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Stability of the distribution function

for piecewise monotonic maps on the interval

Michal Málek and Peter Raith

Abstract. For piecewise monotonic maps the notion of approximating dis-
tribution function is introduced. It is shown that for a mixing basic set it co-
incides with the usual distribution function. Moreover, it is proved that the
approximating distribution function is upper semi-continuous under small
perturbations of the map.

Introduction

The notion of distributional chaos has been introduced by Schweizer
and Smítal in [12]. To this end distribution functions were introduced.
Given t ∈ R and two points x, y in a dynamical system one counts the
relative number of times when the distance of the orbits of x and y is smaller
than t. Denote the limit superior of this sequence by Ux,y(t) and its limit
inferior by Fx,y(t). In this way one obtains two functions U, F : R → [0, 1],
called the upper and lower distribution function. We will call the lower dis-
tribution function simply the distribution function. A dynamical system is
called distributionally chaotic, if there are x, y and t > 0 with Fx,y(t) < 1
and Ux,y(s) = 1 for all s > 0. More details on distributional chaos can be
found in the nice survey paper [11] and also in [3].

We like to consider the distribution function for piecewise monotonic
maps T : [0, 1] → [0, 1]. This means that there exists a �nite partition
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of [0, 1] into intervals such that the restriction of T to such an interval is con-
tinuous and strictly monotonic. However, T needs not be continuous at the
endpoints of intervals of monotonicity. Because of these discontinuities it is
much harder to work with the distribution function. Therefore we introduce
the notion of approximating distribution functions. It is de�ned similar as
the usual distribution function but taking into account only points x, y in
Markov subsets avoiding the points of discontinuity and turning points.

For a piecewise monotonic map a set B is called basic set, if it is a max-
imal topologically transitive subset with positive topological entropy. It will
be proved in Theorem 1 that the approximating distribution function of a
mixing basic set coincides with usual one in all points where the usual distri-
bution function is right continuous. Hence they di�er in at most countably
many points. In particular de�ning distributional chaos one can use the
approximating distribution function instead of the usual one.

The main question addressed in this paper is the behaviour of the ap-
proximating distribution function under small perturbations of the piecewise
monotonic map. For continuous interval maps (but not necessarily piece-
wise monotonic) the upper semi-continuity of distribution functions has been
proved by Francisco Balibrea, Bert Schweizer, Abe Sklar and Jaroslav Smítal
in [2] (Theorem 4.5 and Corollary 4.6 of [2]). We will prove in Theorem 2
that for mixing basic sets of (not necessarily continuous) piecewise monotonic
maps the approximating distribution function is upper semi-continuous. This
implies that distributional chaos (de�ned using the approximating distribu-
tion functions) is stable under small perturbations of the map.

Finally we consider again a mixing basic set B (as de�ned above) of
a piecewise monotonic map and its approximating distribution function G.
Consider �nitely many x1, x2, . . . , xu ∈ [0, 1] and a decreasing sequence (Jn)
of unions of u intervals forming a neighbourhood of {x1, x2, . . . , xu} such
that

⋂∞
n=1 Jn = {x1, x2, . . . , xu}. For each n let Gn be the approximating

distribution function of the set of all points of B whose orbits omit Jn. In
Theorem 3 it is proved that limn→∞Gn(t) = G(t) for all t where G is right
continuous.

The authors like to thank Franz Hofbauer for useful discussions on the
topic of this paper, in particular for a lot of useful suggestions concerning
the proofs.
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1. The distribution function of a dynamical system

Assume thatM 6= ∅ is a metric space (with metric d), and let T :M →M
be a map. If x, y ∈M , then set

(1)

Fx,y(t) := lim inf
n→∞

1

n
card

{
k ∈ {0, 1, . . . , n− 1} : d

(
T k(x), T k(y)

)
≤ t
}

and

Ux,y(t) := lim sup
n→∞

1

n
card

{
k ∈ {0, 1, . . . , n− 1} : d

(
T k(x), T k(y)

)
≤ t
}

for t ∈ R, t > 0. Obviously both Fx,y and Ux,y are increasing functions with
values in [0, 1], and Fx,y ≤ Ux,y. Moreover, note that Fx,x(t) = Ux,x(t) = 1
for all t > 0. We de�ne the lower distribution function F of the dynamical
system (M,T ) by

(2) F (t) := inf {Fx,y(t) : x, y ∈M with Ux,y(s) = 1 for all s > 0}

for t ∈ R, t > 0. It is obvious that F : {t ∈ R : t > 0} → [0, 1] is increasing.
If A ⊆ M is T -invariant, then we call the lower distribution function F
of
(
A, T

∣∣
A

)
the lower distribution function of A. Throughout this paper we

will call the lower distribution function simply the distribution function.
The distribution function has been introduced by Bert Schweizer and

Jaroslav Smítal in [12] for continuous maps. A dynamical system is said to
be distributionally chaotic, if the distribution function F satis�es F (t) <
1 for some t > 0. For continuous interval maps it is proved in [12] that
distributional chaos is equivalent to positive topological entropy and to the
existence of a basic set. In the case of maps on a graph this has been proved
by Roman Hric and Michal Málek in [6]. This result is no longer true in
higher dimensions as shown by Marta �tefánková in [1] for two dimensional
skew products.

A map T : [0, 1] → [0, 1] is called piecewise monotonic with respect
to c0 = 0 < c1 < · · · < cN = 1, if T is continuous and strictly monotonic
on (cj−1, cj) for j ∈ {1, 2, . . . , N}. Note that it may be discontinuous in E :=
{c0, c1, . . . , cN}. If T is not continuous, then it is much more di�cult to deal
with the distribution function as de�ned in (2). Therefore we use another
approach in order to overcome these problems.

Set Z := {(cj−1, cj) : 1 ≤ j ≤ N} and for n ∈ N set Zn :=
∨n−1
j=0 T

−jZ ={
Z =

⋂n−1
j=0 T

−jZj : Z 6= ∅, Z0, Z1, . . . , Zn−1 ∈ Z
}
. Furthermore, for n ∈ N

let Cn be the union of {c0, c1, . . . , cN} and those intervals in Zn having an
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endpoint in {c0, c1, . . . , cN}. Observe that C1 = [0, 1] ⊇ C2 ⊇ C3 ⊇ · · · . Let
A ⊆ [0, 1] be closed and T -invariant. For n ∈ N de�ne

(3) An := A \

(
∞⋃
k=0

T−k(Cn)

)
.

Note that An is closed for any n, and A1 = ∅ ⊆ A2 ⊆ A3 ⊆ · · · . If there exists
an n with An 6= ∅, then we de�ne the approximating distribution function G
of A by

(4)
G(t) := inf {Fx,y(t) : x, y ∈ An for some n

and Ux,y(s) = 1 for all s > 0}

for t ∈ R, t > 0. Again it is obvious that G : {t ∈ R : t > 0} → [0, 1] is
increasing.

We call a closed T -invariant set A ⊆ [0, 1] topologically transitive, if the
map T

∣∣
A
is topologically transitive, this means there exists an element in A

whose orbit is dense in A. If there does not exist a topologically transitive
set A0 with A $ A0, then A is called maximal topologically transitive. A
closed T -invariant set B ⊆ [0, 1] is called a basic set, if B is maximal to-
pologically transitive, and htop

(
T
∣∣
B

)
> 0. One calls a closed T -invariant

set A ⊆ [0, 1] mixing, if for any open U with A ∩ U 6= ∅ there is an n ∈ N
with T n(A ∩ U) = A.

Finally we de�ne a topology on the family of all maps f : [0, 1] → [0, 1].
Suppose that g : [0, 1]→ [0, 1] and let ε > 0. Then a map h : [0, 1]→ [0, 1] is
called to be in the ε-neighbourhood of g, if for all x ∈ [0, 1] there is a y ∈ [0, 1]
such that |x − y| < ε and |h(x) − g(y)| < ε. Moreover, we say that a
map h : [0, 1]→ [0, 1] is in the upper ε-neighbourhood of g, if for all x ∈ [0, 1]
there is a y ∈ [0, 1] with |x− y| < ε and h(x) < g(y) + ε.

2. Alternative de�nitions of the

approximating distribution function

Let T : [0, 1]→ [0, 1] be a piecewise monotonic map and let A ⊆ [0, 1] be
closed and T -invariant. For n ∈ N de�ne

(5) Rn(A) := {(x, y) ∈ An × An : Ux,y(s) = 1 for all s > 0} ,

where An is de�ned as in (3). Now set

(6) R(A) :=
∞⋃
n=1

Rn(A) .
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If there exists an n with An 6= ∅, then we obtain by (4), (5) and (6) that

(7) G(t) := inf
(x,y)∈R(A)

Fx,y(t)

for all t ∈ R with t > 0, where G is the approximating distribution function
of A. We give two more similar de�nitions which will be useful later. For
these de�nitions we assume that there exists an n with An 6= ∅. Set Q(A) :=⋃∞
n=1An × An and de�ne

(8) L(t) := inf
(x,y)∈Q(A)

Fx,y(t)

for all t > 0. Obviously L is increasing and L(t) ≤ G(t) for all t > 0.
For n ∈ N let Pn(A) be the set of all periodic points in A having period n. If
for a q ∈ N there is an n ≥ q with Pn(A) 6= ∅, then set Pq(A) :=

⋃∞
n=q Pn(A)×

Pn(A), and de�ne

(9) Hq(t) := inf
(x,y)∈Pq(A)

Fx,y(t)

for all t > 0. Also in this case it is obvious that Hq is increasing.
As introduced above let Z be the collection of intervals of monotonicity

of T . We call Y a re�nement of Z, if Y consists of �nitely many pairwise
disjoint open intervals such that for every Y ∈ Y there is a Z ∈ Z with
Y ⊆ Z, and [0, 1] ⊆

⋃
Y ∈Y Y . In order to �nd suitable approximations of

basic sets, we de�ne Markov subsets. Suppose that X ⊆ [0, 1] is nonempty,
closed and T -invariant. We call Y a Markov partition re�ning Z of X, if
Y is a re�nement of Z such that for every Y ∈ Y with Y ∩ X 6= ∅ there
are Y1, Y2, . . . , Yr ∈ Y satisfying T (Y ∩X) = T (Y ) ∩ X =

⋃r
j=1 Yj ∩X.

A nonempty set X ⊆ [0, 1] is called a Markov subset, if X is compact, T -
invariant, disjoint from Cn for some n ≥ 1, and has a �nite Markov partition
re�ning Z.

In the proofs of our next results we need as our main tool the Markov
diagram of T . It has been introduced by Franz Hofbauer and describes the
orbit structure of T . A description of the Markov diagram can be found e.g.
in [5]. Now we recall its de�nition and its most important properties.

Assume that Y is a re�nement of Z. Let D be a nonempty open subin-
terval of an element of Y . A nonempty C ⊆ [0, 1] is called successor of D,
if there exists a Y ∈ Y with C = T (D) ∩ Y , and we write D → C. Obvi-
ously every successor C of D is again an open subinterval of an element
of Y . Let D be the smallest set with Y ⊆ D and such that D ∈ D
and D → C imply C ∈ D. Then (D,→) is called the Markov diagram

of T with respect to Y . The set D is at most countable and its elements
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are nonempty open subintervals of elements of Y . De�ne D(0) := Y , and
for n ∈ N set D(n) := {D ∈ D : ∃C ∈ D(n − 1) with C → D}. Then
D(0) ⊆ D(1) ⊆ D(2) ⊆ · · · ⊆ D and D =

⋃∞
n=0D(n).

We call D0 → D1 → D2 → · · · an in�nite path in (D,→), if Dj ∈ D
for all j ≥ 0 and Dj−1 → Dj for all j ∈ N. An in�nite path D0 → D1 →
D2 → · · · is called periodic, if there is an n ≥ 1 such that Dn+k = Dk

for all k ≥ 0. Let C ⊆ D. Then D0 → D1 → · · · → Dn is called a
�nite path in C, if Dj ∈ C for all j ∈ {0, 1, . . . , n} and Dj−1 → Dj for
all j ∈ {1, 2, . . . , n}. The set C is called irreducible, if for every C,D ∈ C
there exists a �nite path D0 → D1 → · · · → Dn in C with D0 = C and
Dn = D. If C is irreducible and C ∈ C, then de�ne N(C) as the set of all n
such that there is a path D0 → D1 → · · · → Dn in C with D0 = C and
Dn = C. Then the greatest common divisor of N(C) equals the greatest
common divisor of N(D) for any D ∈ C. If the greatest common divisor
of N(C) equals 1, then C is called aperiodic. We call an irreducible C ⊆ D
maximal irreducible, if there is no irreducible C ′ ⊆ D with C $ C ′. An in�nite
path D0 → D1 → D2 → · · · represents x ∈ [0, 1], if T j(x) ∈ Dj for all j ≥ 0.

For a maximal irreducible C ⊆ D let K(C) be the set of all x such that x
is represented by an in�nite path in C and x is not contained in the interior of
an interval I satisfying that T n

∣∣
I
is monotonic for all n. Suppose that B is a

basic set of T . By Theorem 11 of [5] there exists a maximal irreducible C ⊆ D
such that B = K(C). For a C ′ ⊆ C de�ne K(C ′) as the set of all x ∈ K(C)
which can be represented by an in�nite path in C ′. If C ′ is irreducible, then
K(C ′) is topologically transitive. Moreover, for an irreducible C ′ the setK(C ′)
is mixing if and only if C ′ is aperiodic.

As we will also need the notion of a variant (A,→) of the Markov diagram

as introduced in [7] (cf. also [10]), we brie�y describe this concept. It is an
orientated graph together with a function A : A → D such that c → d
in A implies A(c) → A(d) in D. Moreover, for each c ∈ A the map A
is bijective from {d ∈ A : c → d in A} to {D ∈ D : A(c) → D in D}.
We can write A =

⋃∞
n=0A(n) with A(0) ⊆ A(1) ⊆ A(2) ⊆ · · · ⊆ A such

that A
(
A(n)

)
= D(n) for all n ≥ 0. For an irreducible C ⊆ A we set

K(C) := K
(
A(C)

)
, and a path d0 → d1 → d2 · · · in A represents x, if

A(d0) → A(d1) → A(d2) · · · represents x. Furthermore the construction
in [7] shows that for every irreducible C ⊆ A having an element with more
than one successor in C the property that A(C) is aperiodic implies that C
is aperiodic. The versions of the Markov diagram introduced in [8] (and
also used in [9]) are essentially the same as variants, but contain also the
orbits of some single points. Since these additional orbits of single points
are not interesting for our purpose we can work with variants. Then in the
conclusions of Lemma 2 in [8] and Lemma 1 in [9] we can work with variants
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instead of versions, and the conclusions concerning A(c) having only one
element can be omitted.

Remark. Consider a �nite union X of closed subintervals of [0, 1] and a map
T : X → [0, 1] such that there exists a �nite family Z of pairwise disjoint open
intervals with

⋃
Z∈Z Z = X and T

∣∣
Z
is continuous and strictly monotonic for

all Z ∈ Z. Then one can de�ne the Markov diagram (and also variants
and versions of the Markov diagram) of T with respect to a re�nement Y
of Z in the same way as above (see also for example [7]). This can also be
seen by extending T to a map on [0, 1] de�ning it so on each maximal open
subinterval I of [0, 1] \X that TI ⊆ I and each point in I is attracted by a
�xed point. Hence all results apply also in this slightly more general case.

Lemma 1. Suppose that T : [0, 1] → [0, 1] is a piecewise monotonic map,

assume that B is a mixing basic set of T , and let m ∈ N. Moreover, let

x1, x2, . . . , xr ∈ Bm. Then there exists an integer n ≥ m and there exists a

mixing Markov subset X of Bn with x1, x2, . . . , xr ∈ X.

Proof. Without loss of generality we may assume that m ≥ 2. Since our as-
sumptions imply that x1, x2, . . . , xr ∈ B, we can �nd a re�nement Y of Z such
that

⋂∞
n=1 Yn(xj) = {xj} for every j ∈ {1, 2, . . . , r}, where Yn :=

∨n−1
j=0 T

−jY
and Yn(xj) is an element of Yn with xj ∈ Yn(xj) and Yn(xj) ∩B 6= ∅.

Set C∞ :=
⋂∞
n=1Cn. Then C∞ is a union of at most N + 1 intervals, and

{c0, c1, . . . , cN} ⊆ C∞. Hence there are 0 ≤ a1 ≤ a2 < a3 ≤ a4 < · · · <
a2v−1 ≤ a2v ≤ 1 such that C∞ =

⋃v
u=1 [a2u−1, a2u]. De�ne (cf. (1.2) of [9])

X∞ :=
∞⋂
k=0

[0, 1] \

(
v⋃

u=1

T−k (a2u−1, a2u)

)
.

If I ⊆ C∞ is a nonempty open interval which does not contain an element
of {c0, c1, . . . , cN}, then T n is strictly monotonic on I for each n, and there-
fore it cannot contain a point in a basic set of T . Hence B ⊆ X∞. For
su�ciently large n the set Cn is a union of v pairwise disjoint open intervals.
Therefore there are 0 = a

(n)
1 < a

(n)
2 < a

(n)
3 < a

(n)
4 < · · · < a

(n)
2v−1 < a

(n)
2v = 1

such that Cn =
⋃v
u=1

(
a
(n)
2u−1, a

(n)
2u

)
. Moreover, for any l ∈ {1, 2, . . . , 2v} we

have limn→∞ a
(n)
l = al. This means that �Cn converges to C∞� in the sense

described in [9]. SetXn := [0, 1]\
(⋃∞

k=0 T
−k(Cn)

)
(note that this corresponds

to (1.2) of [9]).
Assume that n ∈ N∪ {∞}. Next we de�ne the Markov diagram (D̃n,→)

of T
∣∣
Xn

with respect to Ym. To this end set Ỹ :=
{
Y \ Cn : Y ∈ Ym

}
. For a

nonempty open subinterval D of an element of Ỹ write D → C, if there exists
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a Y ∈ Ỹ with C = T (D) ∩ Y . Now let D̃n be the smallest set containing Ỹ
and with the property that D ∈ D̃n and D → C imply C ∈ D̃n.

Let (D̃∞,→) be the Markov diagram of T
∣∣
X∞

with respect to Ym. Since
B ⊆ X∞ is mixing there exists a maximal irreducible and aperiodic C ⊆ D̃∞
such that B = K(C).

Now let E be the set of all Y ∈ Ym with Y ∩ Bm 6= ∅. Fix a Y ∈ E . As
Y ∩Cm = ∅ we get that Y ∈ D̃∞. Moreover, using again Y ∩Cm = ∅, one gets
that T (Y ) ∈ Ym−1 and its closure is the union of closures of elements of Ym.
This means that all successors of Y having nonempty intersection with Bm

are again in E . Therefore xj can be represented by an in�nite path C(j)
0 →

C
(j)
1 → C

(j)
2 → · · · in E , if j ∈ {1, 2, . . . , r}. Choose a j ∈ {1, 2, . . . , r}. Since

xj ∈ B we can represent xj by an in�nite path D(j)
0 → D

(j)
1 → D

(j)
2 → · · ·

in C. By Theorem 1 in [5] there is an nj such that D(j)
n = C

(j)
n for all n ≥ nj.

Hence Ej :=
{
D

(j)
0 , D

(j)
1 , D

(j)
2 , . . .

}
is a �nite subset of C.

Choose a C ∈
⋃r
j=1 Ej. As C is aperiodic there exists an s, and there

exist paths E0 → E1 → · · · → Es and D0 → D1 → · · · → Ds+1 in C
with E0 = Es = D0 = Ds+1 = C. Let C ′ ⊆ C be a �nite and irreducible
set containing

⋃r
j=1 Ej ∪ {E0, E1, . . . , Es} ∪ {D0, D1, . . . , Ds+1}. Since both

E0 → E1 → · · · → Es and D0 → D1 → · · · → Ds+1 are paths in C ′ beginning
and ending in C the set C ′ is aperiodic.

By Lemma 2 in [10] and Lemma 1 in [9] there exists an n ≥ m such
that the following properties hold. There exist variants (A,→) and (Ã,→)

of D̃∞, resp. of D̃n, there exist C̃ ⊆ Ã and an irreducible and aperiodic C̃ ′ ⊆ A
with A

(
C̃ ′
)
= C ′, and there exists a bijective function ϕ : C̃ → C̃ ′ such that

for c, d ∈ C̃ we have c → d in (Ã,→) if and only if ϕ(c) → ϕ(d) in (A,→).
Moreover, as C∞ ⊆ Cn we get that Ã(c) ⊆ A

(
ϕ(c)

)
. The set C̃ is irreducible

and aperiodic, because C̃ ′ is irreducible and aperiodic. There exists a maximal
irreducible B̃ ⊆ D̃n with Ã

(
C̃
)
⊆ B̃. Then the corresponding set K(B̃) is a

subset of Bn.
De�ne X := K(C̃) (the set of all points in K(B̃) which can be represented

by a path in C̃). Then X ⊆ Bn is mixing, as C̃ is aperiodic. Assume that
j ∈ {1, 2, . . . , r}. We get that d(j)0 → d

(j)
1 → d

(j)
2 → · · · is a path in C̃ ′

representing xj. Moreover,
⋂∞
u=0A

(
d
(j)
u

)
= {xj} by the choice of Y . Then

ϕ−1
(
d
(j)
0

)
→ ϕ−1

(
d
(j)
1

)
→ ϕ−1

(
d
(j)
2

)
→ · · · is a path in C̃. As this path

represents an x ∈ X, and Ã(c) ⊆ A
(
ϕ(c)

)
we get that xj ∈ X.
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Because of the �niteness of C̃ the set E of all endpoints of elements
of Ã

(
C̃
)
is �nite, and also the set

E ′ := E ∪ {x : x is an endpoint of an element of Y}

is �nite. Let Y ′ be the collection of all open intervals having both endpoints
in E ′ and not containing an element of E ′. Then Y ′ is a Markov partition
of X re�ning Z. This implies that X is a Markov subset.

Lemma 2. Let T : [0, 1] → [0, 1] be a piecewise monotonic map. Suppose

that X is a mixing Markov subset of [0, 1]. Then the following properties

hold.

(a) For every ε > 0 there is an M ∈ N such that for any k ∈ N, any

k points x1, x2, . . . , xk ∈ X, any nonnegative integers a1 ≤ b1 < a2 ≤
b2 < · · · < ak ≤ bk with aj − bj−1 ≥ M for 1 ≤ j ≤ k and any

integer p ≥ M + bk − a1 there exists a point x ∈ X of period p
satisfying |T n(x)− T n−aj(xj)| ≤ ε for all n ∈ {aj, aj+1, . . . , bj} and

all j ∈ {1, 2, . . . , k}.

(b) Suppose that ε > 0. Then there exists an M ∈ N such that for any

points x1, x2, x3, . . . ∈ X and any integers 0 ≤ a1 ≤ b1 < a2 ≤ b2 <
a3 ≤ b3 < · · · with aj−bj−1 ≥M for all j ≥ 2 there exists a point x ∈ X
with |T n(x)− T n−aj(xj)| ≤ ε for all n ∈ {aj, aj+1, . . . , bj} and all j ≥ 1.

Proof. Fix ε > 0 and de�ne Bε(x) := (x − ε, x + ε). Moreover, let Y be a
Markov partition of X re�ning Z. Now we show that there is an M ∈ N
such that TM

(
X ∩Bε(x)

)
= X for all x ∈ X.

Set Yn =
∨n−1
j=0 T

−jY for n ≥ 1. By the compactness of X there exists
a k ∈ N such that for each x ∈ X the set Bε(x) contains an element of Yk
(notice that the interior of a periodic or wandering interval does not belong
to X). Since X is a mixing Markov subset, for every Y ∈ Yk there is an n(Y )
such that T n(Y ∩X) = X for all n ≥ n(Y ). Set M := max{n(Y ) : Y ∈ Yk}.
Hence X = T n(Y ∩X) ⊆ TM

(
X ∩Bε(x)

)
⊆ X for any x ∈ X.

Now one can prove (a) in the same way as in [4] (see the proof of The-
orem 8.7 in [4]).

In order to prove (b) we use (a). If k ∈ N, then there is a (periodic)
point yk ∈ X satisfying |T n(yk)− T n−aj(xj)| ≤ ε for aj ≤ n ≤ bj and 1 ≤
j ≤ k. Let x be a limit point of the sequence (yk)k≥1. Then x satis�es (b),
since T is continuous on X.

For w ∈ [0, 1] \
⋃∞
j=0 T

−j{c0, c1, . . . , cN} let Zn(w) be the unique interval
in Zn containing w. We have Zn+1(w) ⊆ Zn(w) for n ≥ 1 and

⋂∞
n=1 Zn(w)
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is a single point or an interval. If x and y are in [0, 1], if a and b are integers
with 0 ≤ a < b and if t ∈ R, t > 0, then de�ne

(10) Nx,y(a, b, t) := card
{
j ∈ {a, a+ 1, . . . , b− 1} :

∣∣T j(x)− T j(y)∣∣ ≤ t
}
.

Lemma 3. Assume that B is a mixing basic set or a mixing Markov subset

of the piecewise monotonic map T and �x a q ∈ N. Let t > 0 and ε ∈ (0, t).
Then there is an integer p ≥ q and there are u and v in Pp(B) such that
1
p
Nu,v(0, p, t− ε) < L(t) + ε. In particular, Fu,v(t− ε) < L(t) + ε.

Proof. By the de�nition of L there is a (x, y) ∈ Q(B) with Fx,y(t) < L(t)+ ε
2
.

Then there is anm ≥ 1 with x, y ∈ Bm because of the de�nition ofQ(B). If B
is a mixing basic set then by Lemma 1 there is a mixing Markov subsetX of B
containing x and y. Otherwise set X = B, which is a mixing Markov subset.
In particular, X satis�es the requirements of Lemma 2. Let M be the con-
stant for ε

2
in (a) of Lemma 2. Because of Fx,y(t) = lim infn→∞

1
n
Nx,y(0, n, t)

there is a b > max{q, 2M
ε
} with 1

b
Nx,y(0, b, t) < L(t) + ε

2
. Set p := b +M .

By (a) of Lemma 2 there are points u, v ∈ Pp(B) with |T j(u) − T j(x)| ≤ ε
2

and |T j(v)− T j(y)| ≤ ε
2
for 0 ≤ j ≤ b. This implies that |T j(x)− T j(y)| ≤ t

holds, whenever 0 ≤ j ≤ b and |T j(u) − T j(v)| ≤ t − ε, and hence we get
Nu,v(0, b, t− ε) ≤ Nx,y(0, b, t). Therefore we have

1

p
Nu,v(0, p, t− ε) ≤

1

p
Nu,v(0, b, t− ε) +

1

p
Nu,v(b, p, t− ε) ≤

≤ b

p
(L(t) +

ε

2
) +

p− b
p

< L(t) + ε .

This shows the �rst assertion, since p > q.
As u and v have period p, it follows that

1

kp
Nu,v(0, kp, t− ε) =

1

p
Nu,v(0, p, t− ε)

for all k ≥ 1. This implies Fu,v(t−ε) ≤ 1
p
Nu,v(0, p, t−ε) and hence we obtain

Fu,v(t− ε) < L(t) + ε.

Note that for maps T : [0, 1]→ [0, 1] one always has Fx,y(t) = 1 for t ≥ 1.
Therefore F (t) = U(t) = L(t) = Hq(t) = 1 for any t ≥ 1. This means that
one may consider these functions as functions from [0, 1] → [0, 1], if one is
only interested in the non-trivial part of them.

Lemma 4. Suppose that A is a mixing basic set or a mixing Markov subset of

the piecewise monotonic map T . Then for every ε > 0 there is (u, v) ∈ R(A)
such that Fu,v is in the upper ε-neighbourhood of L.
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Proof. Choose t0 = 0 < t1 < · · · < tr = 1 with tj − tj−1 < ε
2
for 1 ≤

j ≤ r. By the de�nition of L there are (xj, yj) ∈ Q(A) with Fxj ,yj(tj) <
L(tj) +

ε
4
for 1 ≤ j ≤ r. Using the de�nition of Q(A) there is an m ≥ 1

such that xj and yj are in Am for 1 ≤ j ≤ r. If A is a mixing basic
set we apply Lemma 1 and �nd a Markov subset X of A with xj and yj
in X for 1 ≤ j ≤ r. Otherwise A is a Markov subset, and we set X =
A. Let α be the minimal distance in the Hausdor� metric between U ∩ X
and V ∩ X for two di�erent U, V ∈ Z. Since X is a Markov subset there
is an n ≥ 1 with X ⊆ An and hence α > 0. As X is uncountable, there
is a w ∈ X with limn→∞ |Zn(w)| = 0, where |I| denotes the length of the
interval I. Set ul(n) := max

{
k ≤ n : |T j(Zn(w))| < 1

l
for 0 ≤ j ≤ k

}
. Since

T is continuous on the intervals in Z, we have that limn→∞ ul(n) = ∞ for
all l ≥ 1.

LetM be the constant in (b) of Lemma 2 for the set X and for min
{
ε
4
, α
2

}
instead of ε. Set xj+lr := xj, yj+lr = yj and tj+lr = tj for l ≥ 1 and 1 ≤ j ≤ r.
We choose integers a1 ≤ b1 < c1 ≤ d1 < a2 ≤ b2 < c2 ≤ d2 < · · · in
the following way. De�ne a1 := 0. If ak is de�ned, choose bk > 4ak

ε
such

that 1
bk−ak

Nxk,yk(0, bk − ak, tk) < L(tk) +
ε
4
holds. This is possible, since we

have Fxk,yk(tk) < L(tk) +
ε
4
. Then set ck := bk +M , choose dk such that

uk(dk − ck) ≥ (k − 1)ck, and set ak+1 = dk +M .
By Lemma 2 there are u, v ∈ X satisfying

(11)
∣∣T n(u)− T n−ak(xk)∣∣ ≤ ε

4
and

∣∣T n(v)− T n−ak(yk)∣∣ ≤ ε

4

for ak ≤ n ≤ bk, k ≥ 1,

(12)
∣∣T n(u)− T n−ck(w)∣∣ ≤ α

2
and

∣∣T n(v)− T n−ck(w)∣∣ ≤ α

2

for ck ≤ n ≤ dk, k ≥ 1. Now (11) and the de�nition of bk give

1

bk
Nu,v(0, bk, tk −

ε

2
) ≤ ak

bk
+

1

bk
Nxk,yk(0, bk − ak, tk) <

<
ε

4
+ L(tk) +

ε

4
= L(tk) +

ε

2
.

Using the de�nition of tk for k > r this implies Fu,v(tj − ε
2
) ≤ L(tj) +

ε
2
<

L(tj) + ε for 1 ≤ j ≤ r. If t ∈
(
0, 1− ε

2

]
, then there is a j ∈ {1, 2, . . . , r}

with t ∈ (tj − ε, tj − ε
2
], which implies Fu,v(t) ≤ Fu,v(tj − ε

2
) < L(tj) + ε.

For t ∈
(
1− ε

2
, 1
]
we have Fu,v(t) ≤ 1 = L(1) < L(1) + ε. Hence for

every t ∈ (0, 1] there is a tj with |t − tj| < ε and Fu,v(t) < L(tj) + ε. This
means that Fu,v is in the upper ε-neighbourhood of L.

It follows from (12) and from the de�nition of α that T n(u) and T n(v)
are in the same element of Z as T n−ck(w) for ck ≤ n ≤ dk. This implies that
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T ck(u) and T ck(v) are in Zdk−ck(w). Because of uk(dk−ck) ≥ (k−1)ck we get
|T n(u)−T n(v)| < 1

k
for ck ≤ n ≤ kck. This implies that 1

kck
Nu,v

(
0, kck,

1
k

)
≥

(k−1)ck
kck

= 1 − 1
k
. Since this holds for all k ≥ 1, we get Uu,v(t) = 1 for

all t ∈ (0, 1]. Since X is a Markov subset there is an n ≥ 1 with X ⊆ An.
Hence we have also proved that (u, v) ∈ R(A).

If the piecewise monotonic map T has points in E which are eventually
periodic or are attracted by periodic orbits, then let γ be the maximum of
the periods of these periodic points. Otherwise set γ := 0.

Proposition 1. Fix q > γ and let B be a mixing basic set or a mixing Markov

subset of the piecewise monotonic map T . Then Hq(t) = L(t) = G(t) for all

points t ∈ (0, 1), where L is right continuous.

Proof. Since R(B) ⊆ Q(B) we have L(t) ≤ G(t) for all t ∈ (0, 1]. It follows
from Lemma 4 that G is contained in every upper ε-neighbourhood of L. The
intersection of all these upper ε-neighbourhoods is {(a, b) : 0 < a < 1, b ≤
limz→a+ L(z)}, which must then contain the points (t, G(t)) for 0 < t < 1.
Therefore, we have L(t) = G(t) for all points t ∈ (0, 1), where L is right
continuous.

By the de�nition of γ, for a periodic point x whose period is larger than γ
there is an n such that x and an element of E cannot lie in the closure of the
same element of Zn. This implies Pq(B) ⊆ Q(B), and hence L(t) ≤ Hq(t)
for all t ∈ (0, 1]. Choose t ∈ (0, 1) such that L is right continuous in t. For
every ε ∈ (0, 1 − t) we have that Hq(t) < L(t + ε) + ε by Lemma 3, which
implies Hq(t) ≤ L(t).

3. The approximating distribution function

of continuous piecewise monotonic maps

For piecewise monotonic maps we work with the approximating distri-
bution function G instead of the distribution function F . Therefore we will
prove in our next result that for continuous piecewise monotonic transform-
ations these two functions essentially coincide. More exactly, they coincide
in all points where F is right continuous.

Theorem 1. Let T : [0, 1]→ [0, 1] be a continuous and piecewise monotonic

map with htop(T ) > 0. Suppose that B is a mixing basic set of T and let

F be the minimal distribution function of T on B. Then the approximating

distribution function G of T on B coincides with F in all points, where F is

right continuous.
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Proof. Choose an arbitrary ε > 0 and �x some q > γ. Then there is a δ > 0
such that F (t) ≤ F (s) < F (t) + ε for all s ∈ [t, t + δ). Now we choose
an s ∈ [t, t+ δ) such that F is continuous at s and L is right continuous at s.
Then by Theorem 4.3 in [2] there is a pair of periodic points u, v ∈ B with
Fu,v(s) < F (t)+ ε. Using the speci�cation property we may assume that the
periods of u and v are larger than q. Hence Hq(s) ≤ Fu,v(s). As L is right
continuous at s Proposition 1 implies that G(s) = Hq(s). Therefore we get
F (t) ≤ G(t) ≤ G(s) = Hq(s) ≤ Fu,v(s) < F (t)+ε. Since ε > 0 was arbitrary
this implies F (t) = G(t).

4. Stability results for the approximating distribution function

of piecewise monotonic maps

Next we show that for (not necessarily continuous) piecewise monotonic
maps the approximating distribution function is upper semi-continuous. If
ε > 0 then a piecewise monotonic map T̃ with respect to c̃0 = 0 < c̃1 < · · · <
c̃Ñ = 1 is called to be ε-close to a piecewise monotonic map T with respect
to c0 = 0 < c1 < · · · < cN = 1, if Ñ = N (this means they have the same
number of intervals of monotonicity) and T̃

∣∣
(c̃j−1,c̃j)

is in an ε-neighbourhood

of T
∣∣
(cj−1,cj)

for all j ∈ {1, 2, . . . , N}.

Theorem 2. Let T : [0, 1]→ [0, 1] be a piecewise monotonic map satisfying

htop(T ) > 0. Assume that B is a mixing basic set of T and let G be the

approximating distribution function of T on B. Then for every ε > 0 there

exists a δ > 0 such that for every piecewise monotonic map T̃ which is δ-close
to T has a mixing basic set B̃ satisfying that G̃ is in an upper ε-neighbourhood
of T , where G̃ is the approximating distribution function of T̃ on B̃.

Proof. Fix an ε > 0 and a q > γ. Since G is increasing we can choose
a0 = 0 < t1 < a1 < t2 < a2 < · · · < ak−1 < tk < ak = 1 with aj − aj−1 < ε

5
,

G(t) > G(tj)− ε
3
for all t ∈ (aj−1, aj] and L is right continuous at tj for 1 ≤

j ≤ k. Then G(tj) = Hq(tj) for 1 ≤ j ≤ k by Proposition 1. Hence there
exist periodic points xj and yj of period at least q with Fxj ,yj(tj) < G(tj)+

ε
3
.

We choose a re�nement Y of Z with |Y | < ε
5
, and

⋂∞
n=1 Yn(xj) = {xj} and⋂∞

n=1 Yn(yj) = {yj} for every j ∈ {1, 2, . . . , k}, where Yn :=
∨n−1
j=0 T

−jY
and Yn(x) denotes an element of Yn with x ∈ Yn(x) and Yn(x) ∩ B 6= ∅.
From Theorem 8 in [5] we get that the points xj and yj can be represented
by periodic paths in the Markov diagram (D,→) of T with respect to Y .
Furthermore there exists an aperiodic maximal irreducible C ⊆ D with B =
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K(C). Therefore using also Lemma 5 of [7] there is an r ∈ N such that
any x ∈ M can be represented by a periodic path in Dr and for every
variant (A,→) of D there is an aperiodic irreducible C1 ⊆ Ar with A(C1) ⊆ C
and each x ∈M is represented by a periodic path in C1.

By Lemma 6 in [7] there exists a δ > 0 such that every piecewise mono-
tonic map T̃ which is δ-close to T satis�es the following properties. There ex-
ists a variant (A,→) of the Markov diagram of T , a �nite partition Ỹ re�ning
the partition of intervals of monotonicity of T̃ , a variant (Ã,→) of the Markov
diagram of T̃ with respect to Ỹ , and an injective function ϕ : Ar → Ãr with
c→ d in A is equivalent to ϕ(c)→ ϕ(d) in Ã and Ã

(
ϕ(c)

)
is ε

5
-close to A(c)

in the Hausdor�-metric for all c ∈ Ar.
Then ϕ(C1) is an aperiodic irreducible subset of Ãr. Hence it is contained

in an aperiodic maximal irreducible C̃ ⊆ Ã and B̃ := K̃(C̃) is a mixing basic
set of T̃ . Let x ∈ M . Then there is an n ≥ 1 such that x is represented
by a path c0 → c1 → c2 → · · · in C1 ⊆ Ar with cn+k = ck for all k.
Therefore ϕ(c0) → ϕ(c1) → ϕ(c2) → · · · is a periodic path in ϕ(C1) ⊆ Ãr.
Hence it represents an x̃ ∈ B̃, and we obtain that T̃ nx̃ = x̃. Moreover we
have |x̃− x| < 2ε

5
. Since T̃ sx̃ ∈ ϕ

(
Y (T sx)

)
we get also |T̃ sx̃− T sx| < 2ε

5
for

all s ≥ 0. This implies that F̃x̃j ,ỹj(tj− 4ε
5
) ≤ Fxj ,yj(tj) for all j ∈ {1, 2, . . . , k}.

Using Lemma 1 and Lemma 2 we obtain that there are uj, vj ∈ B̃ with
(uj, vj) ∈ Q̃(B̃) and F̃uj ,vj(tj − 4ε

5
) < F̃x̃j ,ỹj(tj − 4ε

5
) + ε

3
. Therefore

L̃

(
tj −

4ε

5

)
≤ F̃uj ,vj

(
tj −

4ε

5

)
< F̃x̃j ,ỹj

(
tj −

4ε

5

)
+
ε

3
≤

≤ Fxj ,yj(tj) +
ε

3
< G(tj) +

2ε

3

for all j ∈ {1, 2, . . . , k}. Now let t ∈ (0, 1). Choose j ∈ {1, 2, . . . , k} so that
aj−1 < t ≤ aj. Note that aj < tj +

ε
5
. Then there exists an s > t with

s− ε
5
< tj such that L̃ is right continuous at s− ε. By Proposition 1 we get

G̃(s−ε) = L̃(s−ε). Observe that t−ε < s−ε < tj− 4ε
5
and G(tj) < G(t)+ ε

3
.

Therefore we obtain

G̃(t− ε) ≤ G̃(s− ε) = L̃(s− ε) ≤ L̃

(
tj −

4ε

5

)
< G(tj) +

2ε

3
< G(t) + ε .

This shows that G̃ is in an upper ε-neighbourhood of G.

In our next result we show that the approximating distribution function
does not change essentially if one adds arti�cially intervals of monotonicity.
Observe that there are at most countably many points where G is not right
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continuous, since G is increasing. Hence Gn(t) → G(t) for all t where G is
right continuous implies that limn→∞Gn(t) = G(t) for all t ∈ R \ E where
E is an at most countable set (note that the distribution functions are equal
to 0 for t ≤ 0 and equal to 1 for t ≥ 1). In particular, Gn → G almost
everywhere (with respect to the Lebesgue measure).

Theorem 3. Suppose that T : [0, 1] → [0, 1] is a piecewise monotonic map

with htop(T ) > 0, and assume that B is a mixing basic set of T . Let G
be the approximating distribution function of T on B. Moreover, suppose

that u ∈ N and x1, x2, . . . , xu ∈ [0, 1], and for n ≥ 1 let Jn ⊆ [0, 1] be

a union of at most u pairwise disjoint open intervals such that Jn+1 ⊆ Jn
holds for all n ≥ 1 and

⋂∞
n=1 Jn = {x1, x2, . . . , xu}. Assume that Gn is

the approximating distribution function of T on
⋂∞
k=0B \ (T−k(Jn)). Then

limn→∞Gn(t) = G(t) for all t ∈ (0, 1) where G is right continuous.

Proof. It is obvious that Gn(t) ≥ G(t) for all n and all t. Moreover, for
any t the sequence (Gn(t)) is decreasing. Hence it remains to show that
every t ∈ (0, 1) where G is right continuous, and for every ε > 0 there is an n
with Gn(t) < G(t)+ ε. For n ∈ N set B̃n :=

⋂∞
k=0B \ (T−k(Jn)). Denote the

endpoints of intervals of monotonicity of T by c0, c1, . . . , cN . Furthermore
let Ln be the function de�ned in (8) for B̃n. Again it is obvious that the
sequence (Ln(t)) is decreasing for any t and Ln(t) ≥ L(t) for any t and
any n.

Next we de�ne a re�nement Y of Z. Denote by Y the family of all
maximal open subintervals of [0, 1] \ {c0, c1, . . . , cN , x1, x2, . . . , xu}. If a point
in {c0, c1, . . . , cN , x1, x2, . . . , xu} is eventually periodic or attracted by a peri-
odic orbit, then let γ0 be the maximum of the periods of these periodic points.
Otherwise set γ0 := 0. Now �x q > γ0.

Let t ∈ (0, 1) be so that G is right continuous at t and let ε > 0. As G is
right continuous at t there is a δ > 0 with G(s) < G(t)+ ε

2
for all s ∈ (t, t+δ).

Choose t1 ∈ (t, t+ δ) so that L is right continuous at t1. From Proposition 1
we obtain that G(t1) = Hq(t1). Therefore there exist periodic points x, y ∈ B
whose periods are at least q, such that

Fx,y(t1) < Hq(t1) +
ε

2
= G(t1) +

ε

2
< G(t) + ε .

By the choice of q there is an m with x, y /∈
⋃∞
k=0 T

−k(Cm). Moreover, again
by the choice of q there is an l ∈ N with x ∈ B̃l (otherwise T kx ∈ Jl for
some k) and y ∈ B̃l. Hence (x, y) ∈ Q(B̃l).

Using Theorem 8 of [5] we obtain that the x and y can be represented
by periodic paths in the Markov diagram (D,→) of T with respect to Y .
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Moreover, there is an aperiodic maximal irreducible C ⊆ D with B = K(C).
Therefore using also Lemma 5 of [7] there exists an r such that x and y
can be represented by a periodic path in Dr and for every variant (A,→)
of D there is an aperiodic irreducible C1 ⊆ Ar with A(C1) ⊆ C and x and
y can be represented by a periodic path in C1. For n ∈ N de�ne Xn :=⋂∞
k=0 [0, 1] \ (T−k(Jn)).
Because of our assumptions �Jn converges to {x1, x2, . . . , xu}� in the sense

described in [9]. Hence Lemma 2 in [10] and Lemma 1 in [9] yield the existence
of an n ≥ l and variants (A,→) of D and (Ã,→) of the Markov diagram
of T

∣∣
Xn

and an injective function ϕ : Ar → Ãr with c→ d in A is equivalent

to ϕ(c) → ϕ(d) in Ã. Moreover, in this case we get Ã
(
ϕ(c)

)
⊆ A(c) for

all c ∈ Ar. Then there is an aperiodic irreducible C1 ⊆ Ar with A(C1) ⊆ C
and x and y can be represented by a periodic path in C1. Therefore ϕ(C1) is
aperiodic and irreducible, and x and y can be represented by a path in ϕ(C1).
This yields that ϕ(C1) is contained in an aperiodic maximal irreducible C̃ ⊆ Ã
and therefore K̃(C̃) is a mixing basic set of T

∣∣
Xn

. By Lemma 1 it contains

an aperiodic Markov subset X ⊆ B̃n with x, y ∈ X. Then (x, y) ∈ Q(X).
Denote by G̃, respectively L̃, the functions de�ned in (4), respectively (8),
for the set X. We get L̃(t1) ≤ Fx,y(t1) < G(t) + ε. Now choose an s with
t < s < t1 such that L̃ is right continuous at s. As L̃ is increasing we get
L̃(s) ≤ L̃(t1) < G(t) + ε. Furthermore Proposition 1 implies that G̃(s) =

L̃(s), which leads to G̃(s) < G(t) + ε. Since X ⊆ B̃n we get Gn(s) ≤ G̃(s).
Now Gn(t) ≤ Gn(s) ≤ G̃(s) < G(t) + ε completes the proof.

References

[1] M. Babilonová, Distributional chaos for triangular maps, Ann. Math. Sil. 13 (1999),
33�38.

[2] F. Balibrea, B. Schweizer, A. Sklar, J. Smítal, Generalized speci�cation property
and distributional chaos, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003),
1683�1694.

[3] F. Balibrea, J. Smítal, M. �tefánková, The three versions of distributional chaos,
Chaos Solitons Fractals 23 (2005), 1581�1583.

[4] A. Blokh, The `spectral' decomposition for one-dimensional maps, in Dynamics Re-
ported, Expositions in Dynamical Systems, vol. 4 (eds.: C. K. R. T. Jones, U. Kirch-
graber, H. O. Walther), Springer, Berlin, 1995, pp. 1�59.

[5] F. Hofbauer, Piecewise invertible dynamical systems, Probab. Theory Related
Fields 72 (1986), 359�386.



STABILITY OF THE DISTRIBUTION FUNCTION FOR INTERVAL MAPS 17

[6] R. Hric, M. Málek, Omega limit sets and distributional chaos on graphs, Topology
Appl. 153 (2006), 2469�2475.

[7] P. Raith, Continuity of the Hausdor� dimension for piecewise monotonic maps, Israel
J. Math. 80 (1992), 97�133.

[8] P. Raith, Continuity of the Hausdor� dimension for invariant subsets of interval
maps, Acta Math. Univ. Comenian. 63 (1994), 39�53.

[9] P. Raith, The behaviour of the nonwandering set of a piecewise monotonic interval
map under small perturbations, Math. Bohem. 122 (1997), 37�55.

[10] P. Raith, The dynamics of piecewise monotonic maps under small perturbations,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1997), 783�811.

[11] B. Schweizer, A. Sklar, J. Smítal, Distributional (and other) chaos and its measure-
ment, Real Anal. Exchange 26 (2000/2001), 495�524.

[12] B. Schweizer, J. Smítal, Measures of chaos and a spectral decomposition of dynamical
systems on the interval, Trans. Amer. Math. Soc. 344 (1994), 737�754.

Michal Málek

Matematický ústav, Slezská univerzita v Opav¥, Na Rybní£ku 1, 746 01 Opava, Czech
Republic
e-mail address: michal.malek@math.slu.cz

Peter Raith

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Aus-
tria
e-mail address: peter.raith@univie.ac.at


	.The distribution function of a dynamical system
	.Alternative definitions of the approximating distribution function
	.The approximating distribution function of continuous piecewise monotonic maps
	.Stability results for the approximating distribution function of piecewise monotonic maps

