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Some sporadic geometries related to PG (3,2)

By

A, NEUMAIER

‘Introduetion. The motivation for writing the present paper has heen twofold.
Firstly, in 1979, I discovered two sporadic geometries whose diagram (in the sense
‘of Buekenhout [2]) is a Coxeter diagram. I wrote about them to Francis Buckenhout,
and since he didn’t answer I judged them to be of little relevance. Bub last year
_(1982) he asked me to publish my results since the local approach to buildings of
Tits [18] generated much interest in such geometries ([15], [L1], [12], [t]) which
Kantor [11] now calls geometries which are almost buildings (GADB's).

Secondly, Arjeh Cohen and myself are working on a collection and survey of the
known distance regular graphs, The present paper will provide a convenient reference
for onc such graph, & regular thin near octagon on 100 vertices (related to one of
the GAB's), whose existence could be deduced before only indirectly from results
of Calderbank and Wales [4] on the Hoffman-Singleton graph.

1. The projective space PG(3, 2). We denote by PG (n, g} the projective space of
(projective} dimension » over a finite field with ¢ clements (cf. MeWilliams and
Sloane [13]). The particular space PG(3, 2) has 15 points, 35 lines and 156 planes,
Each plane containe 7 points and 7 lines, each lines contains 3 points and is in
3 planes, and cach point is in 7 lines and 7 planes. Any two lines in a plane inter-
gect, and if two lines intersect they have a unique common point and lie in o unique
plane. PG(3, 2) has as automorphism group the group L4(2), known to be isomoerphie
to the alternating group Ag on & set X of 8 letters. This implies the existence of
a description of the 35 lines of P@&(3,2) as the }(%) partitions of type 42 (i.e.
unordered partitions into two sets of size 4) of the 8 letters. Specifically we have

Proposition 1. There is a bijection I -+ [ between the 35 lines I of PG (3, 2) and the
36 partitions I of type 42 of an 8-set X, such that
(i) #wo lines Iy and Iy intersect if and only if the partitions I; and Iy intersect in a
partition of type 24; the three lines determined by such o partition are concurrent
and coplanar;

(i) jor any three distinet letters o, B, v € X, and eack point u € PG (3, 2), there is o
unique line I 3 a such that one of the two 4-sels of [ contains «, f, and y.
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Proof. The bijection is easy to see inside the Steiner system 8 = §(24, 8, 5). By
Coriway [6], whose terminclogy we use, the group of antomorphisms of 8 fixing an
octad X and a point z ¢ X acts as Ag on X and as [y(2) on P =8 — X — {z}.
With lines being the sets P NY, where Y is an octad intersecting X in 4 points,
. P beeomes a projective space PG(3, 2) and there is a one-to-one correspondence

' * between the 35 partitions of type 42 of X, the 35 sextetts defined by them, and the

35 lines induced on P by such a sextett; of. Bussemaker and Seidel [3]. Now a par-

tition of type 24 of X defines three sextetts, corresponding to threc concurrent
" and coplanar lines of P, and conversely, two intersecting lines of P definc two
 sextetts intersecting in a partition of type 21 of §, hence they induce on X a par-
tition of type 24. This proves (i).

To show (ii), let @, be the set of 4-sets contained in some partition I, where I
‘varies over the lines 2 a. Then 2, contains 14 quadruples, and by (i), any two of
them have 0 or 2 common letters. Hence a triple «, §, ¢ of distinet letters is in at
most one quadruple of 9. Bub the total number of triples in a quadruple of &, is
14+ 4'= 56 = (§) whence each triple oceurs preciscly once. []

In the terminology of designs (of. McWilliams and Sloane [13]), the 15 scts Za,
and dually the 15 sets @, consisting of the 4.sets in the partition [ for some line I
in o plane 7 of PG(3, 2), are 3 — (8, 4, 1)-designs. Any such design is isomorphic to
the affine geometry AG(3, 2) with automorphism group 23 Ls(2). Since 23L3(2) has
index 15 in dg and 30 in Sg, there are precisely 30 such 3 — (8, 4, 1)-designs, falling
into two orbits of 16 under 4g — thus specifying the points and blocks of PG (3, 2).
Wo remark that this description can be used to give an elementary proof of Proposi-
tion 1; the Steiner system being used only for brevity.

As is apparent from the “previous remark, the odd permutations of S5 induce
dualities of P@(3, 2). In particular, the polarities of PG(3, 2) are induced by odd
involutions of 8. An involution («f (y68) (ef) fixes precisely the three lines defined
by the partition (xf,yd, &l, %) and the corresponding infersection point and
embedding plane; hence it defines an orthogonal polarity. A transposition {a §) fixes
the 15 lines corresponding to the partitions of shape (af %k, *##%) and the 15 point-
plane flags corresponding to the partitions of shape (af, #*, %%, %%). Hence each
transposition defines a symplectic polarity, and absolute points and lines form a
generalize quadrangle of order two.

We now fix a point co € X, and write ¥ = X\{co}, Then we may identify a
triple {3-subset) «fy of ¥ with the partition (coafy, *#4%) of X. In this way we
obtain from Proposition 1:

Proposition 2. There is a bijection I 1 between the 35 lines 1 of PaA(3, 2) and the
35 triples I of @ T-set Y such thal

(1) two lines Iy and ly intersect if and only if the triples 1y and lo have precisely one
common point;

(ii) for any two distinct letlers «, f € ¥, and each point a € PG (3, 2), there is o unique
linelca such that o, fcl. [
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This second representation is invariant under Ay only {the stabilizer of co). The
points and planes may now be recovered as the 30 Fano planes P3(2, 2) definable
over ¥, which again split into 15 + 15 under 4;. The transpositions of ¥ (i.e.
those fixing co) again form symplectic poleritics.

2. Throe linked partial 5-geometries. A special feature of the representation of
' (PG(3,2) as in Proposition 2 is that pairs of skew lines can be classified into two
‘types, namely depending on whether the associated triples arc disjoint or not.
- Moreover, this distinction is preserved by the symplectic polarities induced by
‘transpositions of ¥.

This fact has been used by Haemers [9] to construct the following graph T
© Vertices (or poinis) of I are the symbols p, and p;, where 2 is a point and I is & line
of PG (3, 2}; the neighbours of p, are the 7 vertices p; with ¢ €7, and the neighbours
«of py are the 3 vertices p, with @ el and the 4 vertices o with I = §. Tt is im-
mediate that I is regular of valeney k = 7, and since the number of vertices is
v=15+35=50=14k?++1, it is the Hoffman-Singleton graph (Hoffman and
- Singleton [10]). The Hoffman-Singleton graph I” contains no triangles or quadrangles,
and two nonadjacent points have & unique neighbour.
We now turn I into a design & by defining 35 4 15 = 50 blocks

={ps:acl} U{pr:|! (3,2),
By={pg:a¢nyu{p:len} for planes = of PG(3.2).

The design & is selfdual since, for every sympleetic polarity induced by a transposition
of ¥, the map p; < Bjs, pg < B,s isa polarity of #. Since cvery block contains
15 points, &4 is 2 symmetrie 1-design,

Now, in the terminology of Drake [8], a partial A-geometry with block size K and
nexus e is a symmetric 1-design &% whose blocks contains K points, such that two
distinet points arce in 0 or A blocks, two distinet blocks are in 0 or A points, and
if (a, B) s & nonincident point-block pair then there are Ae incident point-Llock
pairs (b, 4) with ac 4, be B.

3 /b

A paremeter study (Neumaicr [14]) shows that there are precisely two feasible
parameter sets with K = ¢ 4+ 3, namely

B

K=15, A=5, e=12 (with 50 points),
K=15, A4=3, e=12 (with 85 points).

We show here that our design realizes the first possibility.
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Lemma. Two distinct points of I' arein 0 or 5 blocks of &, depending on whether they
are adyacent or not,

Proof. Let x, y be distinet noned]acent points of I'. Upto symmetry in # and ¥,
. We have to consider four different situations. In each case we construct lines m
~andfor planes z defining 5 blocks By, andfor By.

() 2= pa, y=pp (@ == b). There are one line m 5 2, b and four planes 73 a, b

(11) T=1pg, y=m (@ ¢l). Put | = affy. Then there are three lines m ea such
. that m intersects [in two points (Proposition 2 (ii}}; also there are two planes

_ sl with o ¢,

(i) w=7py, y=p, (h0k]=1). Put ) = «afy, 2 = «de. Then there are four
- lines m with m = « 8, afle, ayd, aye; also there is a plane & containing I

and 32;

(iv) 2=gm, y=p, {{hnl|=2). Puth = afy, In = 0« §6. Then there are three

© lines m == Iy, Iy with o, § &€ m, and two lines m with m = ayd, fyd.

Therefore, two nonadjacent points are in at least 5 blocks, This gives us a total of
&0 : 425 =50-15+14 triples {x, v, B) with x, ye B, z & y. Hence we have ac-
counted for all such triples, and the assertion of the Lemma follows. [

Proposition 3. The design # is a partial 5-geometry with block size K = 15 and
nexus ¢ = 12.

Proef. By the lemma, and the self.duslity of B, only the condition on the nexus
remains to be verified, Let B be a block, and denote for & ¢ B by ta the number of
points of B adjecent with u. Then, since two nonadjacent points have a unique
neighbour, we have (the sum extends over all a ¢ B)

21=80—15, >itg=15-7,
Stalte—1)=15-14, hence » (f, —3)2=0.

Therefore, {; = 3 for all @ ¢ B, and there are 12 points & € B nonadjacent with a
fixed ¢ ¢ B. By the lemma, this yields 5-15 = A - ¢ incident point-block pairs
(0, 4) with ae4, beB. [

By Drake [8], the incidence graph of a {(proper) partial A-geometry is an im.
primitive distance regular graph of diameter four, or, in the terminology of Shuit
and Yanushka [16], a thin regular near actagon. Its parameters are in the present
case given by the following diagram.

: 1TENE  5/7a10 12759\ 15
o— (@2 —=()

In fact this graph I'* is even distance transitive, with automorphism group
PI'U3{5). We show this by exhibiting the graph as a set of vectors inside the Leech
lattice. We use the description of the Leech lattice Agy given by Conway [6] and
Curtis [7). In accordance with our previous notation for the Steiner system 8 (24, 8, 5),
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we arrange coordinates such thet the 8 last coordinates form an octad X. We write
- z for the first coordinate, oo for the first coordinate of X, P for the complement of
X {2}, and Y for X — {ec}.

The set 2 of vectors of 34 of norm 80 orthogonal to the norm 48 vector d = (8, 123)
consists of 2 - 276 vectors of shapes

+ @, 7(—1)2 (23 points == 2),
T {(—1,37(—1)18) (253 octadssz).
They have mutual inner product 4 16 and definc 276 equiangular lines (cf. Taylor
[17], Ex. 6.6, for the resulting regular two-graph). The three vectors
a= (4: 015: - 4! 07) 3
b = (1: 115: 3! (_ 1)?} ]
ce== {0,015, 2, 2N
lie in Ags; they have norm 32 and mutual inner product — 8. Hence by Curtis [7],
p- 5685, the group of automorphisms of the Leech lattice fixing the set {t+a +b +c}
‘18 G* =2 U3(5) - 8, where the subgroup Uz (5) fixes each of @, b, ¢, S3 permutes
. @, b, and ¢, and the center 2 is multiplication by — 1. The conjugate subgroups G,
Gy, Gy of G* fixing a, b, or ¢, respectively have index six in 6%, hence are isomorphic
to Ug(h) -2 =PI'Us(B).
Since ¢ + b + ¢ = d, the group G* fixes the set 5. In fact, @* hag two orbits on
2. One consists of 2-126 vectors of shape
+(—1,35(—1)10, —1,32(—-1)5) (126 octads sz intersect ¥ in two
points)
orthogenal to a, b, ¢; they again define a regular twograph (cf. Taylor [16], Ex. 6.6).
The other orbit consists of 6 - 50 vectors falling into 6 types depending on the value
of the inner products ((z, a), (z, ), (z, ¢)):
type +1I: (0, + 16, F16),
type --II: (F 16,0, 4 16),
type + IIT: (416, F16,0),
The 50 type I vectors are of shapes
(—1,37(—1)% —1,{—1)") (15 oectads 5 z disjoint with X),
(+1,(—3)312%, 1, 13(—3)4) (35 octads 3 2, oo interseet X in 4 points).
The 50 type II vectors are of shapes
('_ 3: (_" 7) 114: 1: 17) (15 pOi.ntSEP),
(—1,33(—1)12,3,88(—1)9) (35 octads 3 2, oo intorsect X in 4 points).
The 50 type 11X vectors are of shapes
(=3, 115, — 7,17 COR
(3, (—1)15, — 1, (—1)87) (7 points e Y),
(L, (—3)°110, —3,(—3}18) (42 octads 3 » intersect X in 2 points).
The negatives of these vectors are of type —I, —II, and — III, respectively.
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From this it is clear that the A7 fixing z, X, and oo splits the type I and type II-
vectors as 15 - 35, and the type III vectors as 1 -} 7 - 42. Indeed, the type ITI
vector

e=(—3,115 7,17

" has inner product 16 with 15 type 1 vectors, 15 type IT vectors, and 42 type IfI
vectors, and inner preduct — 16 with 35 type I vectors, 35 type 11 vectors, and 7
type 11l vectors. In particular, G5 o~ PI"U3(5) acts as a rank 5 group on the 100
vectors of type I and TIT, with suborbits 15, 35, 1, 7, 42. Therefore, G, =~ PI"Uz(5)
' also acts as & rank 5 group on the 100 vectors of type I and Y1, with the same sul)-
" orhits, But the graph on these vectors obtained by joining a vector % of type I with
a vector y of type II whenever (z, ) = 16 is easily seen to be isomorphic to the
* inecidence graph [™* of the partial 5-geometry &% described above. Therefore, I'* is
distance transitive.

Remarks. 1. The vectors of type I, IT, and III form a system of “linked” partial
8-geometries, related by the outer antomorphism of PI'Us(5) of order three. Thus
the situation i similar to that of the linked partial A-geometries constructed by
Cameron and Drake [5] from I)4(g) with the triality awtomorphism.

2. Perhaps the neatest way of describing the graph I'* iz as follows: vertices of
I'* are the 100 cocliques of size 15 in the Hoffman-Singleton graph I'; two cocliques
are at distance 1, 2, 3, 4 if they interscot in B, 5, 3, or 0 points, respectively. This
can be deduced either from the above, or from a different representation of the
Hoffman-Singleton graph described in Calderbank and Wales [4], Scetion 3.

3. A sporadic geometry for A5 and two GAB’s. Using the description of P&(3, 2)
in Seetion 1, we define a rank 4 geometry in the sense of Buekenhout [2]. (We assume
the reader to be familiar with Buekenhout’s language of diagrams and geometries.)

The 0-varieties of our geometry are the 8 symbols from X, and 1-varieties are the
(S) = 28 franspositions on X (equivalently, symplectic polarities of P). As 2-varietics
we take the 35 lines of P, and as 3-varieties the 15 points of P. We defino incidence
as follows. A symbol « is incident with the transpositions moving e, with all lines,
and with all points. A transposition (x ) is incident with the two symbals «, 8, with
the 15 lines fixed by («f), and with all points. A line [ is incident with all symbols,
with the transpositions fixing I, and with tho points on I. Finally, a point = is incident
with all symbols, all transpositions, and the lines which contain x. This defines
a strongly connected geometry with automorphism group A4s and Buekenhout
diagram

Ay O—0—C—D

The verification of the axioms and the diagram is a straightforward consequence
of the results of Bection 1. The intersection property does not hold sinee, e.g., every
transposition is incident with every point.
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Two residues of this geometry (both without the intersection property} are also
- interesting, namely the residue of a point, with diagram

221,(20  O0L£0—0
‘and the residue of a symbol, with diagram
Ay o0—Q—

‘This latter geometry is particularly interesting since it has as diagram a Coxeter
«diagram; thus, in the terminology of Kantor [11] it is a GAB (gecometry which is
-almost a building). It has been discovered independently by Aschbacher and
and Smith [1].

. A second GAB arises from the partial 5-geometry & discussed in Seotion 2. Indeed,
take as varicties the symbols at, a—, B+, B~, where « is a point and B is a block
.of #. Incidence is defined by

a®Ibt  if @, b nonadjacent, J =g,
a?lBs if geB, d=¢ or ad¢B, b=«
ASIB: f AnB=0, G=Fs.

From the results of Scetion 2 it is straightforward to show that the geometry has
the diagram

+ +

Us(5)

points  blocks

with rank 3 residues isomorphic to the A47-GAB. This geometry is also described in
Kantor [12] in purely group-theoretic terms,
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