this, and also to handle inequalities cor-
rectly. For a description of the main techniques currently available to certify the existence
of feasible points see, e.g., [173, 172].

Certificates of infeasibility. If an optimization problem (or a subproblem in a box gen-
erated by branch and bound) has no feasible point, a certificate of infeasibility can often
be given that allows an easy check that this is the case. For linear constraints, the following
result [255], which uses basic interval arithmetic only, applies.

20.1 Theorem. The set of points satisfying

x ∈ x, Ax ∈ b (96)

is empty if and only if there is a multiplier vector y such that

(yTA)x ∩ yTb = ∅. (97)

Proof. If x satisfies (96) then the left hand side of (97) contains yTAx and hence is nonempty.
Thus (97) implies that (96) cannot be satisfied. The converse is a simple consequence of the
Lemma of Farkas and the fact [243, Section 3.1] that aTx = {aTx | x ∈ x}. ut

Thus a certificate of infeasibility consists in a multiplier vector y satisfying (97), and is, e.g.,
a byproduct of phase 1 of a simplex algorithm.

64

If there are nonlinear constraints, there are simple certificates for infeasibility of

x ∈ x, F (x) ∈ F,

such as a multiplier vector y with

yTF (x) ∩ yTF = ∅, (98)

where F (x) is an interval evaluation of F at the box x, or

yTF (ξ) +
(
yTF ′(x)

)
(x− ξ) ∩ yTF = ∅, (99)

where F ′(x) is an interval evaluation of the Jacobian F ′ at the box x. Similarly, if already
a feasible point with objective function value f best is known then a multiplier vector y with

min
x∈x

(f(x) + yTF (x)) > fbest + sup yTF (100)

is a certificate that the box x cannot contain a global minimizer. The left hand side can be
bounded from below by interval evaluation or a centered form, giving a verifiable sufficient
condition. In the linear case, (100) reduces to half of Theorem 20.1.

It is not difficult to show that for convex constraints, a certificate of infeasibility can be
constructed in complete analogy to the linear case. But in the nonconvex case, there is no
guarantee that such a certificate exists (or can be found easily if it exists). Moreover, local
solvers may fail because they are not able to find a feasible point, even if one exists. Indeed,
finding a feasible point is in the latter case already a global problem that cannot be handled
by local methods.

Good certificates of infeasibility of the form (99) are, however, available for small boxes not
too close to the feasible domain. This follows from the quadratic approximation property of
centered forms. A suitable multiplier vector y can be obtained in this case from the linearized
problem.

Thus, in combination with branching, we can certify the nonexistence of solution in a covering
of almost all of the initial box.

Certification of global minimizers. One may also be interested in providing a minimal
number of mathematically rigorous certificates that constitute a proof that some point in a
narrow computed box is in fact a global minimizer. These certificates are mathematically
valid only if the corresponding conditions have been evaluated in exact arithmetic; and addi-
tional safeguards are needed to ensure their validity in finite precision arithmetic. Virtually
nothing has been done so far with regard to this problem.

21 Test problems and testing

An important part of the development of global optimization software is the careful testing
of proposed methods.

65

For useful test problem collections, see, e.g., [55, 92, 109, 145, 151, 157, 335]. In particular,
[145] contains a test suite containing the traditional global optimization test set of low-
dimensional problems by Dixon & Szegö [69], together with test results for DIRECT,
MCS, and many incomplete global optimization methods. [151] (see also [177, 227]) contains
a comparison of stochastic global optimization routines on a large number of low-dimensional
test problems from different sources, and [157, 335] contain test results for some interval
methods on a large number of low-dimensional test problems. Testing in higher dimensions
has been much more limited, although this is about to change.

The documentation and availability of test problems has been considerably simplified by
coding them in one of the widely used modeling languages. AMPL [97] and GAMS [100]
are two flexible and convenient algebraic modeling languages enabling rapid prototyping and
model development. They are of widespread use in the optimization community, as attested
by the large number of existing interfaces with state-of-the-art optimization solvers.

The recent Handbook of Test Problems in Local and Global Optimization [92] contains a large
collection of test problems for local and global optimization problems, both academic and
from real applications. (Unfortunately, the book contains a significant number of inaccura-
cies [93].) The algebraic test problems of this collection are available in the GAMS modeling
language, and the differential-algebraic problems are supplied in the MINOPT modeling lan-
guage. All test problems can be downloaded from the Handbook’s web site. A recent web
site by GAMS World [109] started collecting a library GlobalLib of real life global optimiza-
tion problems with industrial relevance, coded in GAMS, but currently most problems on
this site are without computational results. 131 algebraic test problems from the Handbook
are all included and constitute about a third of the 397 test problems currently available at
GlobalLib.

Test problems for local optimization should also pass global optimization solvers; the tra-
ditional test set for low-dimensional unconstrained problems is that by Moré, Garbow
& Hillstrom [231], with optional bounds from Gay [104]. A number of these problems
have in fact several local minimizers and are therefore global optimization problems. Bob
Vanderbei maintains a large collection of AMPL files for constrained nonlinear optimization
problems [325] from practical applications; also included are the major part of the CUTE
collection and the more academic but useful low-dimensional problem collection of Hock &
Schittkowski [138].

The COCONUT benchmark [55] (cf. Shcherbina et al [292]) is a collection of nearly 1300
AMPL models, containing the CUTE part of the Vanderbei test collection, AMPL versions
of the problems from GlobalLib (collection from summer 2002), and a large collection of
pure constraint satisfaction problems from various places. All problems are annotated with
best known function values (or even solutions) and some statistical information such as the
number of variables and constraints.

The COCONUT project has extensive test results on the COCONUT benchmark for a
number of solvers, which will be made public on the COCONUT website [54] at the end of the
COCONUT project (February 2004). Extensive benchmarking results for local optimization
by Mittelmann [222] are also available online. See also Dolan & Moré [70, 71].

66

Bussiek et al. [48] report about obtaining reliable and repeatable comparisons in global
optimization. The ACM Transaction of Mathematical Software recommends [313] to consider
advice in [163] for performing computational experiments. The Mathematical Programming
Society has guidelines [150] for reporting results of computational experiments based on
[61, 118, 275]. See also [22].

22 The COCONUT environment

This survey is part of an attempt to integrate various existing complete approaches to global
optimization into a uniform whole. This is the goal of the COCONUT project [54], sponsored
by the European Union. The COCONUT consortium is planning to provide at the end of
the project (February 2004) at its homepage [54] a modular solver environment for nonlinear
global optimization problems with an open-source kernel, which can be expanded by com-
mercial and open-source solver components (inference engines). The following information
is taken from Schichl [287].

The application programming interface (API) of the COCONUT environment is designed to
make the development of the various module types independent of each other and indepen-
dent of the internal model representation. It will be a collection of open-source C++ classes
protected by the LGPL license model [113], so that it could be used as part of commercial
software. It uses the FILIB++ [199] library for interval computations and the matrix template
library MTL [300] for the internal representation of various matrix classes. Support for dy-
namic linking will relieve the user from recompilation when modules are added or removed.
In addition, it is designed for distributed computing, and will probably be developed further
(in the years after the end of the COCONUT project) to support parallel computing as well.

The solution algorithm is an advanced branch-and-bound scheme which proceeds by working
on a set of search nodes, each representing a subproblem of the optimization problem to be
solved. A complete optimization problem is always represented by a single DAG (directed
acyclic graph). The vertices of the graph represent operators similar to computational trees.
Constants and variables are sources, objective and constraints are sinks of the DAG. This
DAG is optimally small in the sense that it contains every subexpression of objective function
and constraints only once.

For expression DAGs, special forward and backward evaluators are provided to allow function
evaluation and automatic-differentiation-like tasks. Currently implemented are real function
values, function ranges, gradients (real, interval), and slopes. In the near future evaluators
for Hessians (real, interval) and second order slopes (see, e.g., [253]) will be provided as well.

A strategy engine is the main part of the algorithm. It makes decisions, directs the search,
and invokes the various modules. The strategy engine consists of the logic core (“search”)
which is essentially the main solution loop, special decision makers for determining the next
action at every point in the algorithm. It calls management modules, report modules, and
inference engines in a sequence defined by programmable search strategies.

67

The strategy engine can be programmed using a simple strategy language based on the
language Python [274] (in which, e.g., most of the interface of the web search engine google

[115] is written). Since it is interpreted, (semi-)interactive and automatic solution processes
are possible, and even debugging and single-stepping of strategies is supported. The language
is object oriented, provides dynamically typed objects, and is garbage collecting. These
features make the system easily extendable. Furthermore, the strategy engine manages the
search graph and the search database. The strategy engine uses a component framework
to communicate with the inference engines. This makes it possible to launch inference
engines dynamically (on need) to avoid memory overload. Since the strategy engine is itself
a component, even multilevel strategies are possible.

Corresponding to every type of problem change, a class of inference engines is designed:
model analysis (e.g., find convex part), model reduction (e.g., pruning, fathoming), model
relaxation (e.g., linear relaxation), model splitting (e.g., bisection), model glueing (e.g.,
undo excessive splitting), computing of local information (e.g., probing, local optimization).
Several state of the art techniqnes are already provided, including interfaces to local nonlinear
solvers and linear programming systems, rigorous point verifiers, exclusion box generators,
constraint propagation, linear relaxations, a splitter, and a box covering module.

Changes suggested by an inference engine and approved of by the strategy engine are per-
formed by appropriate management modules. Report modules produce human readable or
machine readable files for checkpointing or external use.

The open design of the solver architecture, and its extensibility to include both open source
modules and commercial programs, was chosen in the hope that the system will be a unique
platform for global optimization in the future, serving the major part of the community,
bringing their members closer together.

Several researchers and companies from outside the COCONUT project have already agreed
to complement our efforts in integrating the known techniques by contributing to the CO-
CONUT environment.

23 Challenges for the near future

We end the survey by listing a number of challenges that researchers in global optimization,
and those working on software systems and support, may wish to face to improve the state
of the art.

1. Ensuring reliability is perhaps the most pressing issue. While in theory essentially all
techniques discussed here can be made fully rigorous, many of them with little computational
overhead (cf. Section 20), only very few solvers do this. As a result, even otherwise excellent
solvers (such as CPLEX 8.0 for linear mixed integer problems) lose occasionally the solution
and give completely misleading results without warning, and global solvers based on these
inherit the problems unless properly safeguarded. Safe bounds can guard against all errors
due to the finite precision arithmetic. Programming bugs are another possible source of loss

68

of solutions, and can be discovered only through extensive testing on benchmarking suites
with known solutions.

Under the heading reliablility fall also improvements relevant for computer-assisted proofs,
especially the documentation of certificates that give a short and complete proof (that can
be checked independently) that the solution is indeed correct.

2. Better compiler (or even hardware) support for automatic differentiation, outward
rounded interval arithmetic, and related techniques [289] based on computational graphs
would significantly simplify its use in global optimization codes, and probably speed up the
programs. (Code optimization would, however, need to provide an option that ensures that
simplifications are only performed if they are mathematically safe even in finite precision
arithmetic.) The SUN FORTE compiler [334] already supports interval arithmetic. NAG
[56, 237] is investigating the possible integration of automatic differentiation capabilities into
its Fortran 95 compiler.

3. Unbounded variables are perhaps the dominant reason for failure of current complete
global optimization codes on problems with few variables. Unless the initial constraint propa-
gation phase provides useful finite bounds, interval estimates are frequently meaningless since
calculations with unbounded intervals rarely generate tight enclosures. Thus the bounding
part of the search remains weak, and an excessive number of boxes is generated. Better
techniques for handling problems with unbounded variables are therefore highly desirable.
For unconstrained polynomial problems see Hanzon & Jibetean [133].

4. Unconstrained problems and bound constrained problems in higher dimensions are
harder for current solvers than highly constrained ones, since the lack of constraints gives
little basis for attack with the known methods. In particular, current complete solvers are
quite slow on many nonzero residual least squares problems. Until better techniques become
available, users should take advantage of available freedom in modeling by providing as many
constraints as possible, e.g., by adding for a least squares problem min ‖F (x)‖2

2 the additional
constraints F (x) ∈ F for some reasonable box F. While this may change the solution, it
might be fully adequate from the point of view of the application.

5. Integrating techniques from mixed integer and semidefinite programming into
the current solver frameworks appears to be a fertile direction. Work in this direction has
begun at various places, and it is already apparent that one can expect major improvements
in speed.

6. Problems with symmetries have many solutions that differ only in trivial rearrange-
ments, sign changes, etc. However, it is not easy to avoid finding the solutions repeatedly
or having to exclude repeatedly regions equivalent under symmetries. There are significant
applications in cluster optimization [49], packing problems, and the optimal design of ex-
periments [302]. A recent paper [212] handles the integer linear programming case, and
Gatermann & Parrilo [102] address the case of polynomial systems.

7. The representation of nonisolated solution sets is another challenge where papers
are slowly forthcoming (e.g., Vu et al. [332, 333] for the case of continuous constraint
satisfaction problems) and which has important application in the modeling of devices with

69

uncertain parameters or flexible parts [251]. Related is the problem of parametric global
optimization, where the same parameterized problem needs to be solved in dependence on
a few parameters. Apart from some discussion in [126], very little seems to have been done
in this area.

8. Problems with severe dependence among the variables have poor interval exten-
sions and hence create difficulties for complete solvers. This applies in particular to problems
containing nested functions f(x) such as those arising from volume-preserving discrete dy-
namics, where f(x) = fn(x) with f1(x) = ϕ(x), fn(x) = ϕ(fn−1(x)), which suffer from a
severe wrapping effect [238, 244], and problems involving determinants of matrices of size
> 3. Taylor methods [208, 252] and reformulation techniques might help overcome these
problems.

9. Differential constraints are not of the factorable form that is the basis of all current
global solvers. But they arise in optimal control problems, and it is well-known that many of
these (especially in space mission design and in chemical engineering) have multiple minima
and hence would need a global optimization approach. Recently, some approximate methods
[79, 219] and a complete method [262] (for the inverse monotone case) have become available,
though these work at present only in very low dimensions.

10. Constraints involving integrals are also not factorable; so far, they have received
no attention in a global optimization context. They arise naturally in many stochastic
optimization problems defined in terms of continuous random variables, since expectations
or probabilities involving these are given by integrals. Examples are probabilistic safety
factors in engineering and values at risk in finance.

11. Large-scale problems are obviously hard due to their size and the worst case ex-
ponential behavior of branch and bound algorithms. However, like in many combinatorial
optimization problems, there may be many large-scale problems that are tractable if their
problem structure is exploited. Extending the current methods to take advantage of such
structure would make them much more widely applicable. Recent work of Boddy & John-
son [40], who solved to completetion large quadratic constraint satisfaction problems arising
in oil refinery, including one with 13 711 variables, 17 892 constraints (of which 2 696 were
nonlinear) gives rise to optimism.

All these problems show that much remains to be done and that we can expect much further
progress in the future.

References

The number(s) at the end of each reference give(s) the page number(s) where the reference
is cited.

[1] E.H.L. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization,
Wiley, Chichester 1997. [20]

70

[2] C.S. Adjiman, I.P. Androulakis, C.D. Maranas and C.A. Floudas, A global optimization
method αBB for process design, Comput. Chem. Engin. 20 (1996), 419–424. [18, 33,
51]

[3] C.S. Adjiman, I.P. Androulakis and C.A. Floudas, A global optimization method, αBB,
for general twice-differentiable constrained NLPs – II. Implementation and computa-
tional results, Comput. Chem. Engin. 22 (1998), 1159–1179. [18, 33, 51]

[4] C.S. Adjiman, S. Dallwig, C.A. Floudas and A. Neumaier, A global optimization
method, αBB, for general twice-differentiable constrained NLPs – I. Theoretical ad-
vances, Comput. Chem. Engin. 22 (1998), 1137–1158. [18, 29, 33, 51]

[5] C.S. Adjiman and C.A. Floudas, Rigorous convex underestimators for general twice-
differentiable problems, J. Global Optimization 9 (1996), 23–40. [51]

[6] I.G. Akrotirianakis and C.A. Floudas, A new class of improved convex underestimators
for twice continuously differentiable constrained NLPs, J. Global Optimization, in press.
[51]

[7] ALIAS-C++. A C++ Algorithms Library of Interval Analysis for Equation Systems.
Version 2.2. User manual (2003).
http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++/manual-alias-C++2.2.ps [17,
62]

[8] F. Alizadeh, Semidefinite and Second Order Cone Programming Foundations, Algo-
rithms and Applications, Slides (2003).
www.ima.umn.edu/talks/workshops/3-11.2003/alizadeh/tutorialProsper.pdf [50]

[9] F.A. Al-Khayyal and J.E. Falk, Jointly constrained biconvex programming, Math. Op-
erations Res., 8 (1983), 273–286. [48]

[10] F.A. Al-Khayyal, C. Larsen and T. van Voorhis, A relaxation method for nonconvex
quadratically constrained quadratic programs, J. Global Optimization 6 (1995), 215–
230. [49]

[11] F.A. Al-Khayyal and H.D. Sherali, On finitely terminating branch-and-bound algo-
rithms for some global optimization problems, SIAM J. Optimization 10 (2000), 1049–
1057. [47]

[12] E. Allgower, M. Erdmann and K. Georg, On the complexity of exclusion algorithms for
optimization, J. Complexity 18 (2002), 573–588. [46]

[13] Le Thi Hoai An and Pham Dinh Tao, A Branch-and-Bound method via D.C. Optimiza-
tion Algorithm and Ellipsoidal technique for Box Constrained Nonconvex Quadratic
Programming Problems, J. Global Optimization 13 (1998), 171–206. [51]

[14] E.D. Anderson and K.D. Anderson, Presolving in linear programming, Math. Program-
ming 71 (1995), 221–245. [38]

71

[15] I.P. Androulakis, C.D. Maranas and C.A. Floudas, αBB: a global optimization method
for general constrained nonconvex problems, J. Global Optimization 7 (1995), 337–363.
[18, 33, 51]

[16] K. Anstreicher, Recent advances in the solution of quadratic assignment problems,
Math. Programming B 97 (2003), 27–42. [8]

[17] C. Audet, P. Hansen, B. Jaumard and G. Savard, A Branch and Cut Algorithm for
Nonconvex Quadratically Constrained Quadratic Programming, Math. Programming
87 (2000), 131–152. [49]

[18] A.B. Babichev, O.B. Kadyrova, T.P. Kashevarova, A.S. Leshchenko, and A.L. Semenov,
UniCalc, a novel approach to solving systems of algebraic equations, Interval Compu-
tations 3 (1993), 29–47. [38]

[19] V. Balakrishnan and S. Boyd, Global Optimization in Control System Analysis and De-
sign, pp. 1–56 in: Control and Dynamic Systems: Advances in Theory and Applications,
Vol. 53 (C.T. Leondes, ed.), Academic Press, New York 1992. [7]

[20] E. Balas, Disjunctive Programming, Ann. Discrete Math. 5 (1979), 3–51. [54]

[21] E. Balas, S. Ceria and G. Cornuejols, A lift-and-project cutting plane algorithm for
mixed 0–1 programs. Math. Programming A 58 (1993), 295–323. [49]

[22] R.S. Barr, B.L. Golden, J.P. Kelly, M.G.C. Resende, and W.R. Stewart, Designing and
reporting on computational experiments with heuristic methods, J. Heuristics 1 (1995),
9–32. [67]

[23] E.M.L. Beale, Branch and bound methods for mathematical programming systems,
Ann. Discrete Math. 5 (1979), 201–219. [33]

[24] E.M.L. Beale, Introduction to Optimization, Wiley, Chichester 1988. [33, 57]

[25] E.M.L. Beale and J.J.H. Forrest, Global optimization using special ordered sets, Math.
Programming 10 (1976), 52–69. [57, 60]

[26] E.M.L. Beale and J.A. Tomlin, Special Facilities in a General Mathematical Program-
ming System for Non-Convex Problems Using Ordered Sets of Variables, pp. 447-454
in: OR 69: Proc. Fifth Int. Conf. Oper. Res. (J. Lawrence, ed.) Tavistock Publications,
London 1970. [3, 53, 57]

[27] R.W. Becker and G.V. Lago, A global optimization Algorithm, pp. 3–12 in: Proc. 8th
Allerton Conf. Cicuits Systems Theory (Monticello, Illinois), 1970. [4]

[28] O. Ben-Ayed, Bilevel linear programming, Comput. Oper. Res. 20 (1993), 485–501. [56]

[29] F. Benhamou, D. McAllister and P. Van Hentenryck, CLP(intervals) revisited, pp. 124–
138 in: Proc. International Symposium on Logic Programming, MIT Press, Ithaka, NY,
1994. [29, 38]

72

[30] F. Benhamou and W.J. Older, Applying interval arithmetic to real, integer, and boolean
constraints, J. Logic Programming 32 (1997), 1–24. [29, 38]

[31] S. Berner, Parallel methods for verified global optimization: practice and theory, J.
Global Optimization 9 (1996), 1–22. [29, 33]

[32] M. Berz, C. Bischof, G. Corliss and A. Griewank (eds.), Computational Differentiation:
Techniques, Applications, and Tools, SIAM, Philadelphia 1996. [62]

[33] A.C. Billups and K.G. Murty, Complementarity problems, J. Comput. Appl. Math. 124
(2000), 303–318. [56]

[34] R.E. Bixby, M. Fenelon, Z. Gu, E. Rothberg and R. Wunderling, MIP: theory and
practice – closing the gap, pp. 19–49 in: System Modelling and Optimization: Methods,
Theory and Applications (M.J.D. Powell and S. Scholtes, eds.), Kluwer, Dordrecht 2000.
[10, 22]

[35] M. Björkman and K. Holmström, Global optimization of costly nonconvext functions
using radial basis functions, Optimization and Engineering 1 (2000), 373–397. [19]

[36] Ch. Bliek, Computer methods for design automation, Ph.D. Thesis, Dept. of Ocean
Engineering, Massachusetts Institute of Technology, 1992. [32, 62]

[37] Ch. Bliek, Fast Evaluation of Partial Derivatives and Interval Slopes, Reliable Comput-
ing 3 (1997), 259–268. [62]

[38] Ch. Bliek, P. Spellucci, L.N. Vicente, A. Neumaier, L. Granvilliers, E. Monfroy, F.
Benhamou, E. Huens, P. Van Hentenryck, D. Sam-Haroud and B. Faltings, Algorithms
for Solving Nonlinear Constrained and Optimization Problems: The State of the Art.
A progress report of the COCONUT project, 2001.
http://www.mat.univie.ac.at/∼neum/glopt/coconut/StArt.html [7, 38, 44]

[39] Ch. Bliek, Ch. Jermann and A. Neumaier (eds.), Global Optimization and Constraint
Satisfaction, Lecture Notes in Computer Science, Vol. 2861, Springer, Berlin 2003. [11]

[40] M. Boddy and D. Johnson, A New Method for the Global Solution of Large Systems
of Continuous Contraints, pp. 142–156 in: Ch. Bliek et al. (eds.), Global Optimization
and Constraint Satisfaction, Springer, Berlin 2003. [70]

[41] C.G.E. Boender, A.H.G. Rinnooy Kan, G.T. Timmer and L. Stougie, A stochastic
method for global optimization, Math. Programming 22 (1982),125–140. [19, 22]

[42] I.M. Bomze, T. Csendes, R. Horst and P.M. Pardalos (eds.), Developments in Global
Optimization, Kluwer, Dordrecht 1996. [11]

[43] D. Bondyfalat, B. Mourrain and V.Y. Pan, Solution of a polynomial system of equations
via the eigenvector computation, Linear Algebra Appl. 319 (2000), 193–209. [62]

[44] B. Buchberger and F. Winkler, Groebner Bases: Theory and Applications, Cambridge
University Press, 1998. [62]

73

[45] R.E. Burkard, H. Hamacher and G. Rote, Sandwich approximation of univariate convex
functions with an application to separable convex programming, Naval Res. Logistics
38 (1992), 911–924. [49, 57]

[46] J.V. Burke, An exact penalization viewpoint of constrained optimization, SIAM J. Con-
trol Optimization 29 (1991), 968–998. [38]

[47] M.R. Bussiek and A.S. Drud, SBB: A New Solver for Mixed Integer Nonlinear Program-
ming, Slides (2001).
http://www.gams.com/presentations/or01/sbb.pdf

SBB. User manual (2002).
http://www.gams.com/solvers/sbb.pdf [19]

[48] M.R. Bussiek, A.S. Drud, A. Meeraus and A. Pruessner, Quality Assurance and Global
Optimization, pp. 223–238 in: Ch. Bliek et al. (eds.), Global Optimization and Con-
straint Satisfaction, Springer, Berlin 2003. [67]

[49] The Cambridge Cluster Database, WWW-document.
http://brian.ch.cam.ac.uk/CCD.html [69]

[50] E. Carrizosa, P. Hansen and F. Messine, Improving Interval Analysis Bounds by Trans-
lations, J. Global Optimization, to appear. [31]

[51] H.M. Chen and M.H. van Emden, Adding interval constraints to the Moore–Skelboe
global optimization algorithm, pp. 54–57 in: Extended Abstracts of APIC’95, Interna-
tional Workshop on Applications of Interval Computations, V. Kreinovich (ed.), Reliable
Computing (Supplement), 1995. [38]

[52] G. Chesi and A. Garulli, O On the characterization of the solution set of polynomial sys-
tems via LMI techniques, pp. 2058–2063 in: Proc. of the European Control Conference
ECC 2001, Porto (Portugal), September 4–7, 2001. [49]

[53] J.G. Cleary, Logical arithmetic, Future Computing Systems 2 (1987), 125–149. [38]

[54] COCONUT, Continuous constraints – updating the technology, WWW-site,
http://www.mat.univie.ac.at/∼neum/glopt/coconut.html [7, 66, 67]

[55] The COCONUT Benchmark, A benchmark for global optimization and constraint sat-
isfaction, WWW-document (2002).
http://www.mat.univie.ac.at/∼neum/glopt/coconut/benchmark.html [66]

[56] M. Cohen, U. Naumann and J. Riehme, Differentiation-enabled Fortran 95 compiler
technology, Manuscript (2003).
http://www-unix.mcs.anl.gov/∼naumann/nagfm.ps [69]

[57] T.F. Coleman and A. Verma, The efficient computation of sparse jacobian matrices
using automatic differentiation, SIAM J. Sci. Comput. 19 (1998), 1210–1233. [62]

[58] H. Cornelius and R. Lohner, Computing the range of values of real functions with
accuracy higher than second order, Computing 33 (1984), 331-347. [45]

74

[59] D. Cox, J. Little and D. O’Shea, Using Algebraic Geometry, Springer, New York 1998.
[62]

[60] Y. Crama, Concave extensions for nonlinear 0–1 maximization problems, Math. Pro-
gramming 61 (1993), 53–60. [48]

[61] H.P. Crowder, R.S. Dembo and J.M. Mulvey, On reporting computational experiments
with mathematical software, ACM Trans. Math. Software, 5 (1979), 193–203. [67]

[62] T. Csendes, A derivative free global optimization procedure in Fortran and C.
ftp://ftp.jate.u-szeged.hu/pub/math/optimization/index.html

A Fortran 95 version by A. Miller is at
http://www.mat.univie.ac.at/∼neum/glopt/contrib/global.f90 [22]

[63] T. Csendes and D. Ratz, Subdivision direction selection in interval methods for global
optimization, SIAM J. Numer. Anal. 34 (1997), 922–938. [35]

[64] S. Dallwig, A. Neumaier and H. Schichl, GLOPT – a program for constrained global
optimization, pp. 19–36 in: Developments in Global Optimization (I. Bomze et al.,
eds.), Kluwer, Dordrecht 1997. [23, 29, 36, 39]

[65] G.B. Dantzig, On the significance of solving linear programming problems with some
integer variables, Econometrica 28 (1960), 30-44. [3, 58]

[66] G.B. Dantzig, S. Johnson and W. White, A linear programming approach to the chem-
ical equilibrium problem, Management Science 5 (1958), 38-43. [3, 53, 57]

[67] R.S. Datta, Using Semidefinite Programming to Minimize Polynomials, Manuscript
(2001).
www.math.berkeley.edu/∼datta/ee227apaper.pdf [62]

[68] E. de Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Se-
lected Applications, Kluwer, Dordrecht 2002. [50]

[69] L.C.W. Dixon and G.P. Szegö, Towards Global Optimization, Elsevier, New York 1975.
[4, 11, 20, 66]

[70] E.D. Dolan and J.J. Moré, Benchmarking Optimization Software with COPS, Tech.
Report ANL/MCS-246, Argonne Nat. Lab., November 2000.
http://www-unix.mcs.anl.gov/∼more/cops [66]

[71] E.D. Dolan and J.J. Moré, Benchmarking Optimization Software with Performance
Profiles, Tech. Report ANL/MCS-P861-1200, Argonne Nat. Lab., January 2001
http://www-unix.mcs.anl.gov/∼more/cops [66]

[72] M, Dorigo, V. Maniezzo and A. Colorni, The ant system: optimization by a colony of
cooperating agents, IEEE Trans. Systems, Man, Cyber. Part B, 26 (1991), 29–41. [19]

[73] G. Dueck and T. Scheuer, Threshold accepting: A general purpose optimization algo-
rithm appearing superior to simulated annealing, J. Comp. Physics 90 (1990), 161–175.
[19]

75

[74] M.A. Duran and I.E. Grossmann, An outer approximation algorithm for a class of mixed
integer nonlinear programs, Math. Programming 36 (1986), 307–339. [18]

[75] I.Z. Emiris and J.F. Canny, Efficient incremental algorithms for the sparse resultant
and the mixed volume, J. Symbolic Comput. 20 (1995) 117–149. [62]

[76] I.Z. Emiris and B. Mourrain, Matrices in elimination theory, J. Symbolic Comput. 28
(1999), 3–44. [62]

[77] T.G.W. Epperly and E.N. Pistikopoulos, A reduced space branch and bound algorithm
for global optimization, J. Global Optimization 11 (1997), 287–311. [29, 33]

[78] T.G.W. Epperly and R.E. Swaney, Branch and bound for global NLP, Chapters 1–2 in:
Global Optimization in Engineering Design (I.E. Grossmann, ed.), Kluwer, Dordrecht
1996. [29, 33]

[79] W.R. Esposito and C.A. Floudas, Deterministic Global Optimization in Nonlinear Op-
timal Control Problems, J. Global Optimization 17 (2000), 97–. 126. [70]

[80] J.E. Falk and R.M. Soland, An algorithm for separable nonconvex programming, Man-
agement Sci. 15 (1969), 550–569. [3, 58]

[81] J.C. Faugere, P. Gianni, D. Lazard, and T. Mora, Efficient computation of zero-
dimensional Groebner bases by change of ordering, J. Symbolic Comput. 16 (1993),
329–344. [62]

[82] A. Fiacco and G.P. McCormick, Sequential Unconstrained Minimization Techniques,
Classics in Applied Mathematics 4, SIAM, Philadelphia 1990. [23]

[83] R. Fletcher and S. Leyffer, Solving Mixed Integer Nonlinear Programs by outer approx-
imation, Math. Programming 66 (1994), 327–349. [18]

[84] R. Fletcher and S. Leyffer, Numerical experience with lower bounds for MIQP branch–
and–bound, SIAM J. Optimization 8 (1998), 604–616. [18]

[85] C.A. Floudas, Nonlinear and Mixed-Integer Optimization: Fundamentals and Applica-
tions, Oxford Univ. Press, Oxford 1995. [12, 33, 47, 52]

[86] C.A. Floudas, Deterministic Global Optimization: Theory, Algorithms and Applica-
tions, Kluwer, Dordrecht 1999. [11, 47]

[87] C.A. Floudas, Deterministic global optimization in design, control, and computational
chemistry, pp. 129–184 in: Large Scale Optimization with Applications. Part II: Optimal
Design and Control, (L.T. Biegler et al., eds.), Springer, New York 1997.
ftp://titan.princeton.edu/papers/floudas/ima.pdf [9]

[88] C. A. Floudas and P.M. Pardalos, A Collection of Test Problems for Constrained Global
Optimization Algorithms, Lecture Notes Comp. Sci. 455, Springer, Berlin 1990. [9]

[89] C.A. Floudas and P.M. Pardalos (eds.), Recent Advances in Global Optimization,
Princeton Univ. Press, Princeton 1992. [11]

76

[90] C.A. Floudas and P.M. Pardalos (eds.), State of the Art in Global Optimization, Kluwer,
Dordrecht 1996. [11]

[91] C.A. Floudas and P.M. Pardalos (eds.), Optimization in Computational Chemistry and
Molecular Biology: Local and Global Approaches, Kluwer, Dordrecht 2000. [11]

[92] C.A. Floudas, P.M. Pardalos, C.S. Adjiman, W.R. Esposito, Z.H. Gümüs, S.T. Harding,
J.L. Klepeis, C.A. Meyer and C.A. Schweiger, Handbook of Test Problems in Local and
Global Optimization, Kluwer, Dordrecht 1999.
http://titan.princeton.edu/TestProblems/ [9, 66, 77]

[93] Misprints and mistakes in [92], WWW-document (2002).
http://www.mat.univie.ac.at/∼neum/glopt/contrib/handbook corr.html [66]

[94] F. Forgó, Nonconvex Programming, Akadémiai Kiadó, Budapest 1988. [11]

[95] S. Forrest, Genetic algorithms: principles of natural selection applied to computation,
Science 261 (1993), 872–878. [19]

[96] R. Fourer, Convexity recognition. In preparation (2003). [51]

[97] R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Mathe-
matical Programming, Duxbury Press, Brooks/Cole Publishing Company, 1993.
http://www.ampl.com/cm/cs/what/ampl/ [16, 66]

[98] T. Fujie and M. Kojima, Semidefinite programming relaxation for nonconvex quadratic
programs, J. Global Optimization 10 (1997), 367–380. [49]

[99] J.M. Gablonsky and C.T. Kelley, A locally-biased form of the DIRECT algorithm, J.
Global Optimization 21 (2001), 27–37. [16]

[100] GAMS World, WWW-document, 2003.
http://www.gamsworld.org [16, 66]

[101] M.R. Garey and D.S. Johnson, Computers and Intractability, Freeman, San Francisco,
CA, 1979. [4]

[102] K. Gatermann and P. Parrilo, Symmetry groups, semidefinite programs, and sum of
squares, math.AC/0211450, J. Pure Applied Algebra, to appear.
http://www.zib.de/gatermann/publi.html [49, 50, 69]

[103] C.-Y. Gau and L. Schrage, Implementation and Testing of a Branch-and-Bound Based
Method for Deterministic Global Optimization, to appear in: Proceedings of the Con-
ference Frontiers in Global Optimization, Santorini (Greece), June 2003. [17, 49]

[104] D.M. Gay, A trust-region approach to linearly constrained optimization, pp. 72–105 in:
Numerical Analysis (Griffiths, D.F., ed.), Lecture Notes in Mathematics 1066, Springer,
Berlin 1984. [66]

[105] K. Georg, Improving the efficiency of exclusion algorithms, Advances in Geometry 1
(2001), 193–210. [46]

77

[106] K. Georg, A new exclusion test, J. Comput. Appl. Math. 152 (2002), 147–160. [46]

[107] P.E. Gill and W. Murray, Newton type methods for unconstrained and linearly con-
strained optimization, Math. Programming 7 (1974), 311–350. [42]

[108] Global (and Local) Optimization, WWW-site, 1995.
http://www.mat.univie.ac.at/∼neum/glopt.html [5]

[109] GLOBAL Library, WWW-document, 2002.
http://www.gamsworld.org/global/globallib.htm [66]

[110] Global Optimization Theory Institute, Argonne National Laboratory, September 8-10,
2003.
http://www-unix.mcs.anl.gov/∼leyffer/gotit/ [7]

[111] F. Glover, Tabu Search, Part 1. ORSA J. Comput. 1 (1989), 190–206. Part 2. ORSA
J. Comput. 2 (1990), 4–32. [19]

[112] F. Glover and M. Laguna, Tabu Search, Kluwer, Boston 1997. [19]

[113] GNU Lesser General Public License, WWW-document.
http://www.gnu.org/copyleft/lesser.html [67]

[114] R.E. Gomory, An algorithm for the mixed integer problem, RM-2597, The Rand Cor-
poration (1960). [61]

[115] Google WWW=site.
http://www.google.com [68]

[116] L. Granvilliers, Progress in the Solving of a Circuit Design Problem, J. Global Opti-
mization 20 (2001), 155–168. [42]

[117] P. Gray, W. Hart, L. Painton, C. Phillips, M. Trahan and J. Wagner, A survey of
global optimization methods, WWW-document (1997).
http://www.cs.sandia.gov/opt/survey/ [6, 20]

[118] H.J. Greenberg, Computational testing: why, how, and how much, ORSA J. Comput-
ing, 2 (1990), 94–97. [67]

[119] A. Griewank, On automatic differentiation, pp. 83–107 in: Mathematical Programming
(M. Iri and K. Tanabe, eds.), KTK Scientific Publishers, Tokyo 1989. [62]

[120] A. Griewank, Automatic Evaluation of First and Higher-Derivative Vectors, pp. 135–
148 in: International Series of Numerical Mathematics, Vol. 97, Birkhäuser, 1991. [62]

[121] A. Griewank, Achieving logarithmic growth of temporal and spatial complexity in
reverse automatic differentiation, Optimization Methods Software 1 (1992), 35–54. [62]

[122] A. Griewank and G.F. Corliss. Automatic Differentiation of Algorithms, SIAM,
Philadelphia, 1991. [62]

78

[123] I.E. Grossmann, Mixed-integer nonlinear programming techniques for the synthesis of
engineering systems, Research in Engineering Design 1 (1990), 205–228. [33]

[124] I.E. Grossmann (ed.), Global Optimization in Engineering Design, Kluwer, Dordrecht
1996. [11]

[125] I.E. Grossmann and C.A. Floudas, Active constraint strategy for flexibility analysis in
chemical processes, Comput. Chem. Engng. 11 (1987), 675-693. [56]

[126] J. Guddat, F. Guerra Vasquez and H.Th. Jongen, Parametric Optimization: Singular-
ities, Path Following and Jumps, Wiley, Chichester 1990. [19, 21, 36, 70]

[127] G.D. Hager, Solving large systems of nonlinear constraints with application to data
modeling, Interval Computations 3 (1993), 169–200. [38]

[128] T.C. Hales, An overview of the Kepler conjecture, Manuscript (1998).
math.MG/9811071 - math.MG/9811078
http://citeseer.nj.nec.com/hales98overview.html [7, 8, 63]

[129] E.R. Hansen, Publications Related to Early Interval Work of R. E. Moore, WWW-
document, 2001.
http://interval.louisiana.edu/Moores early papers/bibliography.html [4]

[130] E.R. Hansen, Global optimization using interval analysis – the multidimensional case,
Numer. Math. 34 (1980), 247–270. [29]

[131] E.R. Hansen, Global Optimization Using Interval Analysis, Dekker, New York 1992.
[11, 29]

[132] E. Hansen, Bounding the solution of interval linear equations, SIAM J. Numer. Anal.
29 (1992), 1493–1503. [32]

[133] B. Hanzon and D. Jibetean, Global minimization of a multivariate polynomial using
matrix methods, J. Global Optimization 27 (2003), 1–23.
http://homepages.cwi.nl/∼jibetean/polopt.ps [62, 69]

[134] Ch. Helmberg, Semidefinite Programming, WWW-site.
http://www-user.tu-chemnitz.de/∼helmberg/semidef.html [50]

[135] D. Henrion and J.B. Lasserre, GloptiPoly: Global Optimization over Polynomials with
Matlab and SeDuMi, ACM Trans. Math. Software 29 (2003), 165-194. [18, 49]

[136] D. Henrion and J.B. Lasserre, Solving Global Optimization Problems over Polynomials
with GloptiPoly 2.1, pp. 43–58 in: Ch. Bliek et al. (eds.), Global Optimization and
Constraint Satisfaction, Springer, Berlin 2003. [18, 49]

[137] D. Henrion and J.B. Lasserre, Detecting global optimality and extracting solutions in
GloptiPoly, Manuscript (2003).
http://www.laas.fr/∼henrion/papers/extract.pdf [18, 49]

79

[138] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lec-
ture Notes in Economics and Mathematical Systems, Vol. 187. Springer, Berlin 1981.
ftp://plato.la.asu.edu/pub/donlp2/testenviron.tar.gz [66]

[139] J. Holland, Genetic algorithms and the optimal allocation of trials, SIAM J. Computing
2 (1973), 88–105. [4, 19]

[140] J.N. Hooker, Logic, optimization and constraint programming, INFORMS J. Comput-
ing 14 (2002), 295–321.
http://ba.gsia.cmu.edu/jnh/joc2.ps [11]

[141] J.N. Hooker, Logic-based Methods for Optimization: Combining Optimization and
Constraint Satisfaction, Wiley, New York 2000. [11]

[142] R. Horst and P.M. Pardalos (eds.), Handbook of Global Optimization, Kluwer, Dor-
drecht 1995. [10]

[143] R. Horst, P.M. Pardalos and N.V. Thoai, Introduction to Global Optimization, Kluwer,
Dordrecht 1995. [11, 33, 58]

[144] R. Horst and H. Tuy, Global Optimization: Deterministic Approaches, 2nd ed.,
Springer, Berlin, 1990. [11, 51]

[145] W. Huyer and A. Neumaier, Global optimization by multilevel coordinate search, J.
Global Optimization 14 (1999), 331–355. [16, 25, 66]

[146] W. Huyer and A. Neumaier, Integral approximation of rays and verification of feasi-
bility, Reliable Computing, to appear.
http://www.mat.univie.ac.at/∼neum/papers.html#rays [47]

[147] W. Huyer and A. Neumaier, SNOBFIT – Stable Noisy Optimization by Branch and
Fit, Manuscript (2003).
http://www.mat.univie.ac.at/∼neum/papers.html#snobfit [23]

[148] E. Hyvönen and S. De Pascale, Interval computations on the spreadsheet, pp. 169–209
in: R. B. Kearfott and V. Kreinovich (eds.), Applications of Interval Computations,
Applied Optimization, Kluwer, Dordrecht 1996. [38]

[149] L. Ingber, Simulated annealing: Practice versus theory, Math. Comput. Modelling 18
(1993), 29–57. [19]

[150] R.H.F. Jackson, P.T. Boggs, S.G. Nash and S. Powell, Guidelines for reporting results
of computational experiments, Report of the ad hoc committee, Math. Programming
49 (1990/91), 413–426. [67]

[151] E. Janka, A comparison of stochastic methods for global optimization, WWW-
document (2000).
http://www.mat.univie.ac.at/∼vpk/math/gopt eng.html [4, 22, 66]

[152] C. Jansson, On self-validating methods for optimization problems, pp. 381–438 in:
Topics in validated computations (J. Herzberger, ed.), Elsevier Science B.V., 1994. [29]

80

[153] C. Jansson, Rigorous Error Bounds for the Optimal Value of Linear Programming
Problems, pp. 59–70 in: Ch. Bliek et al. (eds.), Global Optimization and Constraint
Satisfaction, Springer, Berlin 2003. [64]

[154] C. Jansson, Rigorous lower and upper bounds in linear programming, SIAM J. Opti-
mization, to appear. [64]

[155] C. Jansson, A Rigorous Lower Bound for the Optimal Value of Convex Optimization
Problems, J. Global Optimization, to appear. [64]

[156] C. Jansson and O. Knüppel, A global minimization method: The multi-dimensional
case, Technical Report 92-1, TU Hamburg-Harburg, January 1992. [29, 33]

[157] C. Jansson and O. Knüppel, Branch and bound algorithm for bound constrained opti-
mization problems without derivatives, J. Global Optimization 7 (1995), 297–333. [29,
66]

[158] L. Jaulin, M. Kieffer, O. Didrit and E. Walter, Applied Interval Analysis, Springer,
London, 2001. [9]

[159] L. Jaulin and D. Henrion, Linear matrix inequalities for interval constraint propaga-
tion, Reliable Computing, to appear.
http://www.laas.fr/∼henrion/Papers/jaulin lmi.pdf [51]

[160] R.G. Jeroslow, Cutting plane theory: disjunctive methods, Ann. Discrete Math. 1
(1977), 293–330. [54]

[161] D. Jibetean and E. De Klerk, Global optimization of rational functions: a semidefinite
programming approach, Manuscript (2003),
http://www.optimization-online.org/DB HTML/2003/05/654.html [49]

[162] F. John, Extremum problems with inequalities as subsidiary conditions, pp. 187–204
in: Studies and Essays Presented to R. Courant on his 60th Birthday January 8, 1948,
Interscience, New York 1948. Reprinted as pp. 543–560 of: Fritz John, Collected Papers,
Vol.2 (J. Moser, ed.), Birkhäuser, Boston 1985. [13]

[163] D.S. Johnson, A Theoretician’s Guide to the Experimental Analysis of Algorithms, pp.
215–250 in: Proc. 5th and 6th DIMACS Implementation Challenges (M. Goldwasser,
D. S. Johnson, and C. C. McGeochWet at., eds.) Amer. Math. Soc., Providence, 2002.
http://www.research.att.com/∼dsj/papers/experguide.pdf [67]

[164] D.R. Jones, A taxonomy of global optimization methods based on response surfaces,
J. Global Optimization 21 (2001), 345–383. [19]

[165] D.R. Jones, C.D. Perttunen and B.E. Stuckman, Lipschitzian optimization without
the Lipschitz constant, J. Optimization Th. Appl. 79 (1993), 157–181. [16, 25]

[166] D.R. Jones, M. Schonlau and W.J. Welch, Efficient global optimization of expensive
black-box functions, J. Global Optimization 13 (1998), 455–492. [19]

81

[167] G. Jónsson and S.A. Vavasis, Accurate Solution of Polynomial Equations Using
Macaulay Resultant Matrices, Manuscript (2001).
http://www.cs.cornell.edu/home/vavasis/vavasis.html [62]

[168] W. Kahan, A more complete interval arithmetic, Lecture notes for an engineering
summer course in numerical analysis, University of Michigan, 1968. [4, 31]

[169] J. Kallrath, Gemischt-ganzzahlige Optimierung: Modellierung in der Praxis, Vieweg,
2002. [52]

[170] W. Karush, Minima of Functions of Several Variables with Inequalities as Side Con-
straints, M.Sc. Dissertation, Dept. of Mathematics, Univ. of Chicago, IL, 1939. [13]

[171] R.B. Kearfott, Decomposition of arithmetic expressions to improve the behavior of
interval iteration for nonlinear systems, Computing, 47 (1991), 169–191. [38, 47]

[172] R.B. Kearfott, A review of techniques in the verified solution of constrained global opti-
mization problems, pp. 23–60 in: Applications of Interval Computations (R.B. Kearfott
and V. Kreinovich, eds.), Kluwer, Dordrecht 1996. [46, 64]

[173] R.B. Kearfott, Rigorous Global Search: Continuous Problems, Kluwer, Dordrecht
1996. [10, 11, 17, 29, 32, 33, 35, 45, 47, 62, 64]

[174] R.B. Kearfott, GlobSol: History, Composition, and Advice on Use, pp. 17–31 in: Ch.
Bliek et al. (eds.), Global Optimization and Constraint Satisfaction, Springer, Berlin
2003. [17]

[175] R.B. Kearfott and K. Du, The cluster problem in multivariate global optimization, J.
Global Optimization 5 (1994), 253–265. [43]

[176] R.B. Kearfott, M. Novoa and Chenyi Hu, A review of preconditioners for the interval
Gauss–Seidel method, Interval Computations 1 (1991), 59–85. [29]

[177] Ch. Khompatraporn, J. Pintér and Z.B. Zabinsky, Comparative assessment of algo-
rithms and software for global optimization, J. Global Optimization, to appear. [66]

[178] S. Kim and M. Kojima, Second Order Cone Programming Relaxation Methods of Non-
convex Quadratic Optimization Problem, Optimization Methods Software 15 (2001),
201–224. [49]

[179] S. Kim and M. Kojima, Exact Solutions of Some Nonconvex Quadratic Optimization
Problems via SDP and SOCP Relaxations, Comput. Optimization Appl..26 (2003),
143–154. [49]

[180] S. Kim, M. Kojima and H. Waki, Generalized Lagrangian Duals and Sums of Squares
Relaxations of Sparse Polynomial Optimization Problems, Manuscript (2003).
http://math.ewha.ac.kr/∼skim/Research/list.html [49]

[181] S. Kirkpatrick, C.D. Geddat, Jr., and M.P. Vecchi, Optimization by simulated anneal-
ing, Science 220 (1983), 671–680. [19]

82

[182] G.R. Kocis and I.E. Grossmann, Computational experience with DICOPT solving
MINLP problems in process systems engineering, Computers Chem. Engineering 13
(1989), 307–315. [18]

[183] M. Kojima, S. Kim and H. Waki, A General Framework for Convex Relaxation of
Polynomial Optimization Problems over Cones, J. Oper. Res. Soc. Japan 46 (2003),
125–144. [49]

[184] M. Kojima and L. Tuncel, Cones of matrices and successive convex relaxations of
nonconvex sets, SIAM J. Optimization 10 (2000), 750–778. [49]

[185] L.V. Kolev, Use of interval slopes for the irrational part of factorable functions, Reliable
Computing 3 (1997), 83–93. [63]

[186] L.V. Kolev and I.P. Nenov, Cheap and tight bounds on the solution set of perturbed
systems of nonlinear equations. Reliable Computing 7 (2001), 399–408. [51]

[187] J. Kostrowicki and H.A. Scheraga, Some approaches to the multiple-minima problem in
protein folding, pp. 123–132.in: Global Minimization of Nonconvex Energy Functions:
Molecular Conformation and Protein Folding (P.M. Pardalos et al., eds.), Amer. Math.
Soc., Providence, RI, 1996. [19]

[188] R. Krawczyk, Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-
schranken, Computing, 4 (1969), 187–201. [4, 31]

[189] H.W. Kuhn, Nonlinear programming: a historical note, pp. 82–96 in: History of Math-
ematical Programming (J.K. Lenstra et al., eds.) North Holland, Amsterdam 1991. [14]

[190] H.W. Kuhn and A.W. Tucker, pp. 481–492 in: Nonlinear Programming, Proc. 2nd
Berkeley Symp. Math. Stat. Prob. (J. Neyman, ed.), Univ. of Calif. Press, Berkeley,
CA, 1951. [14]

[191] J.C. Lagarias, Bounds for Local Density of Sphere Packings and the Kepler Conjecture,
Discr. Comput. Geometry 27 (2002), 165–193. [8]

[192] J.L. Lagrange, Théorie des fonctions analytiques, Impr. de la République, Paris 1797.
[14]

[193] A.H. Land and A.G. Doig, An automated method for solving discrete programming
problems, Econometrica 28 (1960), 497–520. [3, 33]

[194] J.B. Lasserre, Global optimization with polynomials and the problem of moments.
SIAM J. Optimization 11 (2001), 796–817. [49]

[195] Y. Lebbah, C. Michel, M. Rueher, J.-P. Merlet and D. Daney, Efficient and safe global
constraints for handling numerical constraint systems, Manuscript (2003). [49, 64]

[196] Y. Lebbah, M. Rueher and C. Michel, A global filtering algorithm for handling systems
of quadratic equations and inequations, pp. 109–123 in: Principles and Practice of Con-
straint Programming - CP 2002 (P. van Hentenryck, ed.), Lecture Notes in Computer
Science 2470 Springer, New York 2002. [49, 64]

83

[197] E. Lee and C. Mavroidis, Solving the geometric design problem of spatial 3R robot
manipulators using polynomial homotopy continuation, J. Mech. Design, Trans. ASME
124 (2002), 652–661. [7]

[198] E. Lee, C. Mavroidis and J.P. Merlet, Five precision points synthesis of spatial RRR
manipulators using interval analysis, pp. 1–10 in: Proc. 2002 ASME Mechanisms and
Robotics Conference, Montreal, September 29–October 2, 2002.
http://robots.rutgers.edu/Publications.htm [7, 62]

[199] M. Lerch, G. Tischler, J. Wolff von Gudenberg, W. Hofschuster and W. Krämer, The
Interval Library filib 2.0 - Design, Features and Sample Programs, Preprint 2001/4,
Univ. Wuppertal, 2001.
http://www.math.uni-wuppertal.de/wrswt/software/filib.html [67]

[200] A.V. Levy and A. Montalvo, The tunneling algorithm for the global minimization of
functions, SIAM J. Sci. Stat. Comput. 6 (1985), 15–29. [19]

[201] J.D. Little, K.C. Murty, D.W. Sweeney and C. Karel, An algorithm for the travelling
salesman problem, Operations Research 11 (1963), 972–989. [3, 33]

[202] W.A. Lodwick, Constraint propagation, relational arithmetic in AI systems and math-
ematical programs, Ann. Oper. Res. 21 (1989), 143–148. [38]

[203] Z.-Q. Luo, J.-S. Pang and D. Ralph, Mathematical Programs with Equilibrium Con-
straints, Cambridge Univ. Press, Cambridge 1996. [56]

[204] I.J. Lustig and J.-F. Puget, Program 6= program: constraint programming and its
relationship to mathematical programming. WWW-document.
http://www.ilog.com/products/optimization/tech/interfaces informs.pdf [11]

[205] K. Madsen and S. Skelboe, The Early Days of Interval Global Optimization,
Manuscript (2002).
http://interval.louisiana.edu/conferences/VC02/abstracts/MADS.pdf [4]

[206] C. Maheshwari, A. Neumaier and H. Schichl. Convexity and concavity detection, In
preparation (2003). [51]

[207] K. Makino, Rigorous Analysis of Nonlinear Motion in Particle Accelerators, Ph.D.
Thesis, Dept. of Physics and Astronomy, Michigan State University, 1998.
http://bt.pa.msu.edu/makino/phd.html [43]

[208] K. Makino and M. Berz, Taylor Models and Other Validated Functional Inclusion
Methods, Int. J. Pure Applied Math. 4 (2003), 379–456. [31, 43, 70]

[209] O.L. Mangasarian, Nonlinear Programming, McGraw-Hill New York 1969. Reprinted
as: Classics in Applied Mathematics, SIAM, Philadelphia 1994. [14]

[210] O.L. Mangasarian and S. Fromovitz, The Fritz John necessary optimality conditions
in the presence of equality and inequality constraints, J. Math. Anal. Appl., 17 (1967),
37–47. [38]

84

[211] O.L. Mangasarian and L. McLinden, Simple bounds for solutions of monotone com-
plementarity problems and convex programs, Math. Programming 32 (1985), 32–40.
[38]

[212] F. Margot, Exploiting orbits in symmetric ILP, Math. Programming 98 (2003), 3–21
[69]

[213] H.M. Markowitz and A.S. Manne, On the solution of discrete programming problems,
Econometrica 25 (1957), 84-110. [3, 58]

[214] G.P. McCormick, Converting general nonlinear programming problems to separable
nonlinear programming problems, Technical Report T-267, George Washington Univer-
sity, Washington, DC, 1972. [3]

[215] G.P. McCormick, Computability of global solutions to factorable nonconvex programs:
Part I – convex underestimating problems, Math. Programming 10 (1976), 147–175. [47,
50]

[216] C.M. McDonald and C.A. Floudas, Global optimization for the phase and chemi-
cal equilibrium problem: application to the NRTL equation, Comput. Chem. Eng. 19
(1995), 1111–1139. [9]

[217] M. McKay, R. Beckman and W. Conover, A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code, Technometrics
21 (1979), 239-245. [24]

[218] J.-P. Merlet, A parser for the interval evaluation of analytical functions and its appli-
cations to engineering problems, J. Symbolic Computation 31 (2001), 475–486. [17]

[219] C.A. Meyer, C.A. Floudas and A. Neumaier, Global Optimization with Nonfactorable
Constraints, Ind. Eng. Chem. Res. 41 (2002), 6413–6424. [70]

[220] R.J. Meziat, Analysis of Non Convex Polynomial Programs by the Method of Moments,
Manuscript (2003).
http://www.optimization-online.org/ARCHIVE DIGEST/2003-03.html [49]

[221] Z. Michalewicz, Genetic Algorithm + Data Structures = Evolution Programs, 3rd ed.,
Springer, New York 1996. [19]

[222] H. Mittelmann, Benchmarks. WWW-Site, 2002.
http://plato.la.asu.edu/topics/benchm.html [66]

[223] J. Mockus, Multiextremal problems in design, Ph.D. Thesis, Nauka 1966. [4]

[224] J. Mockus, Bayesian Approach to Global Optimization, Kluwer, Dordrecht 1989. [11,
19]

[225] J. Mockus, Application of Bayesian approach to numerical methods of global and
stochastic optimization, J. Global Optimization 4 (1994), 347–356. [19]

85

[226] H.M. Moller and H.J. Stetter, Multivariate polynomial equations with multiple zeros
solved by matrix eigenproblems, Numer. Math. 70 (1995), 311–329. [62]

[227] M. Mongeau, H. Karsenty, V. Rouz and J.-B. Hiriart-Urruty, Comparison of public-
domain software for black box global optimization, Optimization Methods Software 13
(2000), 203–226. [66]

[228] R.E. Moore and C.T. Yang, Interval analysis I, Technical Report Space Div. Report
LMSD285875, Lockheed Missiles and Space Co., 1959.
http://interval.louisiana.edu/Moores early papers/Moore Yang.pdf [4]

[229] R.E. Moore, Interval Arithmetic and Automatic Error Analysis in Digital Computing,
PhD thesis, Appl. Math. Statist. Lab. Rep. 25, Stanford University, Stanford, CA, 1962.
http://interval.louisiana.edu/Moores early papers/disert.pdf [4]

[230] R.E. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia 1979.
[29]

[231] J.J. Moré, B.S. Garbow and K.E. Hillstrom, Testing unconstrained optimization soft-
ware, ACM Trans. Math. Software 7 (1981), 17–41. [66]

[232] J. Moré and Z. Wu, Global Continuation for Distance Geometry Problems, SIAM J.
Optimization 7 (1997), 814–836. [19]

[233] T.S. Motzkin and E.G. Strauss, Maxima for graphs and a new proof of a theorem of
Turan, Canad. J. Math. 17 (1965), 533–540. [3, 8]

[234] B. Mourrain and V.Y. Pan, Solving special polynomial systems by using structured
matrices and algebraic residues. pp. 287–304 in: Proc. Workshop on Foundations of
Computational Mathematics, (F. Cucker and M. Shub, eds.), Springer, Berlin, 1997.
[62]

[235] B. Mourrain, Y.V. Pan and O. Ruatta, Accelerated solution of multivariate polynomial
systems of equations, SIAM J. Comput. 32 (2003), 435–454. [62]

[236] K.G. Murty and S.N. Kabadi, Some NP-complete problems in quadratic and nonlinear
programming, Math. Programming 39 (1987), 117–129. [4]

[237] NAG, Differentiation Enabled Fortran Compiler Technology, WWW-document, 2003.
http://www.nag.co.uk/nagware/research/ad overview.asp [69]

[238] N.S. Nedialkov and K.R. Jackson, A new perspective on the wrapping effect in interval
methods for initial value problems for ordinary differential equations, pp. 219–264 in:
Perspectives on Enclosure Methods (U. Kulisch et al., eds.), Springer, Berlin 2001.
http://www.cs.toronto.edu/NA/reports.html#ned.scan00 [70]

[239] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, Wiley,
New York 1988. [6, 10, 61]

86

[240] G.L. Nemhauser and L.A. Wolsey, Integer Programming, Chapter VI, pp. 447–527 in:
Optimization (G.L. Nemhauser et al., eds.), Handbooks in Operations Research and
Management Science, Vol. 1, North Holland, Amsterdam 1989. [6, 10, 61]

[241] I.P. Nenov and D.H. Fylstra, Interval methods for accelerated global search in the
Microsoft Excel Solver, Reliable Computing 9 (2003), 143–159. [17, 63]

[242] A. Neumaier, The enclosure of solutions of parameter-dependent systems of equations.
pp. 269–286 in: Reliability in Computing (ed. by R.E. Moore). Acad. Press, San Diego
1988.
http://www.mat.univie.ac.at/∼neum/publist.html#encl [38, 43]

[243] A. Neumaier, Interval Methods for Systems of Equations, Cambridge Univ. Press,
Cambridge 1990. [10, 29, 30, 31, 33, 45, 46, 64]

[244] A. Neumaier, The wrapping effect, ellipsoid arithmetic, stability and confidence re-
gions, Computing Supplementum 9 (1993), 175–190. [70]

[245] A. Neumaier, Second-order sufficient optimality conditions for local and global nonlin-
ear programming, J. Global Optimization 9 (1996), 141–151. [29, 32, 45]

[246] A. Neumaier, Molecular modeling of proteins and mathematical prediction of protein
structure, SIAM Review 39 (1997), 407–460. [6, 9]

[247] A. Neumaier, Generalized Lyapunov-Schmidt reduction for parametrized equations at
near singular points, Linear Algebra Appl. 324 (2001), 119–131. [44]

[248] A. Neumaier, A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott enclosure
for linear interval equations, Reliable Computing 5 (1999), 131-136. Erratum, Reliable
Computing 6 (2000), 227. [32]

[249] A. Neumaier, Rational functions with prescribed global and local minimizers, J. Global
Optimization 25 (2003), 175–181. [25]

[250] A. Neumaier, Introduction to Numerical Analysis, Cambridge Univ. Press, Cambridge
2001 [10, 29]

[251] A. Neumaier, Constraint satisfaction and global optimization in robotics, Manuscript
(2003).
http://www.mat.univie.ac.at/∼neum/papers.html#rob
[9, 70]

[252] A. Neumaier, Taylor forms – use and limits, Reliable Computing 9 (2002), 43–79. [31,
43, 45, 70]

[253] A. Neumaier and H. Schichl, Exclusion regions for systems of equations, SIAM J.
Numer. Anal., to appear.
http://www.mat.univie.ac.at/∼neum/papers.html#excl [67]

87

[254] A. Neumaier and H. Schichl, Sharpening the Karush-John optimality conditions,
Manuscript (2003).
http://www.mat.univie.ac.at/∼neum/papers.html#kj [14]

[255] A. Neumaier and O. Shcherbina, Safe bounds in linear and mixed-integer programming,
Math. Programming, DOI 10.1007/s10107-003-0433-3.
http://www.mat.univie.ac.at/∼neum/papers.html#mip [63, 64]

[256] J. Nocedal and S.J. Wright, Numerical Optimization, Springer Series in Operations
Research, Springer, Berlin 1999. [11, 23]

[257] I. Nowak, H. Alperin and S. Vigerske, LaGO – An object oriented library for solving
MINLPs, pp.32–42 in: Ch. Bliek et al. (eds.), Global Optimization and Constraint
Satisfaction, Springer, Berlin 2003.
http://www.math.hu-berlin.de/∼alpe/papers/LaGO/ [18]

[258] W. Older and A. Vellino, Constraint arithmetic on real intervals, in: Constrained Logic
Programming: Selected Research (F. Benhameou and A. Colmerauer, eds.), MIT Press,
1993. [38]

[259] J. Outrata, M. Kočvara and J. Zowe, Nonsmooth Approach to Optimization problems
with Equilibrium Constraints, Kluwer, Dordrecht 1998. [56]

[260] A.B. Owen, Orthogonal arrays for computer experiments, integration and visualization,
Statistica Sinica 2 (1992), 439-452. [24]

[261] A.B. Owen, Lattice sampling revisited: Monte Carlo variance of means over random-
ized orthogonal arrays, Ann. Stat. 22 (1994), 930-945. [24]

[262] I. Papamichail and C.S. Adjiman, A Rigorous Global Optimiza-tion Algorithm for
Problems with Ordinary Differential Equations, J. Global Optimization 24 (2002),1–33.
[70]

[263] P.M Pardalos and J.B. Rosen, Constrained Global Optimization: Algorithms and Ap-
plications, Lecture Notes in Computer Science 268, Springer, Berlin 1987. [11, 58]

[264] P.M. Pardalos and G. Schnitger, Checking local optimality in constrained quadratic
programming is NP-hard, Oper. Res. Lett. 7 (1988), 33–35. [4]

[265] R.G. Parker and R.L. Rardin, Discrete Optimization, Acad. Press, San Diego, CA,
1988. [33]

[266] P.A. Parrilo, Semidefinite programming relaxations for semialgebraic problems. Math.
Programming B 96 (2003), 293–320. [49]

[267] P.A. Parrilo and S. Lall, Semidefinite programming relaxations and algebraic optimiza-
tion in Control, Europ. J. Control 9 (2003), 307–321. [49]

88

[268] P.A. Parrilo and B. Sturmfels, Minimizing polynomial functions, pp. 83–99 in: Algo-
rithmic and quantitative real algebraic geometry, DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, Vol. 60, Amer. Math. Soc. Publ., Providence,
RI, 2003.
http://www.arxiv.org/abs/math.OC/0103170 [49]

[269] J.D. Pintér, Global Optimization in Action, Kluwer, Dordrecht 1996. [9, 11, 16, 24,
25, 33]

[270] J.D. Pintér, Continuous global optimization software: a brief review, Optima 52 (1996),
1–8. [6]

[271] J.D. Pintér, LGO – A Model Development System for Continuous Global Optimization.
User s Guide, Pintér Consulting Services, Inc., Halifax, NS. [16]

[272] S.A. Piyavskii, An Algorithm for Finding the Absolute Extremum of a Function, USSR
Comput. Math. and Math. Phys. 12 (1972), 57–67. [4]

[273] S. Prajna, A. Papachristodoulou and A. Parrilo, SOSTOOLS: Sum of Squares Opti-
mization Toolbox for MATLAB – User’s Guide, Manuscript (2002),
http://www.optimization-online.org/DB HTML/2002/05/483.html [18, 49]

[274] Python, WWW-site.
http://www.python.org [68]

[275] H.D. Ratliff and W. Pierskalla, Reporting computational experience in operations re-
search, Operations Research 29 (1981), xi–xiv. [67]

[276] H. Ratschek and J.G. Rokne, New Computer Methods for the Range of Functions,
Ellis Horwood, Chichester 1984. [11, 29]

[277] H. Ratschek and J.G. Rokne, New Computer Methods for Global Optimization. Wiley,
New York 1988. [11, 29]

[278] D. Ratz, On branching rules in second-order branch-and-bound methods for global
optimization, in: G. Alefeld et al. (eds.), Scientific Computation and Validation,
Akademie-Verlag, Berlin 1996. [35]

[279] D. Ratz and T. Csendes, On the selection of subdivision directions in interval branch-
and-bound methods for global optimization, J. Global Optimization 7 (1995), 183–207.
[35]

[280] A.D. Rikun, A convex envelope formula for multilinear functions, J. Global Optimiza-
tion 10 (1997), 425-437. [49]

[281] G. Rote, The convergence of the sandwich algorithm for approximationg convex func-
tions, Computing 48 (1992), 337–361. [49]

[282] H.S. Ryoo and N.V. Sahinidis, A branch-and-reduce approach to global optimization,
J. Global Optimization 8 (1996), 107–139. [17, 47]

89

[283] J. Sacks, W.J. Welch, T.J. Mitchell and H.P. Wynn, Design and analysis of computer
experiments, Statist. Sci. 4 (1989), 409–435. [24]

[284] N.V. Sahinidis, BARON: A general purpose global optimization software package, J.
Global Optimization 8 (1996), 201–205. [12, 17]

[285] N.V. Sahinidis, BARON. Branch And Reduce Optimization Navigator. User’s Manual,
WWW-document.
http://archimedes.scs.uiuc.edu/baron/baron.html [17]

[286] N.V. Sahinidis, Global Optimization and Constraint Satisfaction: The Branch-And-
Reduce Approach, pp. 1–16 in: Ch. Bliek et al. (eds.), Global Optimization and Con-
straint Satisfaction, Springer, Berlin 2003. [17]

[287] H. Schichl, Global Optimization in the COCONUT project, Manuscript (2003).
http://www.mat.univie.ac.at/∼herman/papers.html [67]

[288] H. Schichl and A. Neumaier, Exclusion regions for systems of equations, SIAM J.
Numer. Anal., to appear. [44, 47]

[289] H. Schichl and A. Neumaier, Interval Analysis on Directed Acyclic Graphs for Global
Optimization, Manuscript (2003)
http://www.mat.univie.ac.at/∼neum/papers.html#intdag [51, 63, 69]

[290] R.B. Schnabel and E. Eskow, A new modified Cholesky factorization, SIAM J. Sci.
Stat. Comput. 11 (1990), 1136–1158. [42]

[291] SeDuMi, WWW-site.
http://fewcal.kub.nl/sturm/software/sedumi.html [50]

[292] O. Shcherbina, A. Neumaier, Djamila Sam-Haroud, Xuan-Ha Vu and Tuan-Viet
Nguyen, Benchmarking global optimization and constraint satisfaction codes, pp. 211–
222 in: Ch. Bliek et al. (eds.), Global Optimization and Constraint Satisfaction,
Springer, Berlin 2003.
http://www.mat.univie.ac.at/∼neum/papers.html#bench [66]

[293] J.P. Shectman and N.V. Sahinidis, A finite algorithm for global minimization of sepa-
rable concave programs, J. Global Optimization 12 (1998), 1–36. [47]

[294] H.D. Sherali, Convex envelopes of multilinear functions over a unit hypercube and over
special discrete sets, Acta Math. Vietnamica 22 (1997), 245–270. [49]

[295] H.D. Sherali and C.M. Shetty, Optimization with disjunctive constraints, Springer,
Berlin 1980. [54]

[296] H.D. Sherali and C.H. Tuncbilec, A reformulation-convexification approach for solving
nonconvex quadratic programming problems, J. Global Optimization 7 (1995), 1–31.
[49]

90

[297] H.D. Sherali and C.H. Tuncbilec, New reformulation linearization/convexification re-
laxations for univariate and multivariate polynomial programming problems, Oper. Res.
Lett. 21 (1997), 1–9. [49]

[298] H.D. Sherali and C.H. Tuncbilec, Comparison of two reformulation-linearization tech-
nique based linear programming relaxations for polynomial programming problems, J.
Global Optimization 10 (1997), 381–390. [49]

[299] K. Shimizu, Y. Ishizuka and J.F. Bard, Nondifferentiable and Two-Level Programming,
Kluwer, Boston 1997. [56]

[300] J. Siek and A. Lumsdaine, The Matrix Template Library: Generic components for high-
performance scientific computing, Computing in Science and Engineering 18 (1999),
70–78.
http://www.osl.iu.edu/research/mtl/ [67]

[301] S. Skelboe, Computation of rational interval functions, BIT 14 (1974), 87–95.
http://www.diku.dk/∼stig/CompRatIntv.pdf [4]

[302] N.J.A. Sloane, Home Page, WWW-document with tables of packings and designs.
http://www.research.att.com/∼njas/ [69]

[303] H. Stetter, Stabilization of polynomial systems solving with Groebner bases, pp. 117–
124 in: Proc. ACM Int. Symp. Symbolic Algebraic Computation (1997). [62]

[304] F.H. Stillinger, Role of potential-energy scaling in the low-temperature relaxation be-
havior of amorphous materials, Phys. Rev. B 32 (1985), 3134–3141. [19]

[305] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones, Optimization Methods Software 11–12 (1999), 625–653.
http://fewcal.kub.nl/sturm/software/sedumi.html [50]

[306] B. Tang, Orthogonal array-based Latin hypercubes, J. Amer. Stat. Assoc. 88 (1993),
1392-1397. [24]

[307] M. Tawarmalani and N.V. Sahinidis, Semidefinite relaxations of fractional programs
via novel convexification techniques, J. Global Optimization, 20 (2001), 137–158. [50]

[308] M. Tawarmalani and N.V. Sahinidis, Convex extensions and envelopes of lower semi-
continuous functions, Math. Programming, 93 (2002), 247–263. [50]

[309] M. Tawarmalani and N.V. Sahinidis, Convexification and Global Optimization in Con-
tinuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and
Applications, Kluwer, Dordrecht 2002. [11, 12, 17, 47, 48, 49]

[310] M. Tawarmalani and N.V. Sahinidis, Global optimization of mixed-integer nonlinear
programs: A theoretical and computational study, Math. Programming, to appear. [17]

[311] M. Todd, Semidefinite Optimization, Acta Numerica 10 (2001), 515–560.
http://www.orie.cornell.edu/∼miketodd/soa5.ps [50]

91

[312] J.A. Tomlin, Branch and bound methods for integer and non-convex programming,
pp. 437-450 in: Integer and Nonlinear Programming (J. Abadie, ed.), American Elsevier
Publishing Company, New York 1970. [3, 57]

[313] TOMS, Information for Authors, WWW-document.
http://www.acm.org/toms/Authors.html#TypesofPapers [67]

[314] A. Törn, Global Optimization as a Combination of Local and Global Search, in: W.
Goldberg (ed.), Proceedings of Computer Simulation Versus Analytical Solutions for
Business and Economical Models, Gothenburg,August 1972. [4]

[315] A. Törn, Global Optimization as a Combination of Global and Local Search, Ph.D.
Thesis, Abo Akademi University, HHAAA 13, 1974. [4]

[316] A. Törn, Global Optimization, WWW-document (2000).
http://www.abo.fi/∼atorn/Globopt.html [6, 20]

[317] A. Törn and A. Žilinskas, Global Optimization, Lecture Notes in Computer Science,
Vol. 350, Springer, Berlin 1989. [11, 25]

[318] A. Törn, M. Ali and S. Viitanen, Stochastic global optimization: problem classes and
solution techniques, J. Global Optimization 14 (1999), 437–447. [6]

[319] T. Tsuda and T. Kiono, Application of the Monte Catlo Method to Systems of Non-
linear Algebraic Equations, Numerische Matematik 6 (1964), 59–67. [4]

[320] H. Tuy, D.C. optimization: Theory, methods and algorithms, pp. 149–216 in: Hand-
book of Global Optimization, (R. Horst and P.M. Pardalos eds.), Kluwer, Dordrecht
1995. [51]

[321] M. Ulbrich and S. Ulbrich, Automatic differentiation: A structure-exploiting forward
mode with almost optimal complexity for Kantorovich trees, pp. 327–357 in: Applied
Mathematics and Parallel Computing (H. Fischer et al., eds.), Physica-Verlag, Heidel-
berg 1996. [62]

[322] L. Vandenberghe and S. Boyd, Semidefinite Programming, SIAM Review 38 (1996),
49–95.
http://www.stanford.edu/∼boyd/reports/semidef prog.ps [50]

[323] M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Applications of second-order cone
programming, Linear Algebra Appl. 284 (1998), 193–228.
http://www.stanford.edu/∼boyd/socp.html [50]

[324] D. Vandenbussche, Polyhedral approaches to solving nonconvex quadratic programs,
Ph.D. Thesis, School of Industrial and Systems Engineering, Georgia Institute of Tech-
nology, May 2003. [61]

[325] B. Vanderbei, Nonlinear Optimization Models, WWW-site.
http://www.sor.princeton.edu/∼rvdb/ampl/nlmodels/ [66]

92

[326] P. Van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press, Cam-
bridge, MA, 1989. [38]

[327] P. Van Hentenryck, L. Michel and F. Benhamou, Newton: constraint programming
over non-linear constraints, Sci. Programming 30 (1997), 83–118. [38]

[328] P. Van Hentenryck, L. Michel and Y. Deville, Numerica. A Modeling Language for
Global Optimization, MIT Press, Cambridge, MA 1997. [11, 17, 29, 32, 33, 35, 38, 41,
43, 45, 62]

[329] R. Van Iwaarden, An improved unconstrained global optimization algorithm, Ph.D.
Thesis, Univ. of Colorado at Denver, Denver, CO, May 1986. [47]

[330] P.J.M. Van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Applica-
tions, Kluwer, Dordrecht 1987. [11, 19]

[331] L.N. Vicente and P.H. Calamai, Bilevel and multilevel programming: a bibliography
review, J. Global Optimization 5 (1994), 291–306. [56]

[332] Xuan-Ha Vu, D. Sam-Haroud and M.-C. Silaghi, Approximation techniques for non-
linear problems with continuum of solutions, pp. 224–241 in: Proc. 5th Int. Symp.
Abstraction, Reformulation Approximation (SARA’2002), Lecture Notes in Artificial
Intelligence, Vol. 2371 (2002). [44, 69]

[333] Xuan-Ha Vu, D. Sam-Haroud and M.-C. Silaghi, Numerical Constraint Satisfaction
Problems with Non-Isolated Solutions, pp. 194–210 in: Ch. Bliek et al. (eds.), Global
Optimization and Constraint Satisfaction, Springer, Berlin 2003. [44, 69]

[334] W. Walster, Interval Arithmetic Solves Nonlinear Problems While Providing Guaran-
teed Results, FORTE TOOLS Feature Stories, WWW-Manuscript, 2000.
http://wwws.sun.com/software/sundev/news/features/intervals.html [69]

[335] G. Walster, E. Hansen and S. Sengupta, Test results for a global optimization algo-
rithm, pp. 272–287 in: Numerical optimization 1984 (P.T. Boggs et al., eds), SIAM,
Philadelphia 1985. [66]

[336] H.P. Williams, Model Solving in Mathematical Programming, 4th ed., Wiley, Chich-
ester 1999. [52]

[337] H. Wolkowicz, R. Saigal and L. Vandenberghe (eds.), Handbook on Semidefinite Pro-
gramming, Kluwer, Dordrecht 2000. [50]

[338] L.A. Wolsey, Integer Programming, Wiley, 1998. [10, 61]

[339] S.J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia 1997. [11]

[340] M. Yagiura and T. Ibaraki, On metaheuristic algorithms for combinatorial optimization
problems, Systems and Computers in Japan, 32 (2001), 33–55. [20]

[341] H. Yan and J.N. Hooker, Tight representations of logical constraints as cardinality
rules, Math. Programming 85 (1999), 363–377. [58]

93

[342] J.M. Zamora and I.E. Grossmann, A branch and contract algorithm for problems
with concave univariate, bilinear and linear fractional terms, J. Global Optimization 14
(1999), 217–249. [48]

[343] A.A. Zhigljavsky, Theory of Global Random Search, Kluwer, Dordrecht 1991. [11]

94

