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The space of w-limit sets of
piecewise continuous maps of the interval

FrRANZ HOFBAUER, PETER RAITH AND JAROSLAV SMITAL

Abstract. According to a well-known result the collection of all w-limit sets
of a continuous map of the interval equipped with the Hausdorff metric is a
compact metric space. In this paper a similar result is proved for piecewise
continuous maps with finitely many points of discontinuity, if the points of
discontinuity are not periodic for any variant of the map. A variant of f is
a map ¢ coinciding with f at any point of continuity and being continuous
from one side at any point of discontinuity. It is also shown that w-limit sets
of these maps are locally saturating, another property known for continuous
maps. However, contrary to the situation for continuous maps, there are
piecewise continuous maps having locally saturating sets which are not w-
limit sets. A condition implying that a locally saturating set is an w-limit
set is presented.

1. Introduction

In [3] it is proved that, for an f in the class C of continuous maps of the
interval I = [0, 1], the space H(f) of w-limit sets of f equipped with the
Hausdorff metric pg is a compact metric space. An analogous result is not
true for continuous maps of the square, even for the special class of triangular
(or, skew-product) maps (z,y) — (f(z),9(z,y)) (see [6]). However, as we
show in this paper, a similar theorem holds in some classes of piecewise
continuous maps of the interval.

The topological structure of the w-limit set and of the space of w-limit
sets of continuous interval maps has been investigated in several papers, e.g.
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in [2] and [T4]. It is also treated in some textbooks, e.g. in [I], [4] and [,
where one can find further literature on this subject.

We say that a function f : I — I is piecewise continuous if there are
points 0 < ¢; < ¢3 < --- < ¢ < 1 such that f is discontinuous at any ¢;,
continuous at any x # ¢;, and has both one-sided limits at any ¢;. Moreover
we assume that f is continuous from one side at any discontinuity point c;.
Let O(f) = UL, U;Zo f /(i) \ {0,1} be the union of all f-preimages of
the discontinuity points (except 0 and 1). We denote by P the class of all
maps f : I — I which are piecewise continuous and such that f~%(c;) is
finite, for any ¢ and j.

Special cases of these piecewise continuous maps are the well known piece-
wise monotone maps. Piecewise monotone maps are investigated e.g. in [§],
[9], [10], [TT] and [T2].

For any f € P with discontinuity points ¢y, co, ..., ¢, let E(f) be the
collection of the 2 functions obtained from f by changing its values at dis-
continuity points but keeping the condition that the map must be continuous
at any discontinuity point from one side. Denote by Py the class of all f € P
such that no discontinuity point of f is a periodic point of a map in £(f).
Finally, let P; be the class of all maps f € P such that if a discontinuity
point ¢ of f is periodic with respect to a g € E(f), with period m > 1 then,
for a sufficiently small ¢ > 0, and for G4 = (¢,c+¢), G_ = (¢ — ¢,¢), the
condition f™(G4y)NG_ =0 and f™(G_-) N G4 = () holds.

Given x € I, the w-limit set ws(z) of 2 with respect to the map f is the
set of all limit points of the sequence {f"(z)}>>,. We call a set A C I an
w-limit set of f, if there is an x € I with A = wy(x).

The following results are the main results of this paper.

Theorem 1. If f € Py then (H(f), pg) is a compact metric space.

Theorem 2. Let f € Py, and let w, € H(f), forn > 1. If lim, oo w, = w
in the Hausdorff metric then w € H(g), for some g € E(f).

Remark 1. Theorem [ is not true for arbitrary f € P. To see this let f € P,
f(x) :=2+3if0 <z < 3, and f(z) := x— 3 otherwise. This map is shown in
Figure[l Then f ¢ Py and, for any n > 2, w, := {3 — 1,1 — 1} is an w-limit
set of f consisting of a periodic orbit of period 2, while lim,,_,, w, = {%, 1} is
not invariant, and wy(1) = wy(1) = {0, 3}. On the other hand, f € Py, hence
Theorem B is true for this f. Since f ¢ Py we get that Py C Py are different
sets. It is easy to see that P; is a proper subset of P, cf. also Remarks

and @l

In order to describe w-limit sets a technical condition has been introduced
in [3]. We call this condition “locally saturating”. Note that the property
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1 1
0 0

0 0.5 1 0 1
Figure 1: The map f defined in Figure 2: The map f defined in
Remark [ Remark

called “locally saturating” in this paper is called “locally expanding” in [3].
Roughly spoken, a compact set A is called locally saturating, if for any
neighbourhood U of A and for any x € A there is a side T' (where T stands
for “left” or “right”) such that for any T-neighbourhood V' of x the union
U, (fu)" (V) contains a finite union J of intervals with A € J, where
(fr)" (V) denotes the set of all f*(z) with x € V and f/(x) € U for all j €
{1,2,...,n}. The exact definition of this notion will be given in Section Hl
Because of the discontinuities of the map it is necessary to modify the original
definition from [3]. For continuous maps it has been shown in [3] that a
compact set is locally saturating if and only if it is an w-limit set. In our case
one implication, namely every w-limit set is locally saturating, still holds,
while the reverse implication is not true in general. For piecewise monotone
maps we present a condition on compact sets ensuring that locally saturating
sets are w-limit sets.

The paper is organized as follows. In Section Pl we introduce the main
tools for our investigation, and present the proofs of Theorem [[l and The-
orem A certain condition equivalent to the compactness of the space of
w-limit sets is investigated in Section Bl The counterexamples presented in
Section Pl indicate that it is not easy to find nicer equivalent conditions.
Finally, in Section ] we consider connections between local saturation and
w-limit sets.
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2. Compactness of the space of w-limit sets

This section is devoted to the proof of Theorems [[l and Bl In the proof
we will use several lemmas. Before stating them we introduce further termi-
nology and notation.

Assume that f € P, with discontinuity points ¢; < ¢g < -+ < ¢j. Assign
to any x € C(f) a compact interval I, = [x_,z,] C (0,1) of positive length
such that »_ o [L:| < 1, where |J| denotes the length of the interval .J.
Moreover, we choose these intervals I, such that they are pairwise disjoint
and I, < I, for x < y, where A < B for sets A, B C R means that a < b
for all @ € A and all b € B. Let 7 be an order-preserving set-valued map
from I onto I (this means 7 is a map from I to the family of all subsets
of I satisfying that z < y implies 7(x) < 7(y) and |J,.; 7(x) = I) such that
7(z) = I, if x € C(f), and 7(x) is a singleton otherwise. Then 77! can
be considered as an element of C. More exactly, there exists an increasing
function ¢ € C satisfying ¢! ({2}) = 7(z) for all z € I. Denote

(1) Xe=T\ |J (@ zy) and Xo:=T\ |J L.

zeC(f) z€C(f)

Observe that QD‘XO : Xo = (I\ C(f)) is bijective.

Now we describe two “canonical” extensions f* and fof f which will be
useful in the sequel. The map f will be in C, i.e. a continuous map I — I,
whereas f* = f‘x for a certain subset X of I (X may be a Cantor set). Using
a similar construction Arnaud Denjoy gave examples of diffeomorphisms with
wandering intervals in [5].

Since go‘XO is a continuous bijection onto I\ C'(f) we can define

(2) f(z):= 90_1 ofop(r) ifzxe X
is conjugate to f‘l\c(f since both

Therefore f* ‘ X ‘ Xo )

w‘XU and go_l‘l\c(f) are continuous. For z € C(f) (note that x_ and x are
in X\ Xo) set

is continuous, and f*

ff(z):= lim f*(y) and
(3) yeXO::’/_HC*
Pl = dm f).
ye 0, YT+

By @) and @), f* : X — X is a continuous map on the compact metric
space X C I, where X is equipped with the relative topology.
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Observe that the map f* is conjugate to the map obtained from f by
a standard doubling points construction (see e.g. [T15] or [I3]| for details).
Therefore one may consider f* as the map fconsidered e.g. in [13].

Next we extend f* to a map f € C in such a way that, for any interval
(a_,ay) complementary to X, we let f(z) := f*(a_) ifa_ <z < a_ +3(ay—
a_), f(z) == f*(ay) if ay — s(ay —a-) <z < ay, and we let J be linear
otherwise. Then

(4) po f(x)= fop(x) if p(x) ¢ {c1,ca,...,ck}, and
) fee({(a)(a)}) e pof({le),(ci)+}), for1<i<k
Thus, in this sense, the map fis semiconjugate to f via ¢.

An example for this construction is shown in Figures Bl and Bl Figure
shows the original map f while Figure @lshows the map f constructed from f.

1 1
0 0

0 (o] 1 0 Cc_ C. 1
Figure 3: A map f € P. In Figure 4: The map f con-
FigureHthe map f is constructed structed from the map f shown
from f. in Figure

Lemma 1. Suppose that f € P. Then the following properties hold.

(1) Assume that x € I is such that that there is an N € N such that f"(x) ¢
{c1,¢9,... ¢} for allm > N. Then there exists an w* € H(f*) such that

wr(z) = p(w").

(2) If x € X is such that that there is an N € N such that f*"(x) € X, for
alln > N, then ¢(wp-(x)) € H(f).
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Proof. First we prove (1). As wy(f"(z)) = wy(z) for any n we may assume
that f"(v) € {c1,¢2,..., e} for all n > 0. Then the trajectory {z;}3,
(z; == fi(x)) of x is disjoint from C(f). Since go‘X : Xo = (I\ C(f))
is bijective, {p~'(z;)}5%, is an f*-trajectory contained in X, by (). Set
w* = ws(¢7'(z)). Then by the continuity of ¢ and by () we obtain
p(w) = wy(2).

In order to prove (2) we may assume that f*"(z) € Xq for all n > 0,
as wy- (f*"(z)) = wy-(z). Again by the continuity of ¢ and by ) we get
¢(wp(2)) = wy(p(x)). This shows that o(wy-(z)) € H(f). O

Lemma 2. If f € Py then o(H(f*)) = H(f).

Proof. Assume that w = wy(z) for some € I. Since f € P, every tra-
jectory contains at most finitely many discontinuity points. Hence f"(z) ¢
{e1,¢9,..., ¢} for all sufficiently large n. Then w € @(H(f*)) by (1) of
Lemma [Tl

Now suppose that w* € H(f*). Then w* = w(y) for some y € X.
If f*"(y) ¢ Xy for infinitely many n then there is a ¢ € {¢; ,c14,..., ¢,
crt} such that ¢ is f*-periodic and w* = {c, f*(c),..., f*" '(c)}, where
m denotes the period of c¢. Suppose that w* contains both d_ and d, for
some discontinuity point d. By the finiteness of w* we may assume that
c € {d_,d.}, 0 <1 < missuch that f*(c) € {d_,d,}, and there are no
discontinuity points ¢; such that {f*(c), f**(c), ..., f*!(c)} contains both ¢;_
and ¢;;. Defining g(p(f*(c))) = @(f7"(c)) for 0 < j < I, and g(z) :=
f(x) otherwise, we obtain a map g € £(f) satisfying ¢'(¢(c)) = o(f*(c)).
Since ¢(c) = ¢(f*'(c)) = d this gives g'(d) = d, which contradicts f € Py.
Hence there are no discontinuity points d such that w* contains both d_
and dy. Define g : I — I by g(p(z)) := ¢(f*(z)) for 2 € w*, and g(z) =
f(z) otherwise. Then g € £(f) and ¢™(¢(c)) = ¢(f*"(c)) = ¢(c), again
contradicting the fact f € Py.

Therefore f*"(y) € X, for all sufficiently large n. By (2) of Lemma [[l we
obtain ¢(w*) € H(f). O

The next result shows that for the map obtained from f using a dou-
bling points construction the collection of all w-limit sets equipped with the
Hausdorff metric is compact.

Proposition 1. If f € P then (H(f*), py) is a compact metric space.

Proof. Let w} := wy~(z,) be an w-limit set of f*, generated by a point z, € X,
n > 1, and assume that the sequence {w}2° , converges in the Hausdorﬁ
metric to a set w*. Since f‘x = f*, any w; is an w-limit set of the map f eC.
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Hence by [B] we obtain w* = w(z) for some 2 € I. But then the trajectory

{/™(2)}22, of z is eventually in X. Indeed, if f(z) ¢ X for infinitely many n
then, for some ¢ := ¢;, the trajectory of z enters the interior (c¢_,c,) of the
critical interval I, infinitely many times. As f‘ , has values in X, except

for the middle third, and X is f—invariant, the trajectory enters the middle
third J. of I, infinitely many times. Consequently, w* must have a point in .J.,
contrary to the fact that dist(w},.J.) > 3(cy —c_). Hence f"(z) € X for
some 7. Since w(2) = wf(f”(z)), X is closed and f-invariant, and f‘x = f*,
we obtain w* = wp- (f"(2)). O

Now we are able to prove Theorem [l

Proof of Theorem [l Let w,, := ws(z,), n > 1. By Lemma B there are sets
wi = wyp(yn), n > 1, such that ¢(w}) = wy, for any n. Now Proposi-
tion [l implies that there is an w* € H(f*) and a subsequence {w;, }32, with
limy o0 wy;, = w* with respect to py. Hence w := ¢(w*) € H(f) by LemmaPl

By the continuity of ¢, limg_,ec prr(wn,,w) = 0. O
Lemma 3. If f € Py then o(H(f*)) C U,ee(r) H(9)-

Proof. Let w* = wy-(x), for some x € X. If the trajectory of z eventually is
disjoint from the critical set {¢;_, c14, ..., ¢k, cxy } then by (2) of Lemma [Tl
we obtain that ¢(w*) € H(f). Otherwise the trajectory contains a discon-
tinuity point, say, ¢ := ¢;; at least twice. Then c is f*-periodic with some
period p > 0 and the trajectory consists of finitely many elements. So assume
that the trajectory passes periodically through the discontinuity points

(6) Ci(1)s(1)> Ci(2)s(2)s - - - » Ci(m)s(m) »  Where 1 <m < 2k, and s(j) € {+, -},

and that it contains no other discontinuity points. Since f € Py, the sequence
{cig)s(} in (@) contains at most one element from any pair ¢,—, ¢g4. Define
g € E(f) by gleiy) = @(f*(cigysz) for 1 < j < m, and g(z) = f(z)
otherwise. Then obviously w,(c;) = ¢(w*). O

We like to give some remarks concerning Lemma Bl At first we will give
an example of an f € P; showing that the reverse inclusion in the conclusion
of Lemma Blis not true in general. The second example will be an f € P\ P,
such that the conclusion of Lemma Bl and Theorem Bl holds. In our third
example we will consider again a map f € P\ P;, but in this example the
conclusion of Lemma Bl and Theorem Bl does not hold.
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Remark 2. In general e H(9) € @(H(f*)) does not hold for maps f
in P; (i.e. the reverse of Lemma Bl does not hold). Now we give an example
of an f € Py with an w € H(f) such that w ¢ @(H(f*)). Set

41, forxzel0,1],
f(z) = %—I—i, for v € (%,%),
5 forxe[%,l].
The map f is shown in Figure I One easily checks that f € P;. For
the map f* we have f*(X) C §+ 2 ] (we also get f(I) C %Jr,%i]). As
lim, o f"(z) = for all x € (% %) {(p (f* (%Jr)) , (f* (%_))} C
(3, 3) this 1mp11es e(H(f*) = {%} On the other hand B := {%, %} is a
periodic orbit of f. Therefore B € H(f), but B ¢ o(H(f*)).

Remark 3. We have P\ P; # (). To see this consider the map f defined by

0
1—z, forze|0,3),

" =11 )
T— 3, for:ve[i,l].

This map is shown in Figure[l Then f € P, and f has a unique discontinuity

point ¢ = =. For any ¢§ € ( , 2) we obtain

(8) (0—5,0)r—>(c,c+5)r—>(0,5)r—>(1—5,1)r—>(c—(5,0).

In fact, every = € [0, 1]\ {0, ¢, 1, i, %} is a point of period 4 for f, and for the
map f* every x € X \ {z1,22} is a point of period 4, where z; and z, are
the points of period 2 of f* corresponding to i and %. In this example we
have 9(H(f*)) C U, ce(s) H(9), hence the conclusion of Lemma B holds also
for this example (therefore by Lemma M also the conclusion of Theorem

holds).

Remark 4. Next we like to give an example showing that Lemma Bl does not
hold in general for maps in P\P;. To this end define the map f : [0,1] — [0, 1]
by

1—z, forxe [0’%)’
r— 1 for:EG[1 §]
9 = ° s 107
() f(.’]?) %_x7 for x € [%7%}’
r—2, forze[41].

This map f is shown in Figure Observe that the set A := [O, 112]

[, 21U [2,3] U (4, 1] is invariant, and f3([0,1]) C A. Moreover, note that
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1 1
0 0

0 0.5 1 0 c 1
Figure 5: The map f defined in Figure 6: The map f defined in
Remark Remark E

every x € A\ {O, %, %, 1} is a point of period 5 for f. In fact, f3(z) is a point
of period 5 for every = € [0, 1]\ F', where F is finite (F consists only of points
of the form 1’“—2 for some k£ € {0,1,2,...,12}). Obviously f € P and f has a
unique discontinuity point ¢ = % Then we obtain that for any x € X the
point f**(x) is a point of period 5 for f*. In particular we have

2
(10) =3 ey 0 1o
+

We have £(f) = {f, g}, where g is the map coinciding with f on [0, 1]\ {c}
and satisfying g(c) = 2. Then we obtain the orbits

c—0—1—c for f, and

(11)

2
cr—>§r—>c for g.

Hence {0, ¢, 1} is an w-limit set for f. On the other hand, every w-limit set w*
of f* satisfying ¢ € ¢(w*) has to contain 0, ¢, % and 1 by (). This shows that
{0,¢,1} € H(f), but {0,¢,1} ¢ @(H(f*)). Furthermore, by () we obtain

{0, c ,Cq, §+, 1} is an w-limit set for f*, hence B := {O, c, %, 1} € p(H(f")).
By () B is neither an w-limit set for f nor an w-limit set for g. Therefore
B € o(H(f")), but B ¢ Uy H(R). For n > 12 one easily checks that

W 1= {5, C— %,c—k %, % + %, 1— %} is an w-limit set for f (as it is an orbit
of period 5). Obviously lim,_, w, = B in the Hausdorff metric. Since B is
neither an w-limit set for f nor an w-limit set for g we get that the conclusion

of Theorem [ does not hold for f.
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Lemma 4. Let f € P and suppose that o(H(f*)) C U, ce(s) H(9). Moreover,
assume that {w, }22, is a sequence in H(f), and that lim, o w, = w in the
Hausdorff metric. Then w € H(g) for some g € E(f).

Proof. Asw, € H(f) thereisan z, € I withw, = wy(x,). At first we assume
that there is an N such that for every n > N there exists a J,, with f7(z,) ¢
{c1,¢9,...,¢} for every j > J,. Then by (1) of Lemma [ for every n > N
there is an w} € H(f*) with w, = ¢(w}). Now Proposition [ implies the
existence of a subsequence {w;, }32; and an w* € H(f*) with w; — w* in
the Hausdorff metric. Since ¢ is continuous we get w,; = ¢(w;, ) = o(w*),
and therefore p(w*) = w. By our assumption this implies w € H(g) for
some g € E(f).

It remains to consider the case that for infinitely many n there are in-
finitely many j with f/(z,) € {c1,ca,...,cx}. In this case there is a discon-
tinuity point ¢ and an infinite set K C N, such that for all n € K there are
infinitely many j with f/(z,) = ¢. Then c is a periodic point of f, w(c) is
the periodic orbit containing ¢, and w, = ws(z,) = ws(c) for all n € K. As
w, — w in the Hausdorff metric, and there is subsequence equal to wy(c) we
obtain w = w¢(c). Therefore w € H(f) (obviously f € £(f)). 0O

Observe that in order to check that the assumption of Lemma @ is sat-
isfied, by (2) of Lemma [0 it suffices to prove that for every periodic orbit w
of f* with ¢(w) containing a discontinuity point the set ¢(w) is contained
in H(g) for some g € E(f).

Now we are able to prove Theorem

Proof of Theorem Bl As f € Py Lemma Bl gives ¢(H(f*)) C U,ee(p) H(9)-
By Lemma H this implies the desired result. O

3. A condition equivalent to “compactness”

By Theorem B the space H(f) has a certain “compactness property”; if
f € P;. However, in Remark B we have seen an example of an f € P\ P; such
that the conclusion of Theorem B holds also for this example. In Lemma @l
a condition implying the conclusion of Theorem Pl is given. Modifying the
example given in Remark flwe can find an example such that the assumption
of Lemma @l does not hold, but the conclusion of Theorem B holds (another
example with these properties is the example given in Remark Bl in Sec-
tion @ in order to prove that the conclusion of Theorem [ holds one can use
Proposition ). The problem addressed in this section is to find a condition
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equivalent to the conclusion of Theorem Pl As mentioned above this condi-
tion cannot be that easy. We will state it in terms of the “doubling points
construction” of f, i.e. in terms of the map f*.

Denote by P, the set of all f € P such that for every w* € H(f*)
satisfying ¢; € ¢(w*) for some discontinuity point ¢; of f and {w*} is not
isolated in H(f*) there exists a ¢ € £(f) with ¢(w*) € H(g). Finally, let
P3 be the collection of all f € P such that w = lim,,_,,, w, in the Hausdorff
metric for a sequence w, € H(f) implies the existence of a g € £(f) with
w € H(g). This means P3 consists of exactly those f € P satisfying the
conclusion of Theorem

Proposition 2. Let f € P. Then f € Py if and only if f € Ps.

Proof. Assume that f € P,. Suppose that w = lim,,_,,, w, in the Hausdorff
metric for a sequence w, € H(f). Then there are z, € [0,1] with w, =
wr(zy). If fi(z,) € {e1,¢,..., ¢} for infinitely many j > 0 then there

is a d, € {c1,¢2,...,c,} which is f-periodic and w, = wf(d,). First we
assume that there are infinitely many n with w, = w(d,) for some d, €
{c1,¢9,...,ck}. In this case there is a ¢ € {¢1,¢9,...,¢,} with d,, = ¢ for

infinitely many n. Hence w = wy(c) € H(f) (obviously f € £(f)).

Otherwise there is an N such that for all n > N there is a K, with
fi(z,) ¢ {c1,co,...,cp} for all j > K,,. For n > N there is an w’ € H(f*)
with w, = ¢(w}) by (1) of Lemma [l By Proposition [ there exists an
w* € H(f*) and a subsequence w;, converging to w* in the Hausdorff metric.
There is an x € [0, 1] with w* = wy-(x). Moreover, the continuity of ¢ implies
that w = p(w*). If f*/(x) € X, for all sufficiently large 7, then (2) of Lemmalll
gives that w € H(f). Otherwise there is a ¢ € {¢y, o, ..., ¢} such that ¢ is
f*-periodic and w* = wy-(c_), or ¢, is f*-periodic and w* = wy-(cy). Then
c € p(w*). If {w*} is isolated in H(f*), then w; = w* for all sufficiently
large k, and therefore w = w,, € H(f). It remains to consider the case {w*}
is not isolated in H(f*). In this case the definition of P, implies that there
isa g€ E(f) with w = p(w*) € H(g). This completes the proof of Py C Ps.

In order to show P3 C Py let f € P3. Assume that w* € H(f*)is such that
¢ € p(w*) for some discontinuity point ¢ and {w*} is not isolated in H(f*).
Since {w*} is not isolated in H(f*) there exists a sequence w; € H(f*) with
wy # w* for all n and w* = lim,,_,o, w;; in the Hausdorff metric. For every n
there is an z, € [0,1] with w? = wp-(z,). If f*(z,) ¢ X, for infinitely
many j, then thereisad, € {ci_,c14,...,cx_, cp} which is f*-periodic and
wi = wy(d,). Suppose that there are infinitely many n such that f*/(x,) ¢
Xy for infinitely many j. Then there is a d € {ci_,c14,...,ck_, ¢k} with
d, = d for infinitely many n. This implies w} = w;-(d) for infinitely many n,
and therefore w* = wy-(d) contradicting the fact w; # w* for all n.
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Hence there is an N such that for all n > N there exists a K, with
f(z,) € Xg for all j > K,. By (2) of Lemma [ we obtain for n > N
that ¢(w)) € H(f). The continuity of ¢ gives ¢(w*) = lim,,_,o ¢(w};) in the
Hausdorff metric. As f € Ps there exists a g € £(f) with p(w*) € H(g),
completing the proof. O

4. Characterization of w-limit sets

In this section we will show that an w-limit set of an f € P is locally
saturating. The converse implication is not true in general. However, we
can give a sufficient condition for locally saturating compact sets to be an
w-limit.

The notion “locally saturating” has been defined in [3] (it is called “locally
expanding” there). We recall this definition. For x € I a set V is called a
one-sided neighbourhood of x, if there is a § > 0 such that V = [z — ¢, z] (in
this case it is called a left neighbourhood) or V- =[x,z + 4] (in this case it
is called a right neighbourhood). Given a map f : I — [ and U C I with
U # 0, define fi;(B) := f (int(B)) NU U (f(B)NC(f)NU), for any B C 1.
Note that this definition is slightly different from the definition of fr; in [3],
but for continuous f and closed B both definitions coincide. For n € N
we define inductively (fy)"(B) by (fv)"(B) = fu((fu)" "(B)). A side T
(where T stands for “left” or “right”) of a point x of a compact set A C I
is called A-covering, if for any compact neighbourhood U of A and for any
T-neighbourhood V' of x there are intervals .Jy, Js, ..., J,, such that

(12) ACLURU-—UJ, and JiULU--UJ, C | Jf)"(V).
n=1

We call a compact set A locally saturating if any point of A has an A-covering
side.

Lemma 5. Suppose that f € P and assume that w is an infinite w-limit set
for f. Then there exists an w* € H(f*) such that o(w*) = w.

Proof. We have w = wy(x) for some x € I. If the trajectory of x contains
a discontinuity point twice, then this discontinuity point has to be periodic
and wy(z) has to be this periodic orbit, contradicting the fact that w is
infinite. As there are only finitely many discontinuity points this implies
that f™(x) ¢ {c1,ca,..., ¢} for all sufficiently large n. Hence (1) of Lemmall
shows that there is an w* € H(f*) with ¢(w*) = w. O
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Theorem 3. Let f € P. Then any w-limit set for f is locally saturating
for f.

Proof. Suppose that A = w;(y) is an w-limit set for f, this means A € H(f).
Assume first that A = p(A*) for some A* € H(f*). Let U =U; UU U ---U
U, be a compact neighbourhood of A which is the union of finitely many
disjoint compact intervals U;. Without loss of generality we may assume
that the set of the endpoints of these intervals U; is disjoint from C(f). For
a discontinuity point ¢ set J. := (c_ + 3(cy — c_), ¢4 — (e — c_)). Define
U* = o' (U) \ (U?Zl ch). By the continuity of ¢ we get that U* is a
compact neighbourhood of A* and ¢(U*) C U. Let V C U* be a closed
interval such that card (o(V)) > 1, if (V) N C(f) # 0. Moreover, we
assume that if there is an = € C(f) \ {c1,¢2,..., ¢} with VN (z_,zy) #0

then [z_,z,.] C V. We get

(13) (U N f(V) CUN fle(V)) ,
since for z € ©(U* N f(V)) the inclusion is satisfied by (@) in the case
x ¢ {ci,¢9,...,¢}, and it follows from our assumptions on V, if x is a

discontinuity point. If card (p(V)) = 1, then V = {z} for some z, and
o(f"(z)) ¢ C(f) for all n € N. The set U* N f(V) is always a union of
finitely many pairwise disjoint compact intervals. Let W be one of these
intervals. If card (p(V)) > 1 and card (¢(W)) =1 then (W) = {z}, where
x is an endpoint of U; for some i € {1,2,...,r}. Hence o(W)NC(f) =0
by our choice of U. Therefore (W) N C(f) # 0 implies card (p(W)) > 1.
Furthermore, if there is an € C(f) \ {c1,¢2,..., ¢} with W N (z_,24) # 0
then [x_,x,] C W. Therefore we can iterate (3, and we obtain

(14) @ (U(fu*)"(v)) < JUo)"@(v).

Now let # € A. Then there is a z € A* with ¢(z) = x. Since A* € H(f),
by Theorem 2.12 of [3] we get that A* is locally saturating. Hence z has an
A*-covering side T, say, the left side. Suppose that z € C(f) and z = x.
Choose a left neighbourhood V' of z such that V C [z — (24 — 2_),24].

Then f*(V) = {f”(z)} for all n € N, and therefore also the right side is A*-

covering. Hence we may assume that z =z, ifx € C(f). Let V = [u, z] be a
left neighbourhood of z. We may assume that u ¢ (v_, vy ) for some v € C(f),
because otherwise we can replace [u, z] by [vy,z]. As z=x_,if x € C(f) we
get that card (¢(V)) > 1, and (V) is a left neighbourhood of x. Moreover,
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by the choice of V' we obtain that v € C(f) with V' N (v_,vy) # 0 implies
[v_,v;] C V. Therefore ([ shows that the left side is A-covering. Hence A
is locally saturating for f.

Consider the case that A is infinite. Then LemmaR]shows that A = ¢(A*)
for some A* € H(f*), and therefore A is locally saturating for f. Now assume
that A is finite. If A is an f-cycle we are done since the map f is continuous
at any discontinuity point from one side and hence the A-covering sides are
the sides from which f is continuous. In the other case we may assume that
the trajectory of y is disjoint from any point in A. This implies that this
trajectory is infinite, and therefore f"(z) ¢ {c1, ¢, ..., ¢} for all sufficiently
large n. By (1) of Lemma [l we get that A = p(A*) for some A* € H(f*),
and hence A is locally saturating for f. O

Remark 5. The converse statement is far not true. To show the difficulties
consider the following example of a map f € P with unique discontinuity

point ¢ = % We let f connect linearly the points (0, %), (i,O), ((%),, 1),
((3)+,0), (2,1) and (1, 3), and we let f(3) be 0 or 1. This map f is shown
in Figure [l Then A = {(], %, 1} is locally saturating but it is an w-limit set
for no g € £(f), since the set A is locally repelling and either wy(0) = {3,1}

or wy(1) = {0,1}. Note that f ¢ Py, but f € Ps.

o L

0 c 1 0 c 1
Figure 7: The map f defined in Figure 8: The map f defined in
Remark Remark

However, we are able to prove the following weaker form of the converse
statement. We call f € P a piecewise monotone map, if there exist dy = 0 <
dy <dy <---<d; 1 <dys=1such that f‘(c_ L) is continuous and strictly

J—4%7

monotone for all j € {1,2,...,¢}. Then {c1,co,...,cx} C {dy,ds,...,dy1}.



SPACE OF w-LIMIT SETS FOR DISCONTINUOUS INTERVAL MAPS 15

An element of {dy,da, ...,d—1}\{c1,c,..., ¢} is called a turning point of f.
Denote the class of all piecewise monotone maps by M.

Theorem 4. Let f € M, and let A be a compact locally saturating set for f
such that every point in C(f) N A is accumulated from the left and from the
right by points of A. Then A is an w-limit set for f.

Proof. Define B := ¢ '(A) N X. Then B is compact, and ¢(B) = A. More-
over, either B is infinite, or ANC(f) = 0 and B = ¢~ '(A). At first we show
that B is locally saturating for f

Let U be a compact neighbourhood of B. We may assume that Uis a
finite union of pairwise disjoint closed intervals such that each of these inter-
vals has nonempty intersection with Xy. Making U a bit smaller, if necessary,
we may assume that ¢(U) does not contain discontinuity points ¢ which are
not in A. Consider an endpoint x of one of the pairwise disjoint closed inter-
vals forming U. As B = ¢ '(A) another of these intervals has an endpoint y
with ¢(y) = ¢(z), if p(z) € C(f) N A. Making U a bit smaller, if necessary,
we may assume that U is disjoint from (- + 5(uyp —u),uy — 5(uy —us)),
where u = (). If p(z) € C(f) \ A, then we can make U a bit smaller in
order to avoid ¢(z) € C(f)\ A. Therefore we may assume without loss of
generality ¢(z) ¢ C(f) \ A for every endpoint of one of the pairwise disjoint
intervals which form U. Moreover, we may assume that U is disjoint from
(- + 3(cy — ), ¢4 — 5(cy — c2)) for every discontinuity point c.

Denote by Cj the set of all u € C'(f) N A such that there is an endpoint z
of one of the intervals forming U with ¢(z) = u. Set U := o(U). Obviously
U is the union of finitely many compact intervals. By the choice of (7, we
obtain that U is a neighbourhood of any point of A = ¢(B). Moreover, again
by the choice of ﬁ, the endpoints of the pairwise disjoint intervals forming U
are not in C(f). The set ¢ '(U) \ U is the union of finitely many intervals
each of which is contained in ¢! ({u}) for some u € Cj.

Assume that V C U is a closed interval such that Card( (‘7)> > 1, if

e(V) N C(f) # 0. Moreover, we assume that if an endpoint x of V satisfies
u = p(z) € C(f) then Vﬂ(u uy) =0or [u_,uy] CVorue Gy In the

case card (@(‘7)) = 1 we get V = {2} for some z and ¢ (f"( )) ¢ C(f) for

all n € N. We have in any case that U N f(V) is a finite union of pairwise
disjoint closed intervals. Let W be one of these intervals. If card (@(V)) > 1

and card (@(W)) = 1 then (W) = {u}, where u is an endpoint of one of

the pairwise disjoint intervals forming U. This implies v ¢ C(f), and hence
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card (gp(W)) > 1, if @(W) NC(f) # 0. Suppose that u € C(f) is such that

ue p(W)NC(f), u e Co and [u_,u,] is not contained in W. Then there
is an endpoint z of W such that ©(x) = u. Since f is a piecewise monotone
map we get that z = f( ), where y is an endpoint of V or ¢(y) is a turning
point of f. In both cases we have that wn (u—suy) = (). For B C I define
fU( ) := f (int(B)) N U. By the choice of U and V we get

(15) Fo (#(1) € (Fo(7) -

Denote by Ey the set of all y such that y is an endpoint of V or o(y) is a
turning point of f or p(y) € Cy. Set C% := {gp (f"(y)) 1y € Eyyon > 0} N

c(f)-
If ¢ (f(y)) € C(f) then there is an n > 0 such that ¢ (f"(y)) is a

discontinuity point. Then y is eventually periodic, if ¢ (J?”(y)) € C(f) for
infinitely many n. Therefore Cf§ is finite. Let n € N. The above shows that

~ n ~
(fﬁ) (V) is a finite union of pairwise disjoint compact intervals. Suppose

that W is one of these intervals. Then card (@(W)) > 1, if @(W) NC(f) #

(. Furthermore u € C(f), u € w(W) NC(f), u ¢ Co and [u_,uy] is not
contained in W implies that u € Cy and W N (u_,uy) = (. From ([H) we

obtain by induction that
¢ ((fﬁ)n(v)) :

(16) (Fr)" (7))
Observe that the definition of fi and fy imply that Ure, (fo)" (@(‘7)) =

Fulse, (J}\U)" <¢(‘7)>, where F is finite. Set U, := [7\ <Uu€C"~/ (pfl{u}).
Then Uj is a finite union of intervals, since C; is finite.

Let b € B, set a := ¢(b), and let T be an A-covering side of a. Set
b:=1bifa¢ C(f), b:=ay, ifa € C(f) and T is the right side, and
b= a_, if a € C(f) and T is the left side. We show that 7" is a B-
covering side of b. Let V C U be a T-neighbourhood of b. Then V = [z, 8]
or V = [b x]. Making V a bit smaller, if necessary, we may assume that

o(z) ¢ C(f). The set V := (V) is a T-neighbourhood of a. As T is

an A-covering side of a and as |2, (fv)" (gp(f?)) \U2, (fU)n ((p(f?)) is
finite, there are intervals Jy, Js, ..., J,, such that AC J, U J,U---U J,, and
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JUJp U Uy €U, (fo)™(V). Using also (I8) we get

JUJU---UlJ, C G(fU)"(V)g

Ue () (1) = (U (5)" m) .

n=1 n=1
For j € {1,2,...,m} define j := ¢~ 1(J;) N Up. Since Uy is a finite union
of intervals we » get that J is a finite union of intervals. Therefore J :=
JyUJyU---U.J, is a finite union of intervals. Since every point in C(finA
is accEmulated from the left and from the right by points of A we get that
B CJ. Let z € J. Then o(z) € U™, (fu)"(V). If (z) ¢ C(f), then z €
U2, (fﬁ)n (V). Otherwise u := p(z) € C(f) \ C5, and by our choice of U

and V we obtain [c_, ¢,] € U, (fg)n (V). Therefore J C |J, (fﬁ)n V),

and hence the side T is a B-covering side of b.

In particular this shows that T is a B-covering side of b, if b € B\
¢~ (C(f)). Otherwise b = a; or b = a_. We consider at first the case b = a,..
Let V C U be a right neighbourhood of b. Then V := ¢(V) is a right
neighbourhood of a. Since a is accumulated from the right by points of A
there is an x € ANint(V). As x has an A-covering side T, the side T
is B-covering for Z, where ¢(z) = x, and 7 = z_, if x € C(f) and T is
the left side, and 7 = z,, if x € C(f) and T is the right side. Taking
a T-neighbourhood Vi CV of Z, there exist intervals jl, j;, cee J,n such
that (I2) holds. Hence B C jlujgu---ufm and leJng---Ujm -
Ur, (],%)n (V1) € U2, (fﬁ)n (V), showing that for b = a, the right side
is B-covering. An analogous argument shows that for b = a_ the left side is
B-covering. Hence B is locally saturating.

Since f is continuous and B is locally saturating, Theorem 2.12 of [3]
implies that B is an w-limit set for f. Hence there is an z with B = wi(zo).-

Assume that f"(zq) ¢ X, for infinitely many n. Then there is a discontinuity
point ¢ such that ¢ (f”(xo)) = ¢ for infinitely many n. As B C X, f"( 0)
cannot be in the middle third of I for infinitely many n. Therefore there is
an ng with fm(zo) € X, and hence f"(z,) € X for all n > ng, because X
is f-invariant. This implies that f™(zq) = c_ or f"(zy) = ¢, for infinitely
many n. Hence B is a periodic orbit, and A = ¢(B) is finite and contains c.
Then ¢ € C(f) N A is isolated in A both from the left and the right, which
contradicts our assumption on A. Therefore there is an N such that f"(z) €
Xp for all n > N. By (2) of Lemma[ll A = ¢(B) is an w-limit set for f. O
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Remark 6. In Theorem Hl the condition that any discontinuity point in A is
isolated in A neither from the left, nor from the right, cannot be omitted as
the following example shows. Define f :[0,1] — [0,1] by f(z) := £ + 2 for
T € [O,ﬂ, f(z) =4z — 3 for z € (l 3], f(z) == 9 — 4z for z € [3 i}

13 8 161"
f@) =4z — 9 forz € [2.3], f(z) = forz e [ 8] flz):=% -2
for x € [%, %T, and f(x) =z — i for x € [%, 1}. This map is shown in
Figure Obviously f € M, and ¢ := i is the unique discontinuity point
of f. Set

1= (G0 D) )

Note that ¢ is not isolated from the right in A. This set A cannot be an
w-limit set for f, because every orbit coming close to % is eventually constant
(since f(z) < I for all ). On the other hand, A is locally saturating. For
the point ¢ the right side is A-covering, because any right neighbourhood

of ¢ eventually covers (i, ﬂ, the image of this interval contains [0, ﬂ, and
the latter interval is mapped to [%, %] In the case of % the right side is A-

covering (using similar arguments as above). For any other point € A this
point is not isolated in A from at least one side, and this side is A-covering
(again by similar reasoning as above).

Open problems. The results given in our paper are not optimal. Actually,
it seems that more detailed analysis of the results obtained in the paper
would lead to a characterization of maps f € P for which the space H(f) of
w-limit sets equipped with the Hausdorff metric is compact. The result in
Theorem H] is the first approximation of the condition sufficient for a set to
be an w-limit set. We conjecture that the condition “no point in C'(f) N A is
isolated in A from the left or from the right” can be replaced by the weaker
condition “no discontinuity point in A is isolated in A from the left or from
the right”. To obtain this, or even a stronger result, it would be good to
follow the original argument for continuous maps given in [3].

Acknowledgement. The authors wish to thank the referee for useful com-
ments and suggestions.
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