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Hausdorff dimension for some

hyperbolic attractors with overlaps and

without finite Markov partition

Franz Hofbauer, Peter Raith and Károly Simon

Abstract. In this paper some families of skew product self maps F on the
square are considered. The main example is a family forming a two dimen-
sional analogue of the tent map family. According to the assumptions made
in the paper these maps are almost injective. This means that the points of
the attractor having more than one inverse image form a set of measure zero
for all interesting measures. It may be that F does not have a finite Markov
partition. The Hausdorff dimension of the attractor is computed.

1. Introduction

We investigate skew product maps F : Q → Q with Q := [a, b] × [0, 1],
defined by

(1) F (x, y) =
(
T (x), g(x, y)

)
,

where T : [a, b] → [a, b] is piecewise monotonic and the map y 7→ g(x, y) is
a contraction on [0, 1] for all x ∈ [a, b]. A map T : [a, b] → [a, b] is called
piecewise monotonic, if there exists a finite partition of [a, b] into intervals,
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such that on each of these intervals T is continuous and strictly monotonic.
The set

(2) Λ :=

∞⋂

n=0

F n(Q)

is the attractor of F . In order to describe the “thickness” of this attractor
we like to determine the Hausdorff dimension dimH(Λ) of Λ. Our motivating
example is a two dimensional analogue of the tent map family (see Figure 1).
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F ([0, 1
2
] × [0, 1])

F ([1
2
, 1] × [0, 1])

Figure 1: F ([0, 1]2).

Theorem 1. Let
√

2 ≤ α ≤ 2, and define Tα : [0, 1] → [0, 1] by

Tα(x) :=

{
αx , if 0 ≤ x ≤ 1

2
,

α − αx , if 1
2
≤ x ≤ 1.

If 0 < λ < 1
α2 and ϕ : [0, 1] →

[
λ
2
, 1 − λ

2

]
is linear with nonzero slope, then

for

F (x, y) :=
(
Tα(x), ϕ(x) + λ(y − 1

2
)
)

the dimension of the attractor of F is

(3) dimH

(
∞⋂

n=0

F n
(
[0, 1] × [0, 1]

)
)

= 1 +
log α

− log λ
.

The question of determining the Hausdorff dimension of invariant subsets
has been studied in several papers for different classes of dynamical system (a
good overview can be found in [9]). For example, in [1], [7] and [10] versions
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of the Bowen-McCluskey-Manning formula relating the Hausdorff dimension
to a zero of a certain pressure function are proved. The situation considered
in these papers is different from our situation. However, also for different
classes of skew product maps F some versions of the Bowen-McCluskey-
Manning formula have been obtained. We describe these results for skew
product maps below.

In [13] T. Steinberger obtained a result on the Hausdorff dimension of the
attractor under the assumption that F is injective. Such maps F are used
as geometric models for the Lorenz attractor (see [3]). The result in [13]
gives an implicit formula for dimH(Λ) using the topological pressure p(F, h)
of a function h : Q → R. Under certain assumptions on T and g, but not
assuming that T admits a Markov partition, it is shown that dimH(Λ) =

1 + z, where z is the unique zero of t 7→ p
(
F, t log

∣∣ ∂
∂y

g
∣∣
)
. One obtains

an explicit formula, if ∂
∂y

g is a constant, say λ, which means g(x, y) :=

ϕ(x) + λ
(
y − 1

2

)
for some function ϕ : [a, b] →

[
λ
2
, 1 − λ

2

]
. In this case we

have p
(
F, t log

∣∣ ∂
∂y

g
∣∣
)

= htop(F ) + t log λ, and as htop(F ) equals htop(T ) it

follows that dimH(Λ) = 1 + htop(T )
− log λ

.

Noninjective skew product maps F of the above kind were studied in [5]
by M. V. Jacobson from the point of the existence of absolutely continuous
invariant measure. Especially, he considered the case, where T is conjugate
to the map x 7→ 4x(1 − x). This implies that there is a c ∈ (a, b) such that
T is strictly monotone on the intervals [a, c] and [c, b], and both of these
intervals are mapped onto [a, b]. In particular, T has a Markov partition.
Set Q1 := [a, c]× [0, 1] und Q2 := [c, b]× [0, 1]. Then F is injective on Q1 and
on Q2, and the images F (Q1) and F (Q2) are nearly horizontal strips from the
left to the right margin of the rectangle Q = [a, b]× [0, 1]. If these two strips
do not overlap, then F is injective. Additionally, in [5] the map g is chosen
as g(x, y) := ϕ(x) + λ

(
y − 1

2

)
with an increasing continuous function ϕ.

This gives rise to overlaps of the horizontal strips F (Q1) and F (Q2) near
the right margin of Q. For these maps F in [12] conditions are given by
K. Simon (including the existence of a Markov partition for T ), under which
the formula for dimH(Λ) described above still holds.

In this paper we combine both. Neither we assume that T admits a
Markov partition nor that F is injective. We are able to do this for piecewise
monotonic maps T with two monotonic pieces and suitable linear contractions
y 7→ g(x, y). To be more specific, for c ∈ (a, b) let Dc([a, b]) be the set of
all functions f : [a, b] → R, which are continuous on [a, c] and on (c, b] and
have a continuous derivative f ′ on (a, c) ∪ (c, b) satisfying inf |f ′| > 0 and
sup |f ′| < ∞. In particular, each f ∈ Dc([a, b]) is strictly monotonic on the
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two intervals [a, c] and (c, b], since its derivative cannot change its sign on
these intervals. (One could also choose continuity from the right instead of
continuity from the left in c.) A map T ∈ Dc([a, b]) is called expanding, if the
one-sided limits limx→a+ T ′(x), limx→c− T ′(x), limx→c+ T ′(x), limx→b− T ′(x)
exist, and if inf |T ′| > 1 (note that this coincides with the definition of
expanding which will be given in Section 2 for general piecewise monotonic
maps).

Now we can state the main theorem of this paper, which gives the formula
for the Hausdorff dimension of the attractor.

Theorem 2. Suppose that T : [a, b] → [a, b] is topologically transitive,

in Dc([a, b]), and expanding. Assume that 0 < λ < min
{

1
2
, inf 1

(T ′)2

}
and that

ϕ : [a, b] →
[

λ
2
, 1 − λ

2

]
is also in Dc([a, b]) and satisfies

sup |ϕ′|
inf |ϕ′|

< inf |T ′|
λ

−1. Set

Q := [a, b]×[0, 1] and define F : Q → Q by F (x, y) :=
(
T (x), ϕ(x)+λ(y− 1

2
)
)
.

If the product T ′ · ϕ′ has different signs on the two intervals (a, c) and (c, b),
then the attractor Λ :=

⋂∞
n=0 F n(Q) has Hausdorff dimension

dimH(Λ) = 1 +
htop(T )

− log λ
.

Next we show how Theorem 1 follows from Theorem 2.

Proof of Theorem 1. Set b := Tα(1
2
) = α

2
and a := T 2

α(1
2
) = α − α2

2
. Then

Tα : [a, b] → [a, b] is in Dc([a, b]) with c := 1
2
. Moreover, Tα is topologically

transitive, as α ≥
√

2. Since α ≥
√

2, 0 < λ < 1
α2 and ϕ : [a, b] →

[
λ
2
, 1 − λ

2

]

is linear with nonzero slope, the assumptions of Theorem 2 are fulfilled for
F (x, y) :=

(
Tα(x), ϕ(x)+λ(y− 1

2
)
)
. We have htop(Tα) = log α, and therefore

we get

(4) dimH(Λ) = 1 +
log α

− log λ
,

where Λ is the attractor defined in (2).
Observe that in this case

⋂∞
n=0 F n

(
[0, 1] × [0, 1]

)
differs from Λ by an at

most countable union of segments of the form
{(

x, f(x)
)

: x ∈ I
}
, where I is

an interval, and f : I → [0, 1] is affine. As the Hausdorff dimension of each of
these segments equals 1 we get by (4) that dimH

(⋂∞
n=0 F n

(
[0, 1] × [0, 1]

))
=

dimH(Λ) = 1 + log α
− log λ

.

Parts of the proof of Theorem 2 are given in a more general situation,
since this causes no additional difficulties. In particular, some results are
stated and proved for general piecewise monotonic maps.



DIMENSION FOR SOME HYPERBOLIC ATTRACTORS 5

In Section 4 a nonoverlapping version G of F is constructed just by chang-
ing ϕ in a suitable way. Using the result of [13] for G and the fact that F is

a factor of G by a Lipschitz continuous map, we get dimH(Λ) ≤ 1 + htop(T )
− log λ

.
The difficulty for proving the inequality in the opposite direction comes

from two sources. The first one is that we do not have a Markov partition
for T . On the other hand, F may not be injective, which may cause a drop
of the dimension of the attractor of F in comparison with the dimension of
the attractor of G.

We overcome the problem that there may be no finite Markov partition
for T by an approximation of T by Markov maps defined on Cantor sets.
This construction relies on the results in [4] and [10], and is similar to the
horseshoes in [8] (see also Section 15 of [6]). In Section 2, for each ε > 0
we construct a closed invariant subset D of [a, b], on which T has a finite
Markov partition and is topologically transitive, such that dimH(D) > 1 − ε
and htop

(
T
∣∣
D

)
> htop(T ) − ε. Then we work with T

∣∣
D

instead of T .
In Section 3 we deal with the noninjectivity of F . The socalled transver-

sality condition is introduced. Under this condition, it can be shown that
the overlapping parts of F n(Q) are in some sense small enough. We show in
Proposition 2 that this transversality condition holds under the assumptions
of Theorem 2. This is the only part of the proof of Theorem 2, where we
need, that the piecewise monotonic map T is in Dc([a, b]).

A measure µ on Q is constructed in Section 5 in such a way that it
attributes the in some sense “correct measure” to cylinder sets. Then, in
Section 6, the fibres lp := {p}×[0, 1] over a point p ∈ [a, b] are considered. Let
E be the set of all p ∈ D such that the fibre over p does not contain points in
overlapping parts of Λ. By the results implied by the transversality condition
one gets that E × [0, 1] is a set of full µ-measure, and that dimH(D \E) < 1.
For all p ∈ D a measure νp on lp is derived from µ, which is then used to
estimate the Hausdorff dimension of Λ∩ lp. Using the pointwise dimension of

the measure νp one gets dimH(Λ∩ lp) ≥
htop

„

T

∣∣
D

«

− log λ
for all p ∈ E. This implies

dimH(Λ) ≥ dimH(D) +
htop

„

T

∣∣
D

«

− log λ
> 1− ε + htop(T )−ε

− log λ
, and letting ε → 0 gives

dimH(Λ) ≥ 1 + htop(T )
− log λ

.

2. Approximation of the one-dimensional map by Markov maps

We introduce a “big” Cantor-set Dk ⊂ [a, b] having a Markov partition,
on which T is topologically transitive. Later in this paper we will consider
the restriction of Λ to Dk × [0, 1], which will be called Λk. This will be a
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Cantor set in Q. It will be proved that as k tends to infinity the dimension of
Λk tends to 1+ htop(T )

− log λ
. To this end we have to construct Dk with appropiate

properties.
Let T : [a, b] → [a, b] be a piecewise monotonic map, this means that there

exist c0 := a < c1 < c2 < · · · < cm0 := b, such that T
∣∣
(cj−1,cj)

is continuous

and strictly monotonic for every j ∈ {1, 2, . . . , m0} (note that T may have
a discontinuity at cj). For j ∈ {1, 2, . . . , m0} define Vj := (cj−1, cj), and set
V := {V1, . . . , Vm0}. We call c0, c1, . . . , cm0 the critical points of T , and set
C := {c0, c1, . . . , cm0}.

A piecewise monotonic map T is called expanding, if T is continuously
differentiable on (a, b) \ C, if the one-sided limits limx→c+

j
T ′(x) for j ∈

{0, 1, . . . , m0 − 1} and limx→c−j
T ′(x) for j ∈ {1, 2, . . . , m0} exist, and if

inf |T ′| > 1. For a map T ∈ Dc([a, b]) this definition coincides with the
definition given in the introduction.

Denote the partition of [a, b] into the intervals of monotonicity of T n+1

by Vn. This means Vn =
∨n

i=0 T−i(V). The elements of Vn−1 are called n-
cylinders. For x ∈ ⋃V ∈Vn

V we write Vn(x) for the n-cylinder containing x.
There are finitely many x ∈ [a, b], which are not contained in an n-cylinder.
This implies that the set C∞ of all x ∈ [a, b] which are not contained in
an n-cylinder for some n is at most countable. Obviously we have C∞ =⋃∞

j=0 T−jC.
The interior of a set A is denoted by int A, and the closure of A is denoted

by A.
For k ≥ 1 set

(5) Nk :=
⋃{

V : V ∈ Vk−1, ∃i ∈ {0, . . . , m0} , ci ∈ V
}

.

Note that the assumption ci ∈ V above means that ci is an endpoint of V .
The set Nk is by definition the union of the closures of all k-cylinders having
a critical point as an endpoint.

Proposition 1. Let T : [a, b] → [a, b] be a piecewise monotonic map, which

is expanding and topologically transitive. Then for every ε > 0 there exists

a k ≥ 2 such that there exists a perfect set Dk ⊂ [a, b] having the following

properties:

(a) We have T (Dk) = Dk.

(b) The map T
∣∣
Dk

is topologically transitive on Dk.

(c) We have htop

(
T
∣∣
Dk

)
> htop(T ) − ε.
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(d) The property dimH(Dk) > 1 − ε holds.

(e) For every β ∈
(
0, 1

sup |T ′|

)
there is a d > 0 such that for every x ∈ Dk

and for every n ≥ 1 we have

(6) |Vn(x)| ≥ d · βn .

(f) We can find a set N ′
k ⊂ [a, b] which is the union of closures of k-cylinders

such that Nk ⊂ N ′
k and

(7) Dk = {x ∈ [a, b] : T n(x) /∈ int N ′
k, ∀n ≥ 0} .

Moreover, for every k-cylinder V satisfying V ∩ Dk 6= ∅ there are k-

cylinders W1, . . . , Wl such that

(8) T (V ∩ Dk) = T (V ) ∩ Dk =
l⋃

j=1

(Wj ∩ Dk).

In the rest of this section we prove this proposition via a number of
lemmas.

Lemma 1. Let T be a piecewise monotonic map, and let k ≥ 1. For ev-

ery n ≥ k with n ≥ 2 we have for x ∈ [a, b] \ C∞ that

(9) Vn(x) ∩ Nk = ∅ implies that T
(
Vn(x)

)
= Vn−1

(
T (x)

)
.

Proof. Given x /∈ C∞, x /∈ Nk and n ≥ k, n ≥ 2. Then there exist
Vi0 , . . . , Vin−1 ∈ V such that

(10) Vn(x) =
n−1⋂

l=0

T−lVil = Vi0 ∩ T−1(Ṽ ) ,

where Ṽ :=
⋂n−2

l=0 T−lVil+1
. Then

(11) T (Vn(x)) = TVi0 ∩ Ṽ .

Since Ṽ is an (n − 1)-cylinder containing Tx it is enough to prove that

(12) Ṽ ⊂ TVi0 .

To verify this, we argue with contradiction. Assume that Ṽ 6⊂ TVi0. By (11)

TVi0 ∩ Ṽ 6= ∅. Since TVi0 and Ṽ are intervals, Ṽ must contain an endpoint

of TVi0 . Therefore T−1Ṽ must contain an endpoint c of Vi0, which is (by
definition) a critical point. Then by (10) c must be an endpoint of Vn(x). As
Vn(x) ⊂ Vk(x) ⊂ Vi0 , the critical point c must be an endpoint of Vk(x). This
is a contradiction to x /∈ Nk.



8 FRANZ HOFBAUER, PETER RAITH AND KÁROLY SIMON

Now we define

(13) Ck := {x ∈ [a, b] : T n(x) /∈ int Nk, ∀n ≥ 0} .

Note that T (Ck) ⊂ Ck. Moreover, observe that x ∈ Ck implies x /∈ C∞, and
therefore Vn(x) is defined for all x ∈ Ck and all n ≥ 1. The set Ck could
be empty. However, the proof of Proposition 1 will show that under the
assumptions of Proposition 1 Ck 6= ∅ for all sufficiently large k.

Lemma 2. Let T be a piecewise monotonic map, let k ≥ 2, and assume

that Ck 6= ∅. Then the set of the k-cylinders intersecting Ck forms a Markov

partition for Ck. This means that for every k-cylinder V with V ∩ Ck 6= ∅
there are k-cylinders W1, . . . , Wl such that

T (V ∩ Ck) = T (V ) ∩ Ck =
l⋃

j=1

(Wj ∩ Ck) .

Proof. Let V be a k-cylinder with V ∩Ck 6= ∅. Then there is an x ∈ Ck with
V = Vk(x). As x ∈ Ck, (5) and (13) give that Vk(x) ∩ Nk = ∅. By Lemma 1
TV = TVk(x) = Vk−1(Tx), hence TV is a (k − 1)-cylinder. Since every
(k−1)-cylinder is a union of k-cylinders, there are k-cylinders W1, . . . , Wl with
TV =

⋃l
j=1 Wj . Now (13) implies T (V ∩Ck) = T (V )∩Ck =

⋃l
j=1(Wj ∩Ck),

since V ∩ Nk = ∅.

Lemma 3. Suppose that T is a piecewise monotonic map which is differen-

tiable on [a, b] \ C, and |T ′| is bounded. Let k ≥ 1, and assume that Ck 6= ∅.
Then for every β ∈

(
0, 1

sup |T ′|

)
there is a d > 0 such that for every x ∈ Ck

and for every n ≥ 1 we have |Vn(x)| ≥ d · βn.

Proof. Set d4 := min
{

|Vl(x)|
βl : l ∈ {0, 1, . . . , k}

}
. Let x ∈ Ck. If n ≥ k then

(5) and (13) imply Vn−j(T
jx) ∩ Nk = ∅ for j ∈ {0, 1, . . . , n − k}. Therefore

Lemma 1 gives T j(Vn(x)) = Vn−j(T
jx) for j ∈ {0, 1, . . . , n−k}, in particular

T n−k(Vn(x)) = Vk(T
n−kx). Set d̃ := inf {|V | : V ∈ Vk}. The mean value

theorem implies that

|Vn(x)| ≥ |Vk(T
n−k(x))| 1

supy∈[a,b] |(T n−k)′(y)|

≥ d̃
1

(sup |T ′|)n−k
≥ d̃βn−k = (d̃β−k)βn.

Choosing d := min
{

d̃β−k, d4

}
completes the proof of the lemma.
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Proof of Proposition 1. If V is an n-cylinder, then the mean value theorem
gives 1 ≥ |T nV | ≥ (inf |(T n)′|)|V | ≥ (inf |T ′|)n|V |, hence

(14) |V | ≤ 1

(inf |T ′|)n
.

As inf |T ′| > 1, (14) implies that there is a k0, such that for every k ≥ k0 the
set Nk is a union of (m0+1) pairwise disjoint intervals. Moreover, using again
inf |T ′| > 1 and (14), for any η > 0 there is an lη ≥ k0 such that for any k ≥ lη,
and for any critical point c the endpoints of the maximal subinterval of Nk

containing c differ at most by η from c. Hence for any δ > 0 there is a kδ ≥ k0

such that for any k ≥ kδ, T
∣∣
[a,b]\Nk

and T have the same number of intervals

of monotonicity, the graphs of T
∣∣
[a,b]\Nk

and T are δ-close in the Hausdorff

metric, and also the graphs of their derivatives are δ-close in the Hausdorff
metric. This means that, as k tends to infinity, T

∣∣
[a,b]\Nk

converges to T in

the R1-topology described in [11].
Let ε ∈ (0, 1). As inf |T ′| > 1 we obtain htop(T ) > 0. Since T is topo-

logically transitive and htop(T ) > 0 we obtain by Theorem 3 in [11] that
there exists a k ≥ 2 and a topologically transitive subset Lk ⊂ Ck such that

htop

(
T
∣∣
Lk

)
> htop(T )−ε and dimH(Lk) > 1−ε. The partition of k-cylinders

intersecting Ck forms a Markov partition on Ck by Lemma 2. Define J as the
set of all k-cylinders V with V ∩ Lk 6= ∅. The Markov matrix corresponding
to J is irreducible, since Lk is topologically transitive. Define Dk as the set
of all x satisfying T nx ∈ ⋃V ∈J V for all n. As Lk ⊂ Dk ⊂ Ck by the defini-

tions of J and Dk we obtain that htop

(
T
∣∣
Dk

)
≥ htop

(
T
∣∣
Lk

)
> htop(T ) − ε

and dimH(Dk) ≥ dimH(Lk) > 1 − ε. This shows (c) and (d).
Using that the Markov matrix corresponding to J is irreducible it follows

from the proof of Theorem 4 in [4] that T
∣∣
Dk

is topologically transitive.

Hence (b) holds. Moreover, this also implies T (Dk) = Dk, showing (a). From
the definition of Dk we get that T (V ∩Dk) = TV ∩Dk for every k-cylinder V
with V ∩Dk 6= ∅. Hence Lemma 2 implies (f), as the first part of (f) follows
immediately from the definition of Dk. By Lemma 3 we obtain (e).

3. Transversality condition

In this section we begin the investigation of the two-dimensional trans-
formation F : Q → Q, where Q := [a, b] × [0, 1]. To this end we need some
notation. We denote the projection of (x, y) ∈ Q to x ∈ R by π1. That
is, π1(x, y) = x. Similarly π2(x, y) := y. Using the partition V of [a, b] of
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intervals of monotonicity of T introduced in the previous section, we define
Z := π−1

1 (V), which is a partition of Q into rectangles. For n ≥ 1 we set
Zn :=

∨n
i=0 F−iZ = π−1

1 Vn and call the sets in Zn the vertical n-cylinders.
Furthermore, for n ≥ 1 we set IF

n := F nZn−1 and call the sets in IF
n the

horizontal n-cylinders. See Figure 2 for an illustration of Z1 and IF
2 . Fi-

nally define IF
∞ :=

{⋂
n≥0 IF

n 6= ∅ : IF
n ∈ IF

n

}
. The elements of IF

∞ are curves
on which π1 is one-to-one. We call them unstable curves of Λ. Clearly
Λ =

⋃{
I : I ∈ IF

∞

}
.

To handle the overlapping between the horizontal cylinders we need the
so-called transversality condition. In order to state it we need a symbolic
representation of the horizontal cylinders.

0,8
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0,80,60,40,2
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1
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Figure 2: A, B, C, D ∈ Z1 and F 2(A), F 2(B), F 2(C), F 2(D) ∈ IF
2 .

Define
(15)

H :=
{

(. . . , i−2, i−1, i0) : Vi−n
∩ T−1Vi

−(n−1)
∩ · · · ∩ T−nVi0 6= ∅ ∀n ≥ 0

}
.
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For every i = (. . . , i−2, i−1, i0) ∈ H we write

(16) p(i) :=
∞⋂

k=0

F k+1Zi−k
,

where Zl := Vl × [0, 1] for l ∈ {1, . . . , m0}. Then p : H → IF
∞ is surjective.

Set

(17) Sλ
n(x) := ϕ(T n(x)) + λϕ(T n−1x) + · · ·+ λn−1ϕ(Tx) + λnϕ(x) .

Now we define the shift σ : H → H by

(18) σ(. . . , i−2, i−1, i0) := (. . . , i−3, i−2, i−1) .

From the definition of F we get

(19) F n+1(x, y) =
(
T n+1(x), Sλ

n(x) + λn+1y + qn

)
,

where qn := −1
2
(λn+1 + · · ·+ λ). Let I = p(i) and for N ∈ N we call

IN :=
⋂N

k=0 F k+1Zi−k
the horizontal N -cylinder containing I. Then

(20) IN = F N+1
((

Vi−N
∩ T−1Vi

−(N−1)
∩ · · · ∩ T−NVi0

)
× [0, 1]

)
.

That is IN is a nearly horizontal strip of height λN+1.
For any n ≥ 0 denote by T

−(n+1)
i0...i−n

: T (n+1)W → W the inverse of T (n+1)
∣∣
W

:

W → T (n+1)W , where W = Vi−n
∩ T−1Vi

−(n−1)
∩ · · · ∩ T−nVi0 . We introduce

the new variable t = TN+1x for x ∈ Vi−N
∩ T−1Vi

−(N−1)
∩ · · · ∩ T−NVi0 . For

t ∈ TN+1
(
Vi−N

∩ T−1Vi
−(N−1)

∩ · · · ∩ T−NVi0

)

put

(21) fN
i (t) := ϕ(T−1

i0
t) + λϕ(T−2

i0i−1
t) + · · ·+ λNϕ(T

−(N+1)
i0...i−N

t) + qN .

Then we get that IN is bounded from below by the curve

(22) γl
N(i)(t) :=

(
t, fN

i (t)
)

and IN is bounded from above by the curve

(23) γu
N(i)(t) :=

(
t, fN

i (t) + λn+1
)

.

Definition 1. Let I, I ′ ∈ IF
∞ and I = p(i), I ′ = p(j). We say that I and I ′

have different n-cylinders if (i−(n−1), . . . , i0) 6= (j−(n−1), . . . , j0).
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Definition 2 (Transversality condition). We say that the transversality con-
dition holds if there exists a d1 > 0 such that for all I, I ′ ∈ IF

∞ having
different 1-cylinders, and for every N we have

(24) |π1(IN ∩ I ′
N)| ≤ d1 · λN ,

where IN and I ′
N are the horizontal N -cylinders containing I and I ′ respec-

tively.

Now we can give properties of T and ϕ, under which the transversality
condition holds.

Proposition 2. Suppose that the map T : [a, b] → [a, b] is in Dc([a, b]) and

satisfies inf |T ′| > 1. Assume that 0 < λ < 1
2

and that ϕ : [a, b] →
[

λ
2
, 1 − λ

2

]

is also in Dc([a, b]) and satisfies
sup |ϕ′|
inf |ϕ′|

< inf |T ′|
λ

− 1. If the product T ′ ·ϕ′ has

different signs on the two intervals (a, c) and (c, b), then the transversality

condition holds for F (x, y) =
(
T (x), ϕ(x) + λ(y − 1

2
)
)
.

Proof. By differentiation of (21) we get

(25)
(
fN
i

)′
(t) =

N∑

k=0

λkϕ′(T
−(k+1)
i0...i−k

t)(T−1
i−k

)′(T−k
i0...i

−(k−1)
t) · · · (T−1

i0
)′(t) .

Set γ(t) := 1+
N∑

k=1

λk
ϕ′(T

−(k+1)
i0...i

−k
t)

ϕ′(T−1
i0

t)
(T−1

i−k
)′(T−k

i0...i
−(k−1)

t) · · · (T−1
i−1

)′(T−1
i0

t) . We have

then γ(t) ≥ d5 for all t with d5 := 1−
∞∑

k=1

sup |ϕ′|
inf |ϕ′|

(
λ

inf |T ′|

)k

, and d5 > 0 by the

assumptions. Furthermore,
(
fN
i

)′
(t) = ϕ′(T−1

i0
t) · (T−1

i0
)′(t) · γ(t) .

If ε1 is the sign of T ′ · ϕ′ on (a, c) and ε2 that on (c, b), we get

εi0

(
fN
i

)′
(t) ≥ d6 ,

where d6 := inf |ϕ′|
sup |T ′|

d5 is a positive constant by the assumptions.

Now let I and I ′ be in IF
∞ with I = p(i), I ′ = p(j) and i0 6= j0, which

means they have different 1-cylinders. Let IN and I ′
N be the horizontal N -

cylinders containing I and I ′ respectively. By assumption we have εi0 6= εj0.
We have shown above, that the slopes of the boundaries of I and I ′ have
different signs and that these slopes are in absolute value greater or equal
to d6. Since the vertical diameter of IN and I ′

N is λN , we get

|π1(IN ∩ I ′
N)| ≤ 1

d6
λN .

This shows that the transversality condition holds.
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From the transversality condition we get the following more general esti-
mate.

Lemma 4. Suppose that T : [a, b] → [a, b] is a piecewise monotonic map

which is differentiable on the interiors of the intervals of monotonicity and

satisfies sup |T ′| < ∞. Let λ ∈ (0, 1) and let ϕ : [a, b] →
[

λ
2
, 1 − λ

2

]
.

Furthermore, assume that the transversality condition holds for F (x, y) =(
T (x), ϕ(x) + λ(y − 1

2
)
)
. Then for every k ≥ 1 there exists d(k) > 0 such

that for all I, I ′ ∈ IF
∞ having different k-cylinders, and for every N ≥ k we

have

(26) |π1(IN ∩ I ′
N)| ≤ d(k) · λN ,

where IN and I ′
N are the horizontal N-cylinders containing I and I ′ respec-

tively.

Proof. Let I = p(i) and I ′ = p(j). As I and I ′ have different k-cylinders
we get (i−(k−1), . . . , i0) 6= (j−(k−1), . . . , j0). Set l := min {n : i−n 6= j−n}. We
know from (20) that

IN = F N+1
(
(Vi−N

∩ T−1Vi
−(N−1)

∩ · · · ∩ T−NVi0) × [0, 1]
)

and

I ′
N = F N+1

(
(Vj−N

∩ T−1Vj
−(N−1)

∩ · · · ∩ T−NVj0) × [0, 1]
)

.

Using that F N+1 is injective on the domains on the right hand side of the
previous equalities, we obtain that

IN ⊂ F l
(
F N+1−l

(
(Vi−N

∩ · · · ∩ T−(N−l)Vi−l
) × [0, 1]

))
︸ ︷︷ ︸

(N − l)-horizontal cylinder for p(σli)

and

I ′
N ⊂ F l

(
F N+1−l

(
(Vj−N

∩ · · · ∩ T−(N−l)Vj−l
) × [0, 1]

))
︸ ︷︷ ︸

(N − l)-horizontal cylinder for p(σlj)

.

Now using the transversality condition for the two (N−l)-horizontal cylinders

in the previous two equations we obtain |π1(IN ∩I ′
N )| ≤

(
sup |T ′|

λ

)l

·d1 ·λN . As

l ≤ k this immediately implies the desired result with the choice of d(k) =

d1 · max

{
1, sup |T ′|

λ
,
(

sup |T ′|
λ

)2

, . . . ,
(

sup |T ′|
λ

)k
}

.

4. Overlapping
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In this section we always assume that T is an expanding piecewise mono-
tonic map which is topologically transitive, and that 0 < λ < 1

m0
, where

m0 is the number of intervals of monotonicity for T . Now we construct an
injective self map G of Q which is practically the natural extension of T .

Choose the numbers λ
2

< q1 < · · · < qm0 < 1 − λ
2

such that qi − qi−1 > λ
for i = 1, . . . , m0. This is possible by the choice of λ. For x ∈ Vi let

(27) G(x, y) :=

(
T (x), qi + λ

(
y − 1

2

))
.

Obviously, for every (x, y) ∈ Q we have

(28) π1(F (x, y)) = π1(G(x, y)).

Let ΛG :=
⋂∞

n=0 GnQ be the attractor of G. Clearly ΛG consists of un-
countably many horizontal segments. We can define IG

n , IG
∞ in a similar way

for G as IF
n , IF

∞ was defined for F . Observe that geometrically the elements
of IG

n are rectangles with sides parallel to coordinate axes and the elements
of IG

∞ are horizontal segments.
Next we define a natural projection from ΛG onto Λ which will be called

Φ.

Definition 3 (Definition of Φ). For any IG ∈ IG
n there exists a Z ∈ Zn−1

such that IG = Gn(Z). The corresponding horizontal (n−1)-cylinder for the
map F is IF = F n(Z). Note that π1(F

n(Z)) = π1(G
n(Z)). For every IF ∈

IF
∞ we can find a sequence (Zn)∞n=1, Zn ∈ Zn−1 such that IF =

⋂∞
n=1 F n(Zn).

In this way there is a corresponding element IG ∈ IG
∞ defined by IG =⋂∞

n=1 Gn(Zn). Let (x, y) ∈ ΛG and let IG ∈ IG
∞ such that {(x, y)} = ΛG∩IG∩

{(x, t) : t ∈ [0, 1]}. Furthermore, let {(x, y′)} := Λ ∩ IF ∩ {(x, t) : t ∈ [0, 1]}.
The natural projection Φ : ΛG → Λ is defined by Φ(x, y) = (x, y′).

It is easy to see that Φ is a Lipschitz map and the following diagram is
commutative.

(29) ΛG G
//

Φ
��

ΛG

Φ
��

ΛF
F

// ΛF

We say I, I ′ ∈ IG
∞ have different 1-cylinders if a statement analogous to

Definition 1 holds with replacing F with G everywhere. The main result of
Steinberger’s paper [13] immediately implies that

(30) dimH(ΛG) = 1 +
htop(T )

− log λ
.

Since the map Φ is Lipschitz, we obtain the following result.
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Figure 3: The definition of Φ.

Proposition 3. Suppose that T : [a, b] → [a, b] is a piecewise monotonic

map with critical points c0 := a < c1 < c2 < · · · < cm0 := b. Fur-

thermore assume that T is expanding and topologically transitive. Let λ ∈(
0, 1

m0

)
, and let ϕ : [a, b] →

[
λ
2
, 1 − λ

2

]
be a function, which is contin-

uously differentiable on (a, b) \ {c0, c1, . . . , cm0} and satisfies inf |ϕ′| > 0
and sup |ϕ′| < ∞. Define Q := [a, b] × [0, 1] and define F : Q → Q by

F (x, y) :=
(
T (x), ϕ(x) + λ(y − 1

2
)
)
. Then the attractor Λ :=

⋂∞
n=0 F n(Q)

satisfies

dimH(Λ) ≤ 1 +
htop(T )

− log λ
.

In the rest of the paper we will prove that this upper bound is in fact the
Hausdorff dimension of Λ, if the transversality condition is satisfied.

To this end we need to prove that on the one hand the set of those
points of Λ which are covered by at least two elements of IF

∞ (“set of bad
points” defined in (31) below) is small. On the other hand, we need to prove
something about the size of the small neighborhood of these points. We can
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prove the first in Lemma 5 below. The second is much more difficult and
requires a proposition which uses a number of results proved earlier.

Let us denote the “bad” points of ΛG, i.e. those whose image under Φ in Λ
have at least two preimages by

(31) B :=
{
x ∈ ΛG : #Φ−1 (Φx) > 1

}
.

Lemma 5. If the assumptions of Proposition 3 are satisfied, if the transver-

sality condition holds, and if λ < inf 1
(T ′)2

, then we have

dimH

(
π1(Φ(B))

)
= dimH(π1(B)) ≤ 2

htop(T )

− log λ
< 1 .

Proof. Let I, I ′ ∈ IF
∞ with different 1-cylinders. We define

BI,I′ :=
{
x ∈ ΛG : Φ(x) ∈ I ∩ I ′

}
.

Furthermore let
B1 :=

⋃
BI,I′,

where the union is taken over all I, I ′ ∈ IF
∞ with different 1-cylinders. It fol-

lows from the transversality condition that for such I, I ′ and their horizontal
N -cylinders IN , I ′

N we have

(32) |π1 (IN ∩ I ′
N)| ≤ d1 · λN .

Note that

(33) π1(B1) =
⋂

N≥1

⋃

I,I′ with different 1-cylinders

π1(IN ∩ I ′
N)

Let s > 2htop(T )
− log λ

be arbitrary. Then λs < exp {−2htop(T )}, and hence

lim
N→∞

d1 (#VN−1)
2 (λs)N = 0 .

Therefore it follows from (32) and (33) that dimH(π1(B1)) ≤ s. Using that

B =
⋃∞

n=0 Gn(B1) we obtain dimH(π1(B)) ≤ s. As s > 2htop(T )
− log λ

was arbitrary,

this implies dimH(π1(B)) ≤ 2htop(T )
− log λ

.

Finally we get that λ < exp (−2htop(T )), since λ < inf 1
(T ′)2

and htop(T ) ≤
log sup |T ′|. Therefore dimH(π1(B)) ≤ 2htop(T )

− log λ
< 1.
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5. An invariant subset Λk0 of Λ

To prove that in some sense the n-th level neighborhood of the “bad”
points is small we need a result which provides us with a “large” subset
of [a, b] on which T is conjugated to a Markov shift and all k-cylinders of this
subset are “long”.

Fix k0 ∈ N, k0 ≥ 2. Let Dk0 be as in Proposition 1 for some ε > 0. Then
there are closed intervals J1, . . . , Jh ∈ Vk0−1 such that

Dk0 =

{
x ∈ [a, b] : T n(x) ∈

h⋃

k=1

Jk, ∀n ≥ 0

}
.

Set

(34) s := sk0 =
htop(T |Dk0

)

− log λ
.

We define a h × h-matrix A = (ai,j)1≤i,j≤h by

ai,j :=

{
1 , if T (Ji) ⊃ Jj,

0 , otherwise.

Then by Theorem 11 in [4] the spectral radius satisfies

(35) ρ(A) = exp
(
htop(T

∣∣
Dk0

)
)

= λ−s .

Define
ΣA :=

{
i ∈ {1, . . . , h}Z : ail,il+1

= 1 ∀l ∈ Z

}

and let σ be the left shift on ΣA. We call (i0, i1, . . . , ir) ∈ {1, . . . , h}r+1

an admissible word, if ail−1,il = 1 for all l ∈ {1, 2, . . . , r}. Given l ∈ Z,
j ≥ 1 and an admissible word (il, il+1, . . . , il+j) define [il, il+1, . . . , il+j] :=
{j = (ju)u∈Z : ju = iu for u ∈ {l, l + 1, . . . , l + j}}.

Since T |Dk0
is topologically transitive by Proposition 1 we have that A

is irreducible. Then we know that there exist u = (u1, . . . , uh) and v =
(v1, . . . , vh) ∈ R

h (note that each of them depend on k0) such that ui, vi > 0
for all i, u · A = λ−su, A · v = λ−sv, and

∑h
i=1 uivi = 1. We define w =

(w1, . . . , wh) by wi := ui · vi, and the h × h-matrix P = (pi,j)1≤i,j≤h by

pi,j := λsai,j
vj

vi

.
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Then
∑h

i=1 wi = 1, P is a stochastic matrix and

w · P = w .

Let µ be the corresponding Markov measure on ΣA. Then there exist positive
constants d2, d3 (depending only on k0) such that for all l ∈ Z, all j ≥ 1, and
for all admissible words (il, il+1, . . . , il+j−1) we have

(36) d2 · λjs < µ([il, il+1, . . . , il+j−1]) < d3 · λjs .

Now define

Qk0 := Dk0 × [0, 1] and Fk0 := F
∣∣
Qk0

.

Since T (Dk0) ⊂ Dk0 we get that Fk0(Qk0) ⊂ Qk0 . Define

Λk0 :=

∞⋂

n=0

F n
k0

(Qk0) .

Then it is obvious that

(37) Λk0 ⊂ Λ

holds for all k0. For every l ∈ {1, . . . , h} we define

∆l := (Jl ∩ Dk0) × [0, 1] .

These are the first level vertical cylinders of Λk0. We define for an admissible
word (i1, . . . , iq) ∈ {1, . . . , h}q (according to the matrix A) the corresponding
q-level vertical cylinder as

∆i1,...,iq := ∆i1 ∩ F−1
k0

∆i2 ∩ · · · ∩ F q−1
k0

∆iq .

Let p ≥ 1. For an admissible word (i−(p−1), . . . , i0) the corresponding “hori-
zontal” (actually almost horizontal) cylinder of Λk0 is

S̃i
−(p−1),...,i0 := F p

k0

(
∆i

−(p−1)
∩ F−1

k0
∆i

−(p−2)
∩ · · · ∩ F

−(p−1)
k0

∆i0

)

︸ ︷︷ ︸
∆i

−(p−1),...,i0

.

For an admissible word
(
i−(p−1), . . . , i0, i1, . . . , iq

)
we call the set

S̃i
−(p−1),...,i0 ∩ ∆i1,...,iq
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a (p, q)-cylinder of Λk0.
Given i ∈ ΣA, the (p, q)-cylinders obtained from i converge to a point

in Λk0, if we let p → ∞ and q → ∞. This point is called the natural
projection of i ∈ ΣA to Λk0 . To be more formal, we define this natural
projection Π by

Π(i) :=

∞⋂

p=1

∞⋂

q=0

(
S̃i

−(p−1),...,i0 ∩ ∆i1,...,iq

)
.

Moreover, for an admissible word (i−(p−1), . . . , i0) we write

(38)
[
i−(p−1), . . . , i0

]
0

:= {j = (ju)u∈Z : j−k = i−k for all 0 ≤ k ≤ p − 1}

and we say that
[
i−(p−1), . . . , i0

]
0

is a non-positive p-cylinder of ΣA.
It is easy to see that the following diagram is commutative.

(39) ΣA
σ

//

Π
��

ΣA

Π
��

Λk0

Fk0
// Λk0

The measure µ gives rise to a measure Π∗µ on [a, b] × [0, 1] defined by

(40) Π∗µ(B) := µ
(
Π−1(B ∩ Λk0)

)
.

Note that Π∗µ depends on k0. However, for every k0, Π∗µ is a probability
measure concentrated on Λk0.

6. Dimension of Λk0

Now we use the Markov subsets of Proposition 1 to give a lower estimate
for the Hausdorff dimension of the attractor. Note that the condition λ <
inf 1

(T ′)2
implies that − log λ

log sup |T ′|
> 2.

Proposition 4. Let T : [a, b] → [a, b] be a piecewise monotonic map with

critical points c0 := a < c1 < c2 < · · · < cm0 := b, which is expand-

ing and topologically transitive. Suppose that λ ∈
(
0, min

{
1

m0
, inf 1

(T ′)2

})
,

and suppose that ϕ : [a, b] →
[

λ
2
, 1 − λ

2

]
is a function, which is contin-

uously differentiable on (a, b) \ {c0, c1, . . . , cm0} and satisfies inf |ϕ′| > 0
and sup |ϕ′| < ∞. Define Q := [a, b] × [0, 1] and define F : Q → Q by



20 FRANZ HOFBAUER, PETER RAITH AND KÁROLY SIMON

F (x, y) :=
(
T (x), ϕ(x) + λ(y − 1

2
)
)
. Assume that the transversality condi-

tion holds. Suppose that k0 is so large that the set Dk0 in Proposition 1
satisfies

dimH(Dk0) > dimH

(
π1(Φ(B))

)
and(41)

2 htop(T ) <
− log λ

log sup |T ′| · htop

(
T
∣∣
Dk0

)
,(42)

where B is the set defined in (31). Then we have that

(43) dimH(Λk0) ≥ dimH(Dk0) +
htop

(
T
∣∣
Dk0

)

− log λ
.

The proof of this proposition is divided into several lemmas. For the rest
of this section we fix k0 satisfying (41) and (42) and we write

s := sk0 =
htop

(
T |Dk0

)

− log λ
.

Moreover, choose a λ2 with
√

λ < λ2 < 1
sup |T ′|

, such that

(44) 2 htop(T ) <
log λ

log λ2

· htop

(
T
∣∣
Dk0

)

holds, which is possible because of (42).

Lemma 6. Under the assumptions of Proposition 4 we have

Π∗µ
(
π1(Φ(B)) × [0, 1]

)
= 0 .

Proof. Using the notations of the proof of Lemma 5 it is enough to prove
that for every u ≥ 0 we have

(45) Π∗µ
((

T u(π1(B1))
)
× [0, 1]

)
= 0 .

Let N > u. Then by (32) and (33) the set T u(π1(B1)) can be covered
by at most (#VN−1)

2 intervals, whose lengths are at most d1 (sup |T ′|)u λN .
We choose q = q(N) such that λq

2 = λN . Since by Proposition 1 every [q]-

level cylinder of Dk0 has length at least dλ
[q]
2 we obtain that the number

of [q]-level cylinders of Dk0 needed to cover T u(π1(B1)) ∩ Dk0 is at most
d1

d
(#VN−1)

2 (sup |T ′|)u. It follows from (36) that the µ-measure of such a
[q]-level cylinder is at most d3λ

[q]s. Hence

Π∗µ
((

T u(π1(B1))
)
× [0, 1]

)
≤

≤ d1d3

d
λ−s (sup |T ′|)u · (#VN−1)

2 λsN log λ/ log λ2 .
(46)
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Using that λs = exp
(
−htop(T |Dk0

)
)

by the choice of s, and also using the

fact that

lim
n→∞

1

n
log #Vn−1 = htop(T )

we obtain by (44) that the right hand side of (46) tends to zero.

Corollary 1. Under the assumptions of Proposition 4 we have

Π∗µ(Φ(B)) = 0.

Now we are ready to prove a finer result. We have seen that the set of
those point which have not unique coding is a set of Π∗µ-measure zero. Now
we will point out that most of those points which have only one code do have
only the same code of the first n non-positive coordinates in a neighborhood
of size close to the size of a horizontal n-cylinder.

Let x ∈ Λk0\Φ(B). Then there exists a unique i ∈ ΣA such that x = Π(i).
We define

L(x) := min {dist (x, Π(j)) : ik = jk ∀k > 0 and i0 6= j0} .

The meaning of L(x) is as follows: Let l be the vertical line which contains x.
Then the symbolic representation of all points in the open interval on l of
radius L(x) centered at x has the same zero coordinate as the zero coordinate
of Π−1(x).

It follows from Corollary 1 that the function L is defined for Π∗µ-almost
all points of Λk0.

For ε > 0 and n ∈ N we define

(47) On(ε) :=
{
i ∈ ΣA \ Π−1Φ(B) : L

(
Π(σ−ni)

)
< e−εn

}
.

Note that ΣA \ Π−1Φ(B) is the set of those i ∈ ΣA for which there is a
unique I ∈ IF

∞ such that Π(i) ∈ I. So, there is no overlap in Λ at Π(i).

Lemma 7. Under the assumptions of Proposition 4 we obtain that for ev-

ery ε ∈
(
0, log sup |T ′|

)
there exists an η ∈ (0, 1), a d∗ > 0, and a se-

quence
(
Rn(ε)

)
n∈N

of subsets of ΣA such that for every n we have

(a) On(ε) ⊂ Rn(ε),

(b) Rn(ε) is a union of non-positive
[(

1 + ε
− log λ

)
n
]
-cylinders, and

(c) µ(Rn(ε)) < d∗η
n.
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Proof. We assume that n > (k0 + 1)− log λ
ε

, because it suffices to construct
the sets Rn(ε) in this case. Set Qn(ε) := {i ∈ ΣA \ Π−1Φ(B) : L(Πi) < e−εn}.
Clearly,

(48) On(ε) ⊂ σn(Qn(ε)) .

We define m by

m :=

[
ε

− log λ
n

]
.

Let Im be the pairs of non-positive m-cylinders of ΣA with different zero
coordinates, this means

Im :=
{
(τ, ω) : τ = [τ−(m−1), . . . , τ0]0, ω = [ω−(m−1), . . . , ω0]0 admissible

words, τ0 6= ω0} .

The corresponding horizontal m-cylinders of Λk0 are

Sτ := Π(τ) and Sω := Π(ω).

Put

Xn(ω) :=
{
y ∈ Λk0 : ∃x ∈ Sω such that π1(y) = π1(x), dist(x, y) < e−εn

}
.

Then

(49) Qn(ε) ⊂
⋃

(ω,τ)∈Im

Π−1 (Xn(ω) ∩ Sτ ) .

It follows from Lemma 4 that

(50) |π1 (Xn(ω) ∩ Sτ )| < 3d(k0) · λm .

Now we define k by

(51) k :=

[
log λ

log λ2
m

]
.

Then

(52)

k ≤ log λ

log λ2
· m < k + 1 ,

m ≤ ε

− log λ
· n < m + 1 , and

k ≤ ε

− log λ2

· n < k + 1 +
log λ

log λ2

.
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This implies that k > m, and by the choice of n we have k > m > k0. Using
also (50) we obtain that

(53) |π1 (Xn(ω) ∩ Sτ )| < 3d(k0) · λk
2.

Set Vk−1(ω, τ) := {V ∈ Vk−1 : V ∩ π1 (Xn(ω) ∩ Sτ ) 6= ∅}. Using that the
length of every k-cylinder of Dk0 is at least dλk

2 by Proposition 1 and that
π1 (Xn(ω) ∩ Sτ ) ⊂ Dk0 we obtain from (50) that

(54) #Vk−1(ω, τ) ≤ 3d(k0)

d
.

For a V ∈ Vk−1 we can find v1, . . . , vk−k0 ∈ {1, . . . , h} such that V ∩Dk0 =
π1Π ([v1, . . . , vk−k0]k−k0). Recall that Sτ = Π

(
[τ−(m−1), . . . , τ0]0

)
. It follows

from (36) that

(55) µ[τ−(m−1), . . . , τ0, v1, . . . , vk−k0]k−k0 ≤ d3λ
−k0s · λ(k+m)s .

We define the set Pn(ε) ⊂ ΣA by

Pn(ε) :=
⋃

(ω,τ)∈Im

⋃

V ∈Vk−1(ω,τ)

V ∩Dk0
=π1Π([v1,...,vk−k0

]k−k0)

[τ−(m−1), . . . , τ0, v1, . . . , vk−k0]k−k0 .

Then clearly (use (49) and the definitions)

(56) Qn(ε) ⊂ Pn(ε) .

As ε < log sup |T ′| < − log λ2 by the choice of ε and λ2 we get by (52) that
k < n, and therefore k − k0 − n < 0. Hence it follows that the set

Rn(ε) := σnPn(ε) =

=
⋃

(ω,τ)∈Im

⋃

V ∈Vk−1(ω,τ)

V ∩Dk0
=π1Π([v1,...,vk−k0

]k−k0)

[τ−(m−1), . . . , τ0, v1, . . . , vk−k0]k−k0−n

can be represented as a union of horizontal (non-positive coordinates) n+m-

cylinders. Using (52) we see that n + m =
[(

1 + ε
− log λ

)
n
]
, showing (b).

Furthermore, (48) and (56) imply that On(ε) ⊂ Rn(ε), hence (a) is shown.
In order to prove (c) we have to verify that

µ(Rn(ε)) = µ(Pn(ε)) → 0 exponentially fast.
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To see this note that it follows from (52), (54) and (55) that

(57)

µ(Pn(ε)) ≤
∑

(ω,τ)∈Im

∑

V ∈Vk−1(ω,τ)

µ
(
[τ−(m−1), . . . , τ0, v1, . . . , vk−k0]k−k0

)

≤ 3d(k0)

d
d3λ

−k0s · (#Vm−1)
2 λ(k+m)s

≤ 3d(k0)

d
d3λ

−(k0+1)s · (#Vm−1)
2 λsm(1+log λ/ log λ2) .

Since limr→∞
1
r
log #Vr−1 = htop(T ), and since n → ∞ implies m → ∞ by

(52), we get by (44) that 2
m

log #Vm−1 < log λ
log λ2

htop

(
T |Dk0

)
for all sufficiently

large n. Therefore, using also the definition of s we obtain

(58)

2

m
log #Vm−1 + s

(
1 +

log λ

log λ2

)
log λ =

=
2

m
log #Vm−1 −

log λ

log λ2

htop

(
T |Dk0

)
− htop

(
T |Dk0

)
<

< −htop

(
T |Dk0

)
< 0

for all sufficiently large n. If n is sufficiently large, then (52), (57) and (58)
give

1

n
log µ(Pn(ε)) − 1

n
log

(
3d(k0)

d
d3λ

−(k0+1)s

)
≤

≤ 1

n

(
2 log #Vm−1 + sm

(
1 +

log λ

log λ2

)
log λ

)
=

=
m

n

(
2

m
log #Vm−1 + s

(
1 +

log λ

log λ2

)
log λ

)
≤

≤ m

m + 1
· ε

− log λ
·
(

2

m
log #Vm−1 + s

(
1 +

log λ

log λ2

)
log λ

)
≤

≤ m

m + 1
· ε

− log λ
·
(
−htop

(
T |Dk0

))
.

As n → ∞ implies m → ∞ by (52), we obtain that

lim sup
n→∞

1

n
log µ(Pn(ε)) ≤

ε

− log λ

(
−htop

(
T |Dk0

))
< 0 ,

which completes the proof of this lemma.
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Proof of Proposition 4. For the rest of the proof fix an ε ∈
(
0, log sup |T ′|

)
.

We need some further notation. For an i ∈ ΣA we write

i− := {j ∈ ΣA : jk = ik for every k ≤ 0} .

This corresponds to the unstable fibre which contains Π(i). Geometrically
the projection Π(i−) is the almost horizontal line above Dk0 of the attractor
which contains Π(i).

If p ∈ Dk0 define the segment lp := {p} × [0, 1]. For every p ∈ Dk0 we
have

(59) µ
{
i ∈ ΣA : p ∈ π1Π(i−)

}
> 0 ,

because choosing j = (. . . , j0, j1, j2, . . . ) such that p = π1Π(j), the set

{
i ∈ ΣA : p ∈ π1Π(i−)

}
= {i ∈ ΣA : ai0,j1 = 1}

has positive µ-measure.
Set

G :=
{
i ∈ ΣA \ Π−1Φ(B) : ∃N(i) such that i /∈ Rn(ε) for all n ≥ N(i)

}
,

where Rn(ε) is as in Lemma 7. It follows from Corollary 1, from Lemma 7
and from the Borel Cantelli lemma that

(60) µ(G) = 1 .

Fix an arbitrary p ∈ Dk0 \ π1(Φ(B)). Set

Gp :=
{
i ∈ G : p ∈ π1Π(i−)

}
.

Using (b) of Lemma 7 we obtain that for any i, j ∈ ΣA with i− = j− we have
that either both i and j are contained in Gp or neither of them is contained
in Gp. Now we obtain from (59) that

(61) µ(Gp) > 0 .

We define the measure νp on the segment lp as follows: for a Borel set H ⊂
[0, 1] define

νp

(
{p} × H

)
:= µ

{
i ∈ Gp : π2(Π(i−) ∩ lp) ∈ H

}
.

From (61) we see that νp

(
{p}× [0, 1]

)
> 0. By the considerations above, the

set of all x ∈ lp such that there exists an i ∈ Gp with Π(i) = x forms a set of
full νp-measure.
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Now we fix an arbitrary i ∈ Gp such that p = π1Π(i). Put x := Π(i).
Then by the definition of G we have that there exists an N(i) such that for
all n ≥ N(i) we have i /∈ Rn(ε). For n ∈ N set

ρn := max
{
r : B(x, r) ∩ lp ∩ Λk0 ⊂ Π[i−(n−1), . . . , i0]0

}
.

Then for every n we have ρn > 0 by the choice of p. In this way

(62) νp

(
B(x, ρn) ∩ lp

)
≤ µ

(
[i−(n−1), . . . , i0]0

)
.

Note that obviously limn→∞ ρn = 0.
Our next step is to estimate the magnitude of ρn. As i /∈ Π−1Φ(B) we

have that min0≤k≤N(i) L(F−k(x)) > 0. Therefore, using also (a) of Lemma 7
and (47), we can find N1 ≥ N(i) such that min0≤k≤n L(F−k(x)) ≥ e−εn for
all n > N1. Hence by definition we get

(63) ρn ≥ e−εnλn

for all n ≥ N1.
By Frostman’s Lemma we get that νp- ess sup lim infr→0

log νp(B(x,r)∩lp)

log r
is

a lower bound for the Hausdorff dimension of Λk0 ∩ lp. To use this we recall
that for a νp-typical x ∈ lp there exists an i ∈ Gp with Π(i) = x. Hence using
(36), (62) and (63) we obtain

lim
n→∞

log νp(B(x, ρn) ∩ lp)

log ρn
≥ lim

n→∞

− log µ[i−(n−1), . . . , i0]0
εn − n log λ

=

= lim
n→∞

− log µ[i
−(n−1),...,i0]0

−n log λ

1 − ε
log λ

≥ s

1 − ε
log λ

.

As ε ∈
(
0, log sup |T ′|

)
was arbitrary, the inequality above implies that

dimH(Λk0 ∩ lp) ≥ s holds for all p ∈ Dk0 \ π1(Φ(B)). Using (41) it follows
from Theorem 5.8 in [2] that dimH(Λk0) ≥ dimH(Dk0) + s, completing the
proof of the proposition.

7. The proof of Theorem 2

Before we give the proof of Theorem 2 we show that under the assumption
of the transversality condition a more general result holds.

Proposition 5. Let T : [a, b] → [a, b] be a piecewise monotonic map with

critical points c0 := a < c1 < c2 < · · · < cm0 := b, which is expand-

ing and topologically transitive. Suppose that λ ∈
(
0, min

{
1

m0
, inf 1

(T ′)2

})
,
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and suppose that ϕ : [a, b] →
[

λ
2
, 1 − λ

2

]
is a function, which is contin-

uously differentiable on (a, b) \ {c0, c1, . . . , cm0} and satisfies inf |ϕ′| > 0
and sup |ϕ′| < ∞. Define Q := [a, b] × [0, 1] and define F : Q → Q by

F (x, y) :=
(
T (x), ϕ(x) + λ(y − 1

2
)
)
. Assume that the transversality condi-

tion holds. Then the attractor Λ :=
⋂∞

n=0 F n(Q) satisfies

dimH(Λ) = 1 +
htop(T )

− log λ
.

Proof. The upper estimate follows immediately from Proposition 3.
Let ε > 0 be arbitrary. As the transversality condition holds Lemma 5

gives dimH

(
π1(Φ(B))

)
< 1, where B is the set defined in (31). Observing

that − log λ
log sup |T ′|

> 2 as λ < inf 1
(T ′)2

we obtain by Proposition 1 that there
exists a k0 ≥ 2 such that

dimH (Dk0) > max
{
1 − ε, dimH

(
π1(Φ(B))

)}
and

htop

(
T
∣∣
Dk0

)
> max

{
htop(T ) − ε, 2

log sup |T ′|
− log λ

htop(T )

}
.

Hence (41) and (42) are satisfied. Now (37) and Proposition 4 give

dimH(Λ) ≥ dimH(Λk0) ≥ dimH(Dk0) +
htop

(
T
∣∣
Dk0

)

− log λ
>

> 1 − ε +
htop(T ) − ε

− log λ
.

Since ε > 0 was arbitrary this gives dimH(Λ) ≥ 1 + htop(T )

− log λ
, which completes

the proof.

Finally we prove Theorem 2.

Proof of Theorem 2. By Proposition 2 we get that the transversality con-
dition holds. As m0 = 2 all assumptions of Proposition 5 are satisfied.
Therefore dimH(Λ) = 1 + htop(T )

− log λ
by Proposition 5.
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