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Stability of the omega limit set
for unimodal transformations

FraANz HOFBAUER AND PETER RAITH

Abstract. Consider the map T + w(T') on the collection of unimodal
transformations, where w(T') is the w-limit set of T'. The collection of uni-
modal transformations is endowed with the topology of uniform convergence,
and the collection of subsets of [0, 1] is endowed with the Hausdorff metric.
Conditions on a unimodal transformation 7" implying the continuity of the
map S — w(S) at T are investigated.

Introduction

Let T : [0,1] — [0,1] be a continuous transformation. For a point z €
[0,1] let w(z) be the set of all limit points of the sequence (T"(x))neN. We
call w(T) = U,cpqw(x) the w-limit set of the transformation 7. It is
proved in [T0] that w(7T) is closed. Let F be the collection of all continuous
transformations on [0, 1], and endow this space with the uniform metric p.
Moreover, let C be the collection of all closed subsets of [0, 1] endowed with
the Hausdorff metric d. We consider the map w : F — C which assigns to
each S € F its w-limit set w(S). In this paper we investigate the continuity
of the map w on certain subsets of F.

A transformation 7" : [0, 1] — [0, 1] is called piecewise monotonic, if there
is a finite partition Z of [0, 1] into intervals, such that T'| is strictly mono-
tonic and continuous for all Z € Z. If ¢ is an endpoint of an interval of
monotonicity and ¢ ¢ {0, 1}, then ¢ is called a critical point of T. Denote by
M the collection of all continuous piecewise monotonic transformations. The
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finite partition Z is called a generator, if for every sequence (Z;)jen, in 2
the set ();=,77Z; contains at most one element. If a map 7" : [0, 1] — [0, 1]
is piecewise monotonic with respect to a finite partition Z, and if Z is a
generator, then we call T" piecewise monotonic with generating partition.

We call a continuous transformation 7" : [0,1] — [0, 1] unimodal, if there
exists a point ¢ € (0, 1) such that 7' is strictly increasing on [0, ¢| and strictly
decreasing on [c,1]. The point ¢ is the unique critical point of 7. Then
Z :={[0,], (¢, 1]} is a finite partition of [0, 1] and T is piecewise monotonic
with respect to Z. We denote the collection of all unimodal transformations
by U. Obviously we have Y C M C F.

For a transformation 7 : [0,1] — [0, 1] a point p € [0, 1] is called periodic
(sometimes T-periodic), if T"(p) = p for some n > 1. The smallest n > 1
satisfying T™(p) = p is called the period of p, and it is denoted by per(p).
Let p be a periodic point of a transformation 7" with period n. We say
that p is transversal, if the graph of the map T™ crosses the diagonal at the
point (p,p). Otherwise, we call p nontransversal.

If there are two different ny, ny € N with 7™ (p) = T"2(p), then p is called
eventually periodic. This is equivalent to the property that {T"(p) : n > 0}
(the orbit of p) is finite. Moreover, in this case we get that T*(p) is periodic
for some k£ > 0.

In general the map w is neither lower semicontinuous nor upper semicon-
tinuous. We consider the lower semicontinuity of the map w : F — C in
Section [ We show the following result.

Theorem. Suppose that T' € M and that all periodic points of T, which are
separated from periodic points of different period, are transversal. Then the
map w : F — C is lower semicontinuous at T.

If the transformation 7" € M has a generating partition and the critical
points of T" are not periodic, then the condition in the theorem above is
satisfied. Therefore we obtain the lower semicontinuity of the map w in this
case.

The rest of the paper deals with unimodal transformations. We fix a
transformation 7" € U, which has a generating partition. Let ¢ be the critical
point of T. We consider the restriction of 7' to the interval [T?(c),T(c)],
which is T-invariant, and denote now the w-limit set of this restricted trans-
formation by w(T'). Doing this we loose at most one w-limit point, which is
the point 0, in case it is a fixed point. Our aim is then to characterize the
continuity of the map w : 4 — C at T by a condition on the orbit of the
critical point under 7. Writing x ~ 9, if the critical point ¢ is not contained
in the open interval with endpoints x and y, we have the following result.
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Theorem. Let T : [0,1] — [0,1] be a unimodal transformation with critical
point c. Suppose that T has a generating partition. Then the map w : U — C
is not continuous at T if and only if there is n with T’ (c) ~ T™"(c) for 1 <
7 <n—1and T"(c) # T*(c), but T (c) is a periodic point of period n.

We can apply this theorem to a unimodal transformations 7" with nega-
tive Schwarzian derivative. It is well known, that T has either a generating
partition or the orbit of the critical point is attracted by a periodic orbit.
In the first case we can apply the above theorem. It is explained at the end
of Section Bl how one can show that the map w : ¥4 — C is continuous at
T, if the periodic orbit of 7', which attracts the orbit of the critical point, is
attracting on both sides, and that the map w is not continuous at 7', if this
periodic orbit is attracting on one side and repelling on the other side.

The stability of the w-limit set has also been investigated in [II] and
[12] for the collection F of all continuous transformations on the interval
(also endowed with the uniform metric). In these papers it is proved that
the function w : F — C is continuous at f, if and only if the closure of
the periodic points of f equals the chain recurrent points of f. This is a
characterization of rather different kind.

A similar question has been dealt with in [I]. The continuity of the
map = — w(x) as a map [0,1] — C has been investigated in this paper.
Properties of the map (7,z) — wr(x) as a map F x [0,1] — C have been
investigated in [I3], where wr(z) denotes the w-limit of x with respect to the
transformation 7' (i.e. the set of all limit points of (T"(x))neN). However,
the maps considered in these papers are slightly different from the map w
considered here.

In [8] the stability of maximal topologically transitive subsets of a piece-
wise monotonic transformation 7" under small perturbations of 7T is investi-
gated. However, this question is different from the problem considered in this
paper. Only for topologically transitive transformations 7" we obtain directly
from Theorem 2 in [8] (see also Theorem 3 in [9]) that the map w: M — C
is continuous at 7.

The authors like to thank Lubomir Snoha for useful conversations on the
subject of this paper.

1. Lower semicontinuity for continuous transformations

Assume that T is a continuous piecewise monotonic transformation, which
means T € M. In this section we investigate the lower semicontinuity of the
function w : F — C at T. Here lower semicontinuity at 7" means that for
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every € > 0 there is a § > 0 such that for every S € F with o(S,T) < ¢ there
is a set G C w(S) with d(G,w(T)) < e. The following simple examples show
that lower semicontinuity cannot be true in general.

First, for s € [0, 3], we consider the map T} : [0,1] — [0, 1] defined by
T,z := (1 — s)z%. Obviously lim,_,g+ || Ts — Tollee = 0, w(Ty) = {0,1} and
w(Ts) = {0} for s > 0. This shows that the map S — w(S) is not lower
semicontinuous at 71;. Here 1 is an isolated fixed point of 7 which is not
attracting.

For our second example we define for s € [0, 3] the map T : [0,1] — [0, 1]
by Tsx := (1 — s)x. Then lim, ,o+ [|Ts — To||oc = 0. As w(Tp) = [0,1] and
w(Ts) = {0} for s > 0 also in this case the map S — w(S) is not lower
semicontinuous at 7. In this example the non-attracting fixed point 1 is not
isolated in the set of periodic points of Tj, but it is separated from those
periodic points having a period different from 1.

Assume that € > 0. A T-periodic point p is called e-persistent, if there is
a 0 > 0, such that every S € F with o(T,S) < 0 has an S-periodic point ¢
with [p —¢| < e.

It is obvious from these definitions that every transversal periodic point p
of a transformation T is e-persistent for every ¢ > 0.

Lemma 1. Assume that T € M and suppose that T has no nontransversal
periodic point p, which is separated from the set of all periodic points q with
per(q) # per(p). Then for every € > 0 the transformation T has at most
finitely many periodic points, which are not e-persistent.

Proof. Let K be the finite set of endpoints of intervals on which 7" is mono-
tonic and set L := J;2, T~/(K). Then L is the set of endpoints of maximal
intervals, on which some iterate of 7" is monotonic. As for every x € L there
isa j > 0 with T7(z) € K, and as K is finite, there are at most finitely many
T-periodic points in L.

Fix ¢ > 0. Suppose that p € [0,1] \ L is a periodic point of T. Set
k := per(p). Since p ¢ L there exists a maximal open interval I containing
p, on which T* is monotonic. Now set U, := (p —e,p+¢) N 1.

Suppose that U, contains a point u with T%(u) > u and a point v with
T*(v) < v. Then there is § > 0 such that S*(u) > u and S*(v) < v hold
for every S € M satisfying o(7,5) < 6. If S € M and o(7,S) < ¢ then
S*(u) > u and S*(v) < v imply the existence of a point ¢ € U, satisfying
S*(q) = q. Therefore p is e-persistent.

Now we assume that T%(z) < z holds for all 2 € U,. Set U := (p,p +
e) N 1. If the open interval U} contains a point r with T%(r) = r, then r is
a T-periodic point and per(r) divides k. In this case choose ro € U, with
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T*(rg) = ro such that per(rg) equals max {per(r) : r € US,T*(r) =r}. If rg
is transversal, then rq is (¢ — (19 — p))-persistent. Therefore there is a § > 0
such that for every S € M with o(T,S) < 0 there is a S-periodic point ¢
with |¢ — 79| < € — (19 — p), which implies |¢ — p| < . Hence p is e-persistent
in this case. Otherwise rq is nontransversal. By our assumption ry can be
approximated by periodic points r with per(r) # per(rg). As U, is open and
the period of periodic points in U, is at most per(ro) there is an m < per(ro)
such that 7o can be approximated by points r with per(r) = m. Because of
T™(r) = r the continuity of 7™ implies T™(ry) = ro. This contradicts
m < per(ry). Therefore U cannot contain nontransversal periodic points.
It remains to consider the case T%(z) < z for all z € US. In this case
lim,, oo T (2) = p for all z € U, . Hence p attracts an interval of length e
or an endpoint of I and therefore a point in K.

A similar argument works, if T%(z) > x holds for all x € U,. Therefore we
obtain that p is e-persistent or p attracts an interval of length ¢ or p attracts
a point in K. Obviously there are at most finitely many 7-periodic points
attracting an interval of length ¢ and there are at most finitely many 7'-
periodic points attracting a point in K. Since there are also at most finitely
many T-periodic points in L, we have shown that there are at most finitely
many T-periodic points, which are not e-persistent. O

Theorem 1. Suppose thatT € M and that T has no nontransversal periodic
point, which is separated from periodic points of different period. Then the
map w : F — C is lower semicontinuous at T

Proof. Fix e > 0. By [{] the periodic points are dense in w(T"). Therefore
Lemma [limplies that there is a finite set I of $-persistent T-periodic points
with d(F,w(T)) < §. Hence there is a § > 0 such that o(T, S) < & implies
the existence of a finite set G of S-periodic points with d(G, F) < 5. This
implies d(G,w(T)) < e. As G C w(S) this shows the lower semicontinuity

ofw:F —=CatT. O

2. Unimodal transformations

In this section we collect some results about unimodal transformations
we shall need later. Let ¢ be the critical point of the unimodal transfor-
mation 7. We assume that the partition {[0,¢], (¢,1]} is a generator for T'.
This implies that T'(¢) > ¢. If 0 is not a fixed point, then w(7T) is contained
in [T?%(c),T(c)]. In the case that 0 is a fixed point and T?(c) # 0, then 0 is the
only point in w(7T) which is not contained in [T?(c),T(c)] (this fixed point
can be destroyed by arbitrary small perturbations). Therefore we restrict
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T to the interval [T%(c),T(c)]. Then the partition {[T?(c),c], (¢, T(c)]} is a
generator for this restriction. For unimodal transformations w(T") denotes
now the set of w-limit points contained in [T?(c), T(c)].

Next we describe the structure of the set w(7T"). We write x ~ y, if x and
y are either both < ¢ or both > ¢. The closed interval with the endpoints a
and b is denoted by [a, ], even if b < a. A subset K of [T?(c),T(c)] is called
a fundamental set, if there is n € N such that

(a) K = Uj_,[T7(c), T"*(c)], where the interiors of these intervals are
pairwise disjoint, and

(b) T7(c) ~ T (c) for 1 < j < n—1, T"(c) # T*(c) and T""(c) <
T* 1 (c) < T(c).

In this case, for 1 < j < n — 1 the interval [T7(c), T""(c)] is mapped mono-
tonically onto the interval [TV (c), T (c)]. Moreover, we have that the
two intervals [T"(c), ¢] and [T?"(c), ¢] are mapped monotonically to the inter-
val [T"*1(c), T(c)] (the second one may be not onto). In particular we have
T(K) C K.

If G and H are T-invariant sets which are finite unions of intervals, and
if HG G, then define

(1) By (G, H) = ﬁ G\TH.

These sets are used to desribe the w-limit set of a unimodal transformation.
We have the following well known result.

Proposition 1. Assume that T is a unimodal transformation with generating
partition. Then there is a sequence

(2) [T%(c), T(c)] = Ky 2 Ky 2 Ky 2 -+

of fundamental sets, which ends either with K, for some integer ¢ > 1, or is
infinite. In the first case w(T) = K, U Ug;} Br(Kj, K;1), and in the second
case w(T') = Boo UUj2, Br(Kj, Kjy1) where By := ;2 Kj is a Cantor set.

The proof of this proposition can be found in several papers (see for
example [6]). We give some remarks on the proof, following [3] and [4]. The
tool used there is an oriented graph called Markov diagram, whose paths
correspond to the orbits of the unimodal transformation 7. Let ¢ be its
critical point. We define integers r1,ry, ... and Sg, S1, So, . .. in the following
way. Set 7y :=1land Sy := 1. If r; and S;_; are defined, we set S; :== S;_;+7;
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and define ;1 such that T%%*(¢) ~ T*(c) for 1 < k < rjy; and T+ (c) £
T*(c) for k = rj41. In the case of T (c) ~ T*(c) for all k > 1 we set
rj+1 = 00, and do not define r, for u > j+1 (hence S;;; = oo and S, is not
defined for u > j + 1). For n > 1 define J, := [T"(c), T"*1=5(c)], where
[ is such that S; < n < S;;;. The oriented graph D = {.J, : n > 1} with
arrows J,, = Jy 41 forn > 1and Jg 1 — J,, for m > 1 is called the Markov
diagram of the unimodal transformation 7. We call IyI,I5 ... a path in the
Markov diagram, if I,, € D and I,, — I, for all n € Ny.

In [3] and [E] the numbers R; = S; — 1 are used instead of S; and the
proofs are given for a shift space which is conjugate to 7. This shift space is
characterized by the expansion ejeses ... of T'(c), which is defined by e; = 0,
if T7(c) < c and e; = 1, if T7(¢) > ¢ (for simplicity we exclude the case
that ¢ is periodic). Set 0' = 1 and 1’ = 0. Then the numbers rq,79,... and
So, S1, 53, ... are uniquely determined by r; = Sy = 1 and

, .
€S, +1€8;42 - - - €8, 168, = €1€2---€r; 1€ for 7 > 0.

A subset of the oriented graph D is called closed, if there is no arrow from a
vertex in this subset to a vertex which is outside of this subset. By Lemma 1
in [@] for every j > 1 there is m > 0 with r; = S,,. Therefore, a closed subset
of D is of the form {Jy, Jry1, ...} with k = S, for some m > 0. Let D; =D 2
Dy 2 D3 2 -+ be the closed subsets of D. It may happen that D; is the only
one, but there may be also infinitely many. For j > 1 set K; = UleDj 1. Ifm
is such that Dj = {ng, J5m+1, Ce }, then Kj = Jsm U J5m+1 U---u J5m+1*1
and Jg,, ., C Jg, by Lemma 5 in [5]. Furthermore, rp,41 = Sy, and S,
divides r; for [ > m+ 1. Therefore, the graph restricted to D; has period S,
(see Lemma 4 in [5]). This implies that the intervals J; with S, <i < Sy,11
have pairwise disjoint interiors. If there was a point z in the interior of two
of these intervals, the orbit of x could be represented by two different paths
in the graph starting at vertices .J, and J, with S, < u < v < S,,11 (we say
that the orbit of x is represented by a path Iy[11, ... in the Markov diagram,
if T7(z) € I; for j > 0). By Theorem 1 in [5] these two paths must be the
same except for a finite initial segment. But this is not possible, since the
graph restricted to D; has period S,,. Hence such a point x cannot exist.
Therefore we have shown that K satisfies the definition of a fundamental
set, since K equals (J;_,[T7(c), T"(c)] with n = S, = 11

Because of D, 2 D, 2 Ds 2 -+ we have K, 2 K, 2 K, 2 -, and
because of D; = D and Sy = = 1 we get Ky = [T?(c),T(c)]. The results
about w(T') in Proposition [ follow now easily from the results in [5].

The following lemma shows a stronger result about the disjointness of the
intervals, of which fundamental sets consists.
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Lemma 2. Let K be a fundamental set. Then there is n > 1, such that
the boundary OK of K consists of the points T(c), T*(c),...,T*"(c), which
are different, and T*"*1(c) is in the interior of K, if and only if OK is not
invariant under T'.

Proof. We have K = |Ji_,[T7(c), T"(c)] for some n by definition and the
intervals [T7(c), T"*(c)] for 1 < j < n have disjoint interiors. Notice that
T?**1(c) # T(c), because otherwise we would have T?"(c) = ¢ contradicting
T"(c) & T*(c).

Suppose first that 7" (c) < T?""(c). If now T*(c¢) = T'(c) holds with
1<k<l1<2n+1then T"(c) = T ' (c) with r =2n+1+k —1 < 2n.
We have also r > 2, since r = 1 implies £ = 1 and [ = 2n + 1 contradicting
T+ (c) # T(c), and r # n+1 because of T (¢) < T?"*!(c). Tt follows that
the intervals [T7(c), T""(c)] and [T™"'(c),T(c)] have nondisjoint interiors,
where j =7, if 2 <r <n,and j=r —mn, if n+2 <r < 2n. This is again
a contradiction. We have shown that the points T'(c),T?(c),...,T**(c) are
different and therefore form the boundary of K, and that 7%"*!(c) is in the
interior of K because of T""!(c) < T?"*'(c) < T(c). Hence the lemma is
proved, if T (c) < T?""(c).

Now suppose that T"(c) = T?"*1(c). If we assume that the points
T(c), T?*(c),..., T*(c) are different, then they form the boundary of K.
Since OK is invariant under 7" the lemma is proved in this case. Hence
suppose that T%(c) = T'(c) holds with 1 < k < [ < 2n. This implies
T5(c) = T?(c) with s = 2n+k —1 < 2n— 1 and s > 1. The defini-
tion of a fundamental set implies T"(c) # T*"(c) and hence s # n. Let p
be the period of the periodic point T""!(c). Then p divides n and n — s
which implies n = dp with d € {2,3,...}. For d > 3 at least three of the
intervals [T7(c), T""(c)] with 1 < j < n would have a common endpoint,
which is a contradiction to the disjointness of the interiors of these intervals.
Therefore we have d = 2. For 1 < j < p we get T (¢) = T™"P*(c) and
[T7(c), T (c)] U [T™PF(c), TP*(c)] = [T?(c), TP (c)], since the interiors
of the intervals [T7(c), T""(c)] and [T™P+i(c), TP+ (c)] are disjoint. We get
K = j_,[T7(c), T**/(c)]. Since p is the period of the periodic point T%*!(c)
and T7(c) # TP (c) for 1 < j < p the points T(c), T*(c), ..., T?(c) are dif-
ferent and therefore form the boundary of K. Furthermore, T%%!(c) is in the
interior of the interval [T'(c), T?*!(c)] and hence in the interior of K. Hence
the lemma is proved with p in the place of n. O
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3. Stable behaviour of unimodal transformations

Consider a unimodal transformation with generating partition. In this
section we find conditions under which the sets occurring in Proposition [
are stable. We need information about the stability of fundamental sets and
their inverse images. The boundary of a fundamental set is contained in the
orbit of the critical point. Hence we have to investigate the stability of points
in this orbit and of inverse images of these points. This is done in the next
two lemmas.

Lemma 3. Fiz m € N and let T be unimodal with critical point c. Then
for e > 0 there is § > 0 such that for every unimodal transformation S with
0(S,T) < 6 we have |S7(¢) —T?(c)| < & for 0 < j < m, where ¢ is the critical
point of S.

Proof. Set ny := e. If n; is defined, choose 1,41 < 7; such that |z — y| <
nj+1 implies |T(x) — T(y)| < %. Furthermore, set 8 := min{T(c) — T(c +
m), T(¢) = T'(c — ny,)}. Finally choose 6 € (0, 5 min(n,,, 3)).

Now let S be a unimodal transformation which satisfies o(S,T") < § and
has critical point ¢. In particular we have S(c¢) > S(c + n,,) and S(c) >
S(¢— nm), which implies |¢ — ¢| < 1,,. Suppose that 0 < j < m — 1 and that
|S9(¢) — T?(c)| < Nm—; is already shown. Then we get |S7t(¢) — TV ! (c)| <
|57 (€) = T(S7(e))| + |T(S7(¢)) = T7*(e)] < 6+ *5=" < np—j—1. We have
shown by induction that [S7(¢) —T7(c)| < pm—j < e holdsfor 0 < j <m. O

Lemma 4. Fix k € N and let T be unimodal with critical point c. Let u
be a point with T*(u) = T'(c) for some | > 0 and suppose that T7(u) is not
contained in the orbit of ¢ for 0 < 57 < k —1. Then for every ¢ > 0 there
is 6 > 0 such that for every unimodal transformation S with o(S,T) < § we
find a point v with S*(v) = SY¢) and |S7(v) — TI(u)| < & for 0 < j <k,
where ¢ is the critical point of S.

Proof. Since {u,T(u),...,T* (u)} is disjoint from the orbit of ¢, we find
k > 0 such that the intervals J; = [T?%(c),T?(c) + k], Jo = [c — K, ], J3 =
[c,c+ k] and Jy = [T(c) — K, T(c)] are disjoint from {u, T'(u),...,T* 1(u)}.
Let v be the minimum of the lengths of the intervals T'(.J;), T'(.J2), T'(J3) and
T(Jy).

Denote the two monotonic pieces of T by 77 and T5. Set 7y = min(e, 7).
If 7); is defined, choose 7,,1 < n; such that |z — y| < n;,; implies |77 ' (z) —
Ty ' (y)| < % and [Ty '(2) =15 ' (y)| < , provided these inverse images exist.

For a > 0 set 7, (T) = min{|T(z) — T(y)| : © ~ y, |x — y| = a}. Then we
have 7,(7) > 0 and if S is a unimodal transformation with o(S,T) < 7,(T)
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then |S7'(z) — 77! (7)] < a and |S;'(z) — Ty ' ()| < « hold for all z for
which the inverse images exist. Let s be the ¢ in Lemma B for € = 7, and
m = 1. Then choose § € (0, min(vy,, 2(1), 5,0)).

Now let S be a unimodal transformation which satisfies o(S,7T") < § and
has critical point ¢. Set v, = S!(¢). Because of § < 5 and TF(u) = T'(c) we
have |T%(u) — vy| < mg. Suppose that 1 < j < k and that |T7(u) — v;| < 7,
is already shown. Choose i € {1,2} such that T;7"(T7(u)) = T~ '(u) and
set v;_1 = S; '(v;). This inverse image exists, since |TV(u) — v;| < n; < %
and 0 < £. Also T, '(v;) exists because of |T9(u) — v;| < v. Then we get
T3 (1) = v 1) < (T (T ()~ T, ()] 1T, o) — ;o) < 22+ 28 <
nj—1. We have found vy, ..., vy, vp with S(v;_1) = v; and shown by induction
that |77(u) — v;| < n; holds for 0 < j < k.

Set v = vg. Then we have S7(v) = v; for 1 < j < k. In particular
we have S*(v) = SY¢). For 0 < j < k we have n; < ¢ and therefore
T (u) — v;] < e. O

For a subset A of [0,1] and € > 0 define U.(A) := {z € [0,1] : infyeca |z —
y| < e}

Proposition 2. Let T : [0,1] — [0,1] be a unimodal transformation with
critical point ¢ and let [T*(c),T(c)] = K1 2 Ky 2 K3 2 -+ 2 K, be
Jundamental sets such that 0K, is not invariant under T'. Then for every ¢ >
0 there is 0 > 0 such that every unimodal transformation S with o(S,T) < §
has fundamental sets [S*(¢),S(¢)] = L1 2 Ly 2 Ls 2 -+ 2 Lq satisfying
Bg(Lj, Ljy1) CU(Br(K;, Kji1)) for1 <j<gq—1and L, C U.(K,), where
¢ is the critical point of S.

Proof. Fix e > 0. Set Cj, = K; \T*(K;4;) for 1 <j <g¢g—1and k >
1. Since Kji; is T-invariant, we have Cj;y1 C Cj; for & > 1. Using
compactness, this implies By (Kj, K1) = (\p—oCjk- Therefore we find r
with

(3) Cjr C Uepo(Br(Kj, Kji1)) for1<j<g—1.

Using Lemma P] we obtain that there exists a natural number m such that
0K, consists of the points T'(¢), T%(c), . .., T™ ' (c) which are all different and
T™(c) is in the interior of K. By definition of a fundamental set, ¢ is in the
interior of K, and hence T*(c) # ¢ for 1 <7 < m— 1. Again by Lemma [ we
get OK; C{T(c), T%(c),..., T™ *(c)} for 1 < j <gq.

Set W = T"({T(c), T*(c),...,T™  (c)}). Let n > 0 be the minimal
distance of two different points in {¢,7™(c)} U U;_, T-3(W) and set a :=

smin(e,n). Choose § as the ¢ in Lemma Bl for « instead of e. For every
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u € W let 4, be the 4 in Lemma Hl for r instead of £ and for « instead of ¢.
Finally choose ¢ > 0 satisfying § < é and § < 9, for all u € W.

Let S be a unimodal transformation with critical point ¢ which satisfies
0(S,T) < §. In particular, we have |S7(¢) — T’(c)] < a for 0 < j < m by
Lemma

For 1 < j < ¢—1 we have K; = ,_[T7(c), 7" (c)] with 2n +
1 < m, since 0K; C {T(c),T*(c),...,T™ (c)} (see Lemma B), and we
set L; = UUj_,[97(¢),S"*/(¢)]. Since the ordering of the orbit segment
{c,T(c), T*(c),..., T™(c)} is the same as that of {c, S(¢), S*(¢),...,S™(¢)}
by the choice of o and 7, the sets L; are fundamental sets for .S satisfying
[5%(€),S(@)] = L1 2 Ly 2 L3 2 --- 2 Ly Because of [S7(¢) — T/(c)| < a for
0 <j <m we have d(L;, K;) < a for 1 < j <gq. In particular, L, C U.(K,)
is shown.

Now fix j € {1,2,...,¢ — 1} and set D,, = L;\ S "(L;41). The
set T7"(K,;4+1) is a finite union of pairwise disjoint closed intervals. We
have that the endpoints of these intervals are contained in orbit segments
{u,T(u),...,T"(u)} with T"(u) = T*(c) for some [ € {1,2,...,m — 1} and
these orbit segments have no other intersection with the orbit of ¢ . By
Lemma Ml for each such orbit segment {u,T(u),...,T"(u)} we find an orbit
segment {v, S(v),...,S"(v)} with S"(v) = S!(¢), such that |S7(v) — T (u)| <
a for 0 < j < r. These orbit segments {v, S(v),...,S"(v)} form the end-
points of the intervals of which S~"(L;1) consists. By the choice of  and «,
there is a one-to-one correspondence between the intervals of which S~ (L, 1)
consists and the intervals of which 77" (K1) consists. The distance between
left endpoints and between right endpoints of corresponding intervals is at
most 3. This means that there are still gaps between the intervals of which
S7"(Lj4+1) consists. We get d(T7"(Kj41),S7"(Lj+1)) < « and because of
d(L;, K;) < a we have also d(D;,,C;,) < a. By (@) and since o < § we
get D;, C U(Br(K;,Kjt1)). Because of Bg(Lj, L;11) C D;, this implies
Bs(Lj, Ljt+1) C Ue(Br(Kj, Kjt1))- O

4. Unstable behaviour of unimodal transformations

In this section we consider a unimodal transformation with generating
partition and find conditions under which its w-limit set is unstable.

Lemma 5. Let T be a unimodal transformation. If there is n such that

T"(c) # T*(c) and T?*Y(c) = T" Y(c), then T*(c) # ¢ for all k > 1.

Proof. Suppose that there is k¥ > 1 with T*(¢) = ¢. We may assume that
k is minimal with this property. Hence ¢ is a periodic point of period £,
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and therefore also T""!(c) is a periodic point of period k. As T"(T""(c)) =
T""1(c) we obtain n = dk for some d > 1. This implies T?"(c) = T"(T"(c)) =
T™(T%(c)) = T"(c) contradicting the assumption 7" (c) # T*"(c). O

Proposition 3. Assume that T is a unimodal transformation with generating
partition and that T has q > 2 fundamental sets Ky 2 Ky 2 -+ 2 K, such
that T(0K,) C 0K, holds. Then the map w:U — C is not continuous at T

Proof. We have K, = UJj_, I; for some n, where I; = [T7(c), T"*/(c)]. By
Lemma B and its proof the intervals I; are pairwise disjoint and 7""!(c) =
Tt (c) < T(c). Set a := T""'(c) and b := T(c). For 1 < j < n—1 the
interval /; is mapped monotonically to /;,; under 7T". The interval I,, contains
the critical point ¢ in its interior and each of the intervals I := [T"(c), c]
and I7 := [c,T%"(c)] is mapped monotonically to I;. Therefore the interval
I, = [a, b] is invariant under 7™ with 7" (a) = T™(b) = a and there is d € (a, b)
with T"(d) = b, such that T™ is strictly increasing on [a,d] and strictly
decreasing on [d, b]. There is a unique p € (d,b) which is fixed under T".

By Lemma Pl and Lemma Bl the critical point ¢ is not periodic, hence a
cannot be an inverse image of ¢. This implies that there is an open inter-
val U = (a — v,a) with v > 0 such that T™ is strictly increasing on U and
U N K, is empty. Since Z is a generator we have |T"(z) — a| > |z — al for
all z € U. As w(T) \ K, is finite or a Cantor set there is an open inter-
val J C U with J Nw(T) = (). Because Z is a generator the inverse images
of p are dense. Therefore there is y € J with 7™ (y) = p for some m > 1. In
particular § := d(w(T), {y}) satisfies § > 0.

Let € > 0 be arbitrary. Define A := {T7(c) : 0 < j < 2n} U {TV(y) :
J > 0}. This is a finite set, which does not contain T?"(c). Hence there
exists an open interval V with 7?"(c) € V and VN A = (. Let S be a
unimodal transformation with S(z) = T'(z) for all z € [0, 1]\ V, o(S,T) < &,
and |S™(z) — a|] > |z — a| for all z € U U {a}. Choose v > 1 minimal with
|S""(a) — a|] > |y — a|. For a € [0,1] set T, :== aS + (1 — «)T. Then also T,
is a unimodal transformation with o(7,,7T) < €. As the map a — T,""(a) is
continuous there exists a € [0,1] with 7,""(a) = y.

It is obvious that ¢ is also the critical point of T,,. As ¢, T(c),...,T"(c) €
A we get T," ™ (¢) = T"*'(c) = a. Therefore y = T,""(a) = T,"" "' (c) is in
the T,-orbit of c. Since also the T-orbit of y is in A, we get T, """ *1(¢) =
T."(y) = T™(y) = p. This means that the orbit of the critical point ¢ of T,
is finite and therefore T, has finitely many fundamental sets. Let L be the
last one, which contains w(c). We do not know whether T, has a generating
partition. There may be atomic intervals, which are open intervals I such
that ¢ ¢ T*(I) for all k > 0. The structure theorem can be applied to T,
considering atomic intervals as single points (see Theorem 11 in [5]]). Hence
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all points in L which do not lie in the closure of an atomic interval, are
contained in w(7T},). In particular, if y = T,,*"*"™(c), which is in L, is not in
the closure of an atomic interval, we have y € w(7,) and d(w(T,),w(T)) > 6
is shown.

Now it remains to show that g is not in the closure of an atomic interval.
To this end suppose that I is an atomic interval with y € I. Then J :=
T,™(I) is also an atomic interval with p € J. We have TV 1(p) € I; for 1 <
j <n-—1and T" '(p) € I, since b and p are on the same side of d.
By the choice of the set A and the definition of S, the transformations T
and T, coincide on the intervals Iy, Iy, ..., I, 1,1, . Since T,’(J) does not
contain the critical point ¢ and has T(p) in its closure for j > 1, we get
TrRY(J) = T,"*'(J) C I, for k > 1 and T™+-1(J) = T,"*(J) C I,
for kK > 0 and 1 < 7 < n. This shows that [ is also an atomic interval for
the transformation 7" contradicting the assumption that 7" has a generating
partition. ]

5. Conditions for the continuity

Conditions for stable and unstable behaviour of the w-limit set of a uni-
modal transformation have been found in the previous two sections. We
have seen that stability depends on properties of the boundary of fundamen-
tal sets. In this section we give conditions for stability in terms of the orbit
of the critical point.

Proposition 4. Let T : [0,1] — [0,1] be a unimodal transformation with
generating partition. Then the following properties are equivalent.

(a) The map T has q > 2 fundamental sets K, ; Ky 2 ; K, and
T(9K,) C OK,.

(b) There is n, such that Ti(¢) ~ T™(c) holds for 1 < j < n —1 and
T (c) is a periodic point of period n, but T"(c) # T**(c).

(c) There exists m > 1 such that r; = Sy, for all j > m and rp, < Sp_1.

Proof. Suppose that (a) holds. By the definition of the fundamental set K,
there is n with T (c) ~ T7(c) for 1 < j <n —1 and T"(c) # T**(c). Fur-
thermore 72" (¢) = T"*!(c) or T*"*!(c) = T(c), since we assume T(0K,) C
OK,. As the unique pre-image of T'(¢) is ¢, the latter case implies 7%"(c) = ¢
contradicting T"(c) # T**(c). Hence T?"*1(c) = T™"1(c), which says that
T"*1(c) is a periodic point. Let k be its period. Then n = dk for some
d € N and T"(¢) = T™**1(c). Suppose that d > 2. We have then
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[T (c), T(c)] C K, and [T"*(c), T*"(c)] C K,. Since T(0K,) C 0K,
we get that 77(c) is on the boundary of K, for j > 1. This is only possi-
ble, if T**1(c) = T(c). Since c is the only inverse image of T'(c), this gives
T*(c) = ¢, contradicting Lemma Bl Hence d = 1 and (b) is shown.

Next we assume that (b) holds. Since T?*"*1(c) = T""!(c), we get that
the points T?*"(c) and T"(c) are inverse images of the same point. As they
are not equal, they have to be on different sides of ¢, which gives €], = ey,.
Furthermore, we assume 7" % (c) ~ T7(c) for 1 < j < n—1. Lemma B implies
that T*(c) # ¢ for all k > 1. Tt follows from the definitions in Section B that
entj = €; holds for 1 < j <n — 1. Together this gives

!
€n+1€n+2 ... €2p—1€2p = €1€2...€H_1€, .

Hence ejes...e,_1€], occurs in ejeses . .. and is therefore an admissible word
in the shift space conjugate to T. By Lemma 1 in [3] we get n = S, for
some m (we have S; < oo for all j, since T*(c) # ¢ for all k > 1). Now we
have

€S, +1€8,+2 - - - €25, _1€25,, — €1€3 .. -6Sm—leigm )

which, by the definition of the numbers 7;, gives 1,41 = S,,. Since T +1(c)
has period S,,, we get also

/
ChSmA1CkSm+2 + - €(k+1)Sm—1€(k+1)Sm = €1€2 - ..€5, 1€ for k> 2,

implying 7,4 = Sp, for £ > 2. It is not possible, that r,,, > S,,_1, since
Tm < Sm by definition and r,, = S; for some j by Lemma 1 in [3]. In order
to show r,, < S,,_1, suppose that r,, = S,,_1 holds. By definition of r,, we
get

€1 +1€S o142 - - - €5, —1€5,, = €1€3...€5, _ _1€5 .

This implies that the word ejes. .. esm_le’sm has identical first and second
n

halves. Tt follows that the sequence es  ii€s,,42... has period S, = 3.
As Z is a generator, this means that T"*!(c) = T""!(c) has also period %,
contradicting (b). Therefore r,, < S,,—1 is shown and the proof of (c) is
finished.

Suppose that (c) holds. It follows, that the subset & = {Js,,, Js,.,,,---}
of the Markov diagram D is a closed set, and that £ has no strict subset,
which is closed. By the results described in Section B this implies that there
are finitely many fundamental sets, and the last one, which corresponds to
£, is Ky = U, [T (c), TV (c)] with n = S,

By (c) and the definition of the numbers 7;, we get T+ (c) ~ T?"*!(¢) for
all [ > 1, which implies T"*'(c) = T***!(c), since Z is a generator. Again
by (c¢) and the definition of 7,1, we get T"(c) # T*(c), which implies
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T"(c) # T?"(c). Suppose that T"*1(c) has period k, with n = dk. If d > 3,
then T"*(c) = TmtEl(c) = T 25+1(¢) are endpoints of three different
intervals in the union defining K,. One of these intervals must then be
contained in another one, which contradicts the disjointness of the interiors of
these intervals. Hence d = 2 and n = 2k. Then the sequence eg_i1€5, 12 - -
has period k, implying that the first and second halves of eg_ 1€, 42 ... €35,
are the same. Because of eje, . .. esm_lefgm = €g,,+1€5,,+2 - - - €25, —1€323,, this
gives e1€y...€5 1€, = €x11€542-..Cs, 1€s, . Now it follows that k = S, ;
and that r,, = S,,_1 using Lemma 1 in [3]. This contradicts (c¢). Hence it is
shown that T""!(c) is a periodic point of period n.

Since T"(c) is not periodic, also T7(c) is not periodic for j < n. This
implies that T!(c) # T7(c) holds for 1 <1 < j < n. Therefore we get that the
points T'(c), T?(c), ..., T?"(c) are all different and form the boundary of K.
Because of T*"*!(c) = T""!(c), we get T(0K,) C 0K,. This completes the
proof of (a). O

Now we are able to prove the main result of this paper.

Theorem 2. Let T : [0,1] — [0, 1] be a unimodal transformation with critical
point c¢. Suppose that T" has a generating partition. Then the map w : U — C
is mot continuous at T if and only if there is n, such that TI(c) ~ T""(c)
holds for 1 < j < mn — 1 and T"'(c) is a periodic point of period n, but

T"(c) # T*(c).

Proof. As T has a generating partition, every periodic point x ¢ {T7(c) :
j > 0} is transversal. Hence the condition in Theorem [0 is satisfied, if ¢
is not periodic. If ¢ is periodic, then Proposition [[l implies that there are
only finitely many fundamental sets Ky 2 Ky 2 -++ 2 K, the orbit of ¢ is
contained in K,, and K, is a finite union of intervals. By [7] the periodic
points are dense in w(7'). Hence ¢ is not separated from periodic points of
different period, and also in this case the condition in Theorem [ is satisfied.
Therefore lower semicontinuity follows from Theorem [0 and it remains to
investigate the upper semicontinuity.

By Proposition @l the condition in the theorem implies that 7" has ¢ > 2
fundamental sets I ; Ky 2 ; K, and T(0K,) C 0K,. Proposition
implies then that the map w is not continuous at 7.

Using again Proposition @] if the condition in the theorem is not satisfied,
then T has either infinitely many fundamental sets or ¢ > 1 fundamental
sets [T%(c),T(c)] = K1 2 Ko 2 -+ 2 K, such that ¢ = 1 or 0K, is not
invariant under T'. In the second case, by Proposition Bl there is 6 > 0 such
that every unimodal transformation S with o(S,T) < ¢ has fundamental
sets [S?(¢),S(¢)] = Ly 2 Ly 2 Ly 2 --- 2 L, satisfying Bg(L;, Lj41) C



16 FRANZ HOFBAUER AND PETER RAITH

U.(Br(Kj,Kj41)) for 1 < j < ¢—1and L, C U.(K,). By Proposition [l
we have w(S) C Ly U U2} Bs(L;, Ljy1), which gives w(S) C U.(w(T)).
Therefore, upper semicontinuity of w at 7" is shown.

It remains to show upper semicontinuity of w at T, if T' has infinitely
many fundamental sets K;. Fix ¢ > 0. There is r such that every in-
terval of which K, consists has length at most 5. Since every such inter-
val has nonempty intersection with w(T') we have K, C U.2(w(T)). Fur-
thermore, 0K, cannot be invariant under 7', because otherwise the critical
point would be eventually periodic and its orbit could not form the bound-
aries of infinitely many fundamental sets. Again by Proposition £ we find
d > 0 such that every unimodal transformation S with o(S,7") < 0 has
fundamental sets [S*(c),S(c)] = L1 2 Ly 2 Ly 2 --+ 2 L, satistying
Bs(Lj,Lj+1) Q UE(BT(KJ‘,KJ‘+1)) for 1 S ] S r — 1 and Lr Q UE/Q(KT)-
By Proposition [[l we have w(S) C L, U U;;} Bs(Lj, L;j+1) and we get again
w(S) € U.(w(T)). This means that upper semicontinuity of w at T is
shown. O

We can apply Theorem [ to unimodal transformations with negative
Schwarzian derivative. It is well known (see [2]) that a unimodal transforma-
tions T with negative Schwarzian derivative has either a generating partition
or the orbit of the critical point is attracted by a periodic orbit. In the first
case we can apply Theorem

Therefore, suppose that the orbit of the critical point is attracted by the
periodic orbit of a point x, which has period k. There are disjoint closed
intervals Io, Iy, ..., Iy 1 with T9(x) € I, for 0 < j < k — 1 such that T'(I;) C
It for 0 < j <k —1 (setting I; = Iy) and these intervals are attracted by
the periodic orbit of x. There are two cases. Either the periodic point z is
attracting on both sides or it is attracting on one side and repelling on the
other side.

If z is attracting on both sides, then we have the same situation as in
Proposition £ replacing the last fundamental set K, by Uf;é I;. Since the
periodic orbit of x and the intervals Iy, I,..., ;1 are stable under small
perturbations, similar methods as in Section Bl show that the map w is con-
tinuous at 7.

Finally consider the case that x is attracting on one side and repelling
on the other side. Then the periodic orbit of z is on the boundary of the
intervals Iy, I, ..., I;_1 with the attracting side inside these intervals. The
same method of proof as used for Proposition B, where x plays the role of the
periodic point p in that proof, shows then that the map w is not continuous
at T'.
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