Safe bounds in linear and
mixed-integer linear programming

Arnold Neumaier and Oleg Shcherbina

Institut fiir Mathematik, Universitdt Wien
Strudlhofgasse 4, A-1090 Wien, Austria
email: Arnold.Neumaier@univie.ac.at, oleg@mat.univie.ac.at
WWW: http://www.mat.univie.ac.at/~neum/

April 1, 2003

Abstract. Current mixed-integer linear programming solvers are based on
linear programming routines that use floating-point arithmetic. Occasionally,
this leads to wrong solutions, even for problems where all coefficients and all
solution components are small integers.

An example is given where many state-of-the-art MILP solvers fail.

It is then shown how, using directed rounding and interval arithmetic, cheap
pre- and postprocessing of the linear programs arising in a branch-and-cut
framework can guarantee that no solution is lost, at least for mixed-integer
programs in which all variables can be bounded rigorously by bounds of
reasonable size.

Keywords: Linear programming, mixed-integer programming, rounding
errors, directed rounding, interval arithmetic, branch-and-cut, lower
bounds, mixed-integer rounding, generalized Gomory cut, safe cuts, safe
presolve, certificate of infeasibility.

2000 MSC Classification: primary 90C11, secondary 65G20

1 Introduction

Rounding errors permeate most numerical calculations, and their effect on
the final results of an algorithm is a well-studied problem in many branches
of numerical analysis. However, very little work seems to have been done
about the effect of rounding errors on the quality of solutions in linear and
mixed integer programming.

The only study we are aware of, by FOURER & GAY [5], is restricted to the
presolve phase of solving a linear program (cf. also BREARLEY et al. [1]).

It contains the observation that rounding errors in presolve may change the
status of a linear program (LP) from feasible to infeasible, or vice versa.
The solution they presented was a straightforward application of directed
rounding during presolve. It apparently eliminates these problems because
of the simple nature of the presolve operations.

There are problems (such as the recently announced — not yet completely
confirmed — computer-assisted proof of the 300 year old Kepler conjecture;
see, e.g., the discussion in LAGARIAS [12]), where the linear programs solved
are used to deduce steps in a mathematical proof. In such cases, getting
correct results is essential for the validity of the computer-assisted proof.

In the majority of problems, however, strict rounding error control used to
be considered as a luxury which no one needs to afford. It is well-known
that rounding errors affect the solution of linear systems and hence of linear
programming solvers.

Usually, backward error analysis is invoked to argue that the computed ’so-
lution’ is the exact solution of a problem with slightly perturbed coefficients,
so that it should be adequate for almost all problems of interest. However,
backward error analysis has no relevance for integer linear programs with
integer coefficients, since slightly perturbed coefficients no longer produce
problems of the same class.

Moreover, the influence of rounding errors on the solution may be large if
the problem has a large condition number. A recent study by ORDONEZ &
FREUND [19] revealed that 72% of the (real life!) problems of the NETLIB
LP collection [15] are ill-conditioned; after preprocessing (with CPLEX 7.1
presolve), 19% still remained ill-conditioned. Thus ill-condition seems to be
fairly frequent in practice.

In particular, ill-condition is likely to arise in LP subproblems created by

branch-and-cut procedures at the nodes of the branch tree for integer linear
programs. This may result in incorrect decisions, leading to a loss of a
solution in branch-and-cut procedures. It is difficult to say how rare or
frequent such failures are in practice, since checking rigorously whether a
"solution’ obtained for a given MILP is optimal is usually considered too hard
to be attempted. Due to the lack of monotonicity of elimination algorithms
in the LP iterations, simple directed rounding is no longer possible.

In the following, we show that sometimes, solutions are indeed lost on some
problems, when attempting to 'solve’ them by commercial state-of-the-art
mixed integer linear programming (MILP) solvers. Already for a simple and
innocent-looking low-dimensional problem with only integer variables and
small integer coefficients, this happened for six solvers out of seven solvers
tried.

We therefore discuss the use of directed rounding and interval arithmetic
to guarantee correct decisions in branch-and-cut procedures. (For basics on
interval arithmetic, see [14, 16, 17].) It turns out that safety in solving MILPs
can be rigorously guaranteed with limited additional computational effort by
careful preparation of the LP subproblems and careful postprocessing of the
LP solver output. Of particular importance is the fact that the LP solver
itself is not required to deliver rigorous results, so that off the shelf software
can be used. Since, typically, most of the CPU time is spent in the LP
solver, this also implies that the addition of the safety measures presented
here should increase the run time by a small amount only.

A recent preprint of JANSSON [9] contains new results on rigorously solving
linear programs with uncertain coefficients, using interval arithmetic. For the
case of exact coefficients, some of his results overlap with those of Section 3
of the present paper.

According to Bill Cook (personal communication), the Concorde package for
solving the traveling salesman problem (where all variables are bounded by
[0,1]) uses some undocumented form of postprocessing of the approximate
solutions of the LP subproblems solved to get safe lower bounds, in a similar
spirit as in the present Section 3. For details, see TSP/ex_price.c in the
collection at http://www.math.princeton.edu/tsp/concorde.html

In the following, Z denotes the set of integers, and N the set of positive
integers. xx denotes the subvector of x indexed by the indices from K.
Boxes (interval vectors) are written in bold face.

3

Acknowledgment

We acknowledge support by the European Community research project CO-
CONUT [4], project reference IST-2000-26063. We also want to thank ILOG
for providing us with a CPLEX license while working on this project.

2 Failure of MILP solvers

The commercial MILP solver CPLEX [7] is a professionally maintained,
high quality state-of-the-art solver for mixed integer programming prob-
lems. While it solved and solves bigger and bigger MILP problems to full
user satisfaction, it is based (as all other state of the art MILP solvers) on
floating-point arithmetic, and therefore potentially vulnerable to the errors
introduced by the limited precision.

Unfortunately, this occasionally even affects the solution of pure integer prob-
lems with integer coefficients where, due to their discrete nature, the user is
likely to expect exact results. Here we document a simple example where
CPLEX (and many other MILP solvers) failed to find an existing feasible
point. The failure is due to rounding errors and not due to the complexity
of the search.

We tried to solve the 20 variable integer linear problem

min —ay
st (s+1)xy —xg>s—1,
—sxi_y + (s + 1)y — x50 > (=1)4(s+ 1) for i =2 : 19,
—sx13 — (3s — 1)x19 + 399 > —(bs — 7), (1)
0<uz; <10 fori=1:13,
0 <a; <10° for i = 14 : 20,

all x; integers,

for the special choice s = 6 with CPLEX (Version 7.1.0, March 2001) on a
LINUX platform, both with and without presolve. In both cases, CPLEX
returned after 16 iterations at the root node the message 'Integer infeasible.
Current MILP best bound is infinite.” No further diagnostic information was
available.

Surprisingly, upon adding the additional constraint x5y < 10 to this ’infeasi-
ble’ problem CPLEX produced (after 11 iterations) the solution

r=(1,2,1,2,...,1,2)".

The same solution was also found with the original constraints, upon chang-
ing the objective function to +x9. It is easily checked that this is a feasible
point (probably the only one). Thus the negative result CPLEX produced
on the original problem was erroneous. (The same happened with the more
recent version CPLEX 8.000.)

Upon inspection, one finds that the solution is a nondegenerate vertex of
the linear programming relaxation (but not the solution of the LP relax-
ation). The coefficient matrix of the linear constraints active at the solution
is nonsingular but extremely ill-conditioned; the numerical rank is 19. It is
likely that CPLEX suffers from the rounding errors introduced through this
ill-conditioning.

We also ran the original problem on all MILP solvers (and the only MINLP
solver with AMPL input) available (on June 18, 2002) through NEOS [3, 6],
namely BONSAIG, FortMP, GLPK, XPRESS, XPRESS-MP/INTEGER,
and MINLP. Only FortMP solved the original problem correctly. The other
five solvers reported 'mo solution found’” (BONSAIG), ’global search com-
plete — no integer solution found’ (XPRESS) or even, erroneously, ’integer
infeasible’ (GLPK, XPRESS-MP/INTEGER, MINLP).

Similar difficulties might arise in all mixed-integer problems where the solu-
tion of some LP subproblem produces a vertex whose basis is nearly linearly
dependent, so that the linear systems solved are ill-conditioned, making the
conclusions drawn from the output of the LP solver of dubious value.

Other currently available MILP solvers probably have the same behavior on
similar problems, even should they solve the above example correctly. (Note
that different MILP solvers may behave differently on this example since
rounding errors depend on the algorithm and the arithmetic used.)

On the other hand, the techniques discussed below provide rigorous error
control as far as bounding decisions are concerned: Since we have finite
(though not very small) bounds for all variables, the results discussed below
would provide rigorous bounds and cutting planes, and would thus avoid the
error.

3 Rigorous bounds on the objective

In mixed integer programming (see, e.g., WOLSEY [22]) linear programs are
typically used to find lower bounds on the objective that allow one to decide
whether a given node in the branch tree can be fathomed. For reliable results,
it is therefore imperative that the computed lower bound is rigorously valid.

However, the output of a linear programming routine is the result of an ap-
proximate calculation and hence is itself approximate. Obtaining rigorous
error bounds for the solution of linear programming problems is a difficult
task (cf. KrRawczyk [11], JANSSON [8], JANSSON & RuwmP [10]), especially
in the ill-conditioned case, where the active set might not be identified cor-
rectly.

Fortunately, it is possible to postprocess the approximate result to obtain rig-
orous bounds for the objective with reasonable effort, provided that reasonable
bounds on all variables are available. Such bounds are frequently computed
anyway in a preprocessing phase using a limited form of constraint propa-
gation, and if the latter is done with sufficient care (using directed rounding
to ensure the mathematical validity of each step of the process, as in AMPL
[5]), these bounds on the variables are rigorously valid.

We begin by looking at the simpler case where the linear program is given

in the standard form

min 'z

st. Ar =0, x>0.

(2)

Its dual is
max bly

st. Ay <e.

(3)
Now suppose that y is an approximate solution of the dual problem, and
r> ATy —c
is a rigorous upper bound for the residual ATy —c. Then ¢ > ATy —r, hence
o> Ay —r)le=y"Ar — "o =y"b — T
If we assume rigorous upper bounds

r <7,

(e}

and write
ry =max(r,0), r_ =max(—r,0), (4)
we find
cla>ylb— rzx >yl — rzf.

On computers with directed rounding and switches roundup and rounddown
to select the rounding mode, the following piece of code therefore provides a
rigorous lower bound for ¢’a:

roundup;

r=Aly —¢;

0 =T"ry; (5)
rounddown;

p=y"b— 0

In exact arithmetic, r < 0, hence v, = 0, § = 0, and p = y'b is the
textbook lower bound. In floating point arithmetic, the specified rounding
mode guarantees rounding in the direction required by the above derivation.

The general case is a little more complicated. We may assume the LP to be
given in the form

min cla

st. b< Ax <,

(6)

where the bounds b, b, may contain entries +oo coding for missing bounds.
(This includes equality constraints, which arise for b, = b;, and bounds on
the variables, with sparse rows containing a single nonzero.) We introduce
the interval vector

b:=[bb={beR" |b<b<D},

and use interval arithmetic to obtain the required lower bound. Now we
assume that rigorous two-sided bounds on x are available,

r€x=[x,T.

The dual of (6) is

max QTy—ETz
st. Al(y—2)=c, y>0, 2>0.

(Infinite bounds get zero multipliers and are not present in an actual imple-
mentation.) From an approximate solution of the dual program we calculate
an approximate multiplier A & z — y, and a rigorous interval enclosure for

ri=A"\—cer=[r7. (8)

This can be calculated by doing the computation twice, once with downward
and once with upward rounding, giving two vectors r, 7 such that (8) holds
rigorously although floating point arithmetic was used. Then

o= (ATAN=rTo = Az — Tz € \Tb —r'x (9)

and
p = inf(A'b — r'x) (10)

is the desired rigorous lower bound for ¢’ z. In exact arithmetic, r = 0, and
p=inf((y —2)"b) = y"b—2"b

is again the textbook lower bound. (Note that if b; # b; then only one of the
corresponding bounds can be active, hence one has y; =0 or z; = 0.)

On computers with fast outward rounding interval arithmetic (such as the
SUN FORTE Fortran 95 and C++ compilers [21]), (8) and (10) can be used
directly. On other machines, it is preferable to rewrite the expressions so
that simple directed rounding applies. Since r vanishes in exact arithmetic,
it will usually be tiny even for ill-conditioned problems if the dual solution
was calculated using iterative refinement.! Therefore we sacrifice only little
accuracy if we replace —r’z in (9) by the lower bound

—rte = —[r["|z| = —[r["[x],
where |r| = max(7, —r) is the absolute value of an interval vector. Using also

MAz = Az — M Az > Mo — \Tb

!Note that the actual size of these rounding errors depend on the accuracy of the
solver used to compute the approximate multiplier. This has to be borne in mind when
we talk here and later about ’'tiny’ errors. If the computations are backward stable then
the relative errors are typically of the order of the machine precision multiplied by a small
multiple of the number of nonzeros in the problem description. If not, — which may well
be the case if some intermediate factorization is more unstable than the original problem
— the errors may be much larger, though iterative refinement often alleviates this problem.
In case of large errors, the answer produced by the solver is not reliable anyway, and the
poor bounds delivered by the present method makes this lack of reliability visible.

we find ~
e > Ao — ATb — |r|" x|

Thus a rigorous lower bound p for ¢’z is obtained as follows.

rounddown;

p= A

r=AT\+¢

roundup; (11)
r = max(—r, AT\ + ¢);

p=Mb— p+r" max(—z,7);

o= —p;

Of course, there are a variety of other ways of doing the estimates, e.g., using
suitable case distinctions, and a high quality implementation would have to
test which one is most efficient.

To use (5) or (11), two remarks are in order. First, since the bounds for
the variables enter, although multiplied by a small residual term consisting
of rounding errors only, reasonable sized bounds (no very big M!) for the
variables must already be available. If some of these are missing, they are
often provided by a presolve routine which does some constraint propagation
on the original bounds. Alternatively, one can use the techniques of JANSSON
8], which require the additional solution of an interval linear system whose
size is given by the number of variables with missing lower or upper bound.

Second, if a presolve routine, which transforms the raw linear program into
a reduced version solved by the system, contains transformations that are
not justified rigorously (such as substitutions into equality constraints with
resulting rounded coefficients), then (5) and (11) must be applied to the raw
linear program and not to the reduced version.

Finally, we remark that for rigorous upper bounds on ¢’ x, one needs to verify

the existence of a feasible point close to the computed point. If all coefficients
are integral and the solution is integral or rational with nice denominators,
this can be done by suitable rounding and verification of the constraints in
integer arithmetic. In the remaining cases, this is considerable more expen-
sive to achieve, since one needs to find an interval enclosure for the solution
of a linear system for the active part (and then check the validity of the non-
active inequalities). See NEUMAIER [16, 18] for appropriate techniques in the
dense case, and Rump [20] for the sparse case. Very recent work by JANSSON
[9] improves on this in many cases. Fortunately, rigorous upper bounds are

9

not required in the logic of branch-and-cut algorithms to guarantee that no
solution is lost. But they would be needed at the end to validate a reported
solution.

4 Certificates of infeasibility

At some nodes of a branch tree for a mixed-integer program, the generated
linear program may be infeasible. In this case, the dual program (7) has
no solution but is unbounded or infeasible, and linear programming solvers
typically produce (an approximation to) a vector along a ray exposing this.
In the case of (7), this is a pair of vectors y, z satisfying

y'b—2"b>0, AT(y—2)=0, y>0,2z>0. (12)

Given an approximate solution of (12), we form again A &~ z—y and a rigorous
interval enclosure for
ri=A" er=r7. (13)

Now for any feasible x,
0= —ATN o =rTo -\ Az e r"x — \Th.

Therefore, if
d = inf(r'x — \"b) > 0, (14)

then it is mathematically certain that no feasible point can exist. We say in
this case that)\ is a certificate of infeasibility, since knowing A allows one
to check the infeasibility using (13) and (14), exhibiting the infeasibility of
the linear program (6).

In exact arithmetic, r = 0 and d = inf(=ATb) = y'b — 27b > 0, so that
A is a certificate of infeasibility. In finite precision calculations, d can be
calculated by outward rounded interval arithmetic or (similar as in section
2) bounded below by directed rounding. If the precision of the claculation is
high enough, the computed d is still positive, and A is again a certificate of
infeasibility.

In borderline cases, the computed d will not be positive. This reflects an
ill-conditioned situation where the precision of the calculation is not high
enough to decide whether the dual is indeed unbounded (or infeasible) and
(6) is infeasible, or whether the dual maximum is finite but very huge and
there is a feasible point with a huge value of the (primal) objective function.

10

If the coefficients of the linear program (6) are reasonably bounded, this is
possible only if some component of x is huge, and therefore does not occur
if x is of reasonable size. However, if it does occur, then the constraint

rfe =N Ar = M Ax — MNAx < Xb— A= e (15)

tends to be very strong. Indeed, if e < 0 then (15) forces some component
to be huge, and solving the nearly trivial linear program

min ¢’z

st. rfz<e, wzex

usually produces a huge lower bound for ¢’x. Note that a rigorous upper

bound for e (which suffices for this) can be computed by directed rounding.

If e >0, (15) is weak, and no conclusions can be drawn. In the context of a
branch-and-cut method, this is usually not a problem since in this case the
node cannot be fathomed, and branching on some integer variable almost
always remedies the situation sooner or later.

5 Generating safe cuts

The techniques of the preceding sections provide a rigorous lower bound on
the objective function of a linear program. However, if the input coefficients
are contaminated by rounding errors, these affect the correctness of the lower
bound. It is therefore imperative that it is guaranteed that no errors are
introduced at the stage where the linear program is formulated.

In mixed-integer programming, the linear program is usually derived from the
original linear constraints by (i) fixing certain integer variables, (ii) restrict-
ing the range of certain variables, and (iii) adding suitable cutting planes.
Modifications of type (i) or (ii) introduce no error, and several kinds of cut-
ting planes in use (such as clique cuts, cover cuts, GUB cuts) only use integer
arithmetic and hence are safe, too (if their derivation is valid). However, if
rounding errors in the computation of the coefficients of a linear inequal-
ity defining a cutting plane occur, these may invalidate the cutting plane,
cutting off a feasible solution by a tiny margin due to roundoff.

In the remainder of the paper, we look at ways to ensure validity of the
cut generating mechanism in finite precision arithmetic in a few key trans-
formations: mixed integer rounding, aggregated inequalities, and generalized

11

Gomory cuts. Precisely the same techniques as for aggregation can be applied
to achieve rigor in substitution techniques in a presolve routine. (However,
note that substitution of equations into equations yields a two-sided inequal-
ity with close but nonequal lower and upper bound, as soon as a rounding
error is introduced.)

6 Mixed integer rounding

To generate more general cuts for a MILP with real variables € R™ and
nonnegative integer variables 0 < z € Z", MIR cuts and generalized Gomory
cuts may be used; both can be generated by mixed integer rounding; cf.
MARCHAND & WOLSEY [13]. (Variables with upper bounds on integers can
be reduced by means of slack variables to the situation discussed here.)

Mixed integer rounding (MIR) is a technique for constructing cuts based on
the following (or an equivalent) rounding lemma. It exploits the knowledge
that some or all variables involved in an inequality are integers. It generalizes
the observation that a nonintegral lower bound for a linear combination of
integer variables with integral coefficients can be increased to the next largest
integer.

6.1 Lemma. Let s >0, a € R", a € R, and define

q:= e LgJ €[0,1], B:=(2¢—1)a+2sq(1—q),

Then
0<z2€Z" = J|afz—a|>b'2+5. (16)

Proof. For an arbitrary partition of {1,...,n} into two sets L, U, let zy, zy
be the subvectors of z indexed by L and U, respectively. Then the number

Q= gfz,; +652U

is an integral multiple of s. Now the numbers « := s|a/s| and @ := s[a/s]
are equal or adjacent integral multiples of s, hence & ¢]a,@[. Looking at

12

Figure 1: Cutting the corner in the graph of |& — a.

la —af

Figure 1, we see that |@ — «| has to be above the dashed line; therefore, &
satisfies the inequality

& —af = (1-2¢)(@—a)+2sq(1 —q). (17)
Using this and the triangle inequality we find

o’z —a| >ld-al-|a-a)iz — (@ a)j]
> (1-2¢)(a—a)+2sq(1 —q) = (a—a)fz — (@ —a)zv
= bz +byzy + 5,

where ~
b=(2-2¢)a—a, b=a—-2qa
If we take
L={k]ar—a <q(@—qa)}, U={l:n}\L,
we find by, = b; and by = by, and the assertion follows. O

Note that (16) remains valid if the exact value of b and /5 are replaced by
rigorous lower bounds. Calculating these is easy in interval arithmetic; for
most of it, directed rounding suffices.

13

7 Aggregation and MIR cuts

For MIR cuts, an aggregated constraint is generated as a linear combina-
tion of inequality constraints and then strengthened, utilizing the rounding
lemma. If the aggregated constraint is contaminated by roundoff, the MIR
cut may be invalid.

To guarantee the validity of the aggregated constraint, we simply shift it by a
small amount calculated as follows. We assume that the original constraints
have the form

b<Ax <b, or Ar € b=bb, (18)
and that rigorous bounds on the variables,
x2<x<T orx€x=|z7T,

are available. The aggregated constraint is obtained by multiplying the orig-
inal constraints by a vector w of weights, where w; > 0 (w; < 0) if the
upper (lower) bound of the ith constraint is used. In exact arithmetic, the
aggregated constraint takes the form

wl Az < wzg — wrb.

In finite precision arithmetic, both the computed coefficient vector a ~ AT w
and the computed right-hand side may be inaccurate. To account for these
inaccuracies we compute an enclosure for the residual

r=A"w—-acr=1[r7, (19)
and observe that
aly = (ATw — r)Tx =wlAx —rTo e w'b — I'TX,

so that
a’z < v :=sup(w’b — r'x) (20)

is a valid aggregated constraint. v can be computed by outward rounding
interval arithmetic; in exact arithmetic the formula reduces to v = wTb—wTb,
as desired. Alternatively, we may sacrifice a little accuracy and proceed as
in Section 3 using directed rounding only.

To apply the rounding lemma, we suppose that we have two inequalities

el < asz +e, ez < aQTz +e9, 0<2z€7Z" (21)

14

Then

elr < min(alz +e1,alz +29)
1 1
= 5((a1+a2)Tz+51+52) —§|(a1—a2)Tz+51—52| (22)
< dl'z+96

for suitable d and 9, where the final inequality comes from applying the
rounding lemma. Since z > 0, this bound can be made rigorous by using
directed (upward) rounding when calculating the coefficients d and 0.

Now suppose that (z*, 2*) is a fractional point (i.e., one with z* ¢ Z"). To
create an inequality that cuts off (x*,2*), we consider a pair of inequalities
(21). In the mixed integer rounding procedure discussed in MARCHAND
& WOLSEY [13], (x*, z*) is the solution of a previous LP subproblem, and
by suitably aggregating active constraints (using some heuristics), the first
inequality in (21) is chosen such that equality holds at (x*, z*). (To enhance
the aggregated constraint, some of the noninteger variables in this inequality
may be substituted by the appropriate bounds, and some integer variables
with two-sided bounds may be complemented; see [13] for details.) To get
the second inequality in (21), one puts a; = 0 and computes 5 = supe’x
from available bounds x for x. (All this needs to be done with rounding error
control, along the same lines as before.) Then the rounding lemma is applied
for a suitable s > 0, with a = a1 — a9, @ = 9 — 21.

To find a suitable value for s we note that, in exact arithmetic, the inequality
(22) cuts away (a*, z*) iff

A(s) == b"2" +25¢(1 — q) — (1 = 2¢)a — |a’ z* — a (23)

is positive (note that b and ¢ depend on s). This suggests that we pick s to
make A(s) as large as possible. Natural trial values for s are the discontinu-
ities of the derivatives, which contain the points

o
2m —1

a/.
se{—]‘zng,mEN}U{ ‘mEN}.

m
(But the absolute value in b introduces additional discontinuities of the
derivatives.)

Usually, a number of trial cuts are explored, and only the successful ones
(with a significant value of A(s)) are used. Since rounding error control
slows down computations a little, it may be profitable to decide upon the
cuts to be used using ordinary floating-point arithmetic, and then to repeat

15

the arguments leading to the cuts with rigorous rounding error control. Note
that the calculations required to find a good value of s need not be safe-
guarded since the bounds are valid for the s actually used, independent of
its construction.

8 Generalized Gomory cuts

Instead of using heuristics, one can also proceed systematically as follows, to
generate cuts. Let (2*,2*) be an optimal vertex of the LP relaxation with
fractional z* ¢ Z". Corresponding to a basis of the LP at the vertex, there
is a set of inequalities Az + Bz > d active at the vertex (including equations
and active bound constraints other than z > 0) such that the matrix (A, B.x)
is square and nonsingular, and z; = 0 for all £ ¢ K. Using the factorization
available from an active set method for solving the LP, we may solve cheaply
the linear system

= () (24)

ag
for one or more specified integral ax. By construction,
y'A=0, a:=y'd=y"(Az* + Bz*) =y'Bz* =a’ 2",
and
ly' Bz — y'd| = |y" (A + Bz — d)| < |y|* (Az + Bz — d), (25)

and both sides vanish at the vertex. To round (25) into a linear constraint,
we choose in the rounding lemma

a=B"y, a=y'd=d"72, s=1, (26)
to get the linear inequality
bz + B < |ly|"(Av + Bz — d). (27)

By construction, ay is integral, hence a; = ax = ax and by = (1 — 2q)a.
Therefore, (16) reduces for z = z* to

2¢(1—q) = (1 -2¢)a+ = (1-2q)agzi +B=0b"2"+ 5 <0.
Since ¢ € [0, 1], this is violated except if ¢ = 0, i.e., « is integral.

Thus for most integral choices of a, (25) together with the rounding lemma
with the choice (26) defines a cut that removes a given nonintegral point z*

16

from the feasible set. In particular, by choosing for ax a vector with zeros in
all positions except for a single component a; = 1 for some k with nonintegral
z;, we get the traditional Gomory cuts; other choices yield generalized
Gomory cuts; c¢f. CERIA et al. [2].

In the presence of rounding errors, Gomory cuts and generalized Gomory cuts
are no longer valid, since the arguments in the derivation are based on exact
arithmetic. However, by a small amendment of the construction, rigorous
cuts approximating the (generalized) Gomory cuts can be constructed as
follows.

We choose y as an approximate solution of (24), and use the rounding lemma
for s = 1, with @ and « chosen as approximations to (26). Then the quantities

qg=ATy, r=Bly—a, 6=a—-yld
are tiny (since they vanish in exact arithmetic), and we have
Viz+ 6 < |aTz—ql
= |W"A=¢"a+(y"B—r")z— (y'd+0)|
ly"(Az + Bz —d) — ¢"x — Tz — 4|
< |y|"(Ax + Bz — d) + A,

(28)

provided that A is an upper bound for |¢Tx+rTz+§|. But such a bound can
be rigorously obtained using interval arithmetic, if bounds on x and z are
given, and the resulting A is small if the bounds on = and z are reasonable.
Thus (28) gives the rigorous corrected version

W'z 4+ B < |yl (Az + Bz —d) + A

of (27), and this linear inequality can be postprocessed using directed round-
ing to put it into a standard form.

References

[1] A.L. Brearley, G. Mitra and H.P. Williams, An analysis of mathematical
programming problems prior to applying the simplex method, Math.
Programming 8 (1975), 54-83.

[2] S. Ceria, G. Cornuejols, and M. Dawande, Combining and strengthening
Gomory cuts, pp. 438-451 in: Integer Programming and Combinatorial
Optimization (E. Balas and J. Clausen, eds.), Springer, Berlin 1995.

17

[3] J. Czyzyk, M. Mesnier and J. Moré, The NEOS Server, IEEE J. Comput.
Sci. Eng. 5 (1998), 68-75.
http://www-neos.mcs.anl.gov/neos/

[4] COCONUT, COntinuous CONstraints - Updating the Technology.
http://www.mat.univie.ac.at/~neum/glopt/coconut/

[5] R. Fourer and D.M. Gay, Experience with a primal presolve algorithm,
pp. 135-154 in: Large Scale Optimization: State of the Art, (W.W.
Hager, D.W. Hearn and P.M. Pardalos, eds.), Kluwer, Dordrecht, 1994.

[6] W. Gropp and J. Moré, Optimization Environments and the NEOS
Server, pp. 167-182 in: Approximation Theory and Optimization, (M.D.

Buhmann and A. Iserles, eds.), Cambridge University Press, Cambridge
1997.

[7] ILOG CPLEX 7.1 User’s manual, ILOG, France 2001.

[8] C. Jansson, Zur linearen Optimierung mit unscharfen Daten, Disserta-
tion, Fachbereich Mathematik, Universitit Kaiserslautern (1985).

[9] C. Jansson, Rigorous lower and upper bounds in linear programming,
Manuscript, 2002.

[10] C. Jansson and S.M. Rump, Rigorous solution of linear programming
problems with uncertain data, ZOR — Methods and Models of Opera-
tions Research, 35 (1991), 87-111.

[11] R. Krawczyk, Fehlerabschitzung bei linearer Optimierung, pp. 215-222
in: Interval Mathematics (IX. Nickel, ed.), lecture Notes in Computer
Science 29, Springer, Berlin 1975.

[12] J.C. Lagarias, Bounds for local density of sphere packings and the Kepler
conjecture, Discrete Comput. Geom. 27 (2002), 165-193.

[13] H. Marchand and L.A. Wolsey, Aggregation and mixed integer rounding
to solve MIPs, Operations research 49 (2001), 363-371.
http://www.core.ucl.ac.be/wolsey/mir.ps

[14] R.E. Moore, Methods and Applications of Interval Analysis, STAM,
Philadelphia 1981.

[15] NETLIB Linear Programming Library.
http://www.netlib.org/lp

18

[16]

[17]

18]

[19]

[20]

[21]

[22]

A. Neumaier, Interval Methods for Systems of Equations, Cambridge
Univ. Press, Cambridge 1990.

A. Neumaier, Introduction to Numerical Analysis, Cambridge Univ.
Press, Cambridge 2001

A. Neumaier, A simple derivation of the Hansen-Bliek-Rohn-Ning-
Kearfott enclosure for linear interval equations, Reliable Computing 5
(1999), 131-136. Erratum, Reliable Computing 6 (2000), 227.

F. Ordénez and R.M. Freund, Computational experience and the ex-
planatory value of condition numbers for linear optimization, MIT Oper-
ations Research Center Working paper #0R361-02, submitted to SIAM
J. Optimization.

http://web.mit.edu/rfreund/www/CVfreund. pdf

S.M. Rump, Verification methods for dense and sparse systems of equa-
tions, pp. 63-136 in: J. Herzberger (ed.), Topics in Validated Compu-
tations - Studies in Computational Mathematics, Elsevier, Amsterdam
1994.

W. Walster, Interval Arithmetic Solves Nonlinear Problems While Pro-
viding Guaranteed Results, FORTE TOOLS Feature Stories, WWW-
Manuscript, 2001.
http://www.sun.com/forte/info/features/intervals.html

L.A. Wolsey, Integer Programming, Wiley, 1998.

19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Photoshop 5 Default Spaces)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

