This paper has been published after editorial input in
Nonlinear Anall 73 (2010), 1533-1537,
©) 2010 Elsevier, Amsterdam.

Topological entropy for set valued maps

MAREK LAMPART AND PETER RAITH

Abstract. Any continuous map 7T on a compact metric space X induces in a
natural way a continuous map 7' on the space K(X) of all non-empty compact
subsets of X. Let T be a homeomorphism on the interval or on the circle.
It is proved that the topological entropy of the induced set valued map T is
zero or infinity. Moreover, the topological entropy of T|c(x) is zero, where
C(X) denotes the space of all non-empty compact and connected subsets of
X. For general continuous maps on compact metric spaces these results are
not valid.

1. Preliminary

Many phenomena arising from Population Dynamics, Economy Theory,
Social Sciences and Engineering are described by discrete dynamical system

(1) Tpp1 =T(xn), n=0,1,2,...

where points x,, belong to a compact metric space X and T : X — X is a
continuous transformation. The main aim of the theory of discrete dynamical
systems is centred on the understanding how the trajectories of all points
from X look like.

Nevertheless, to understand many events from the system ([Il) it needs to
know how the subsets (called collectives) of X are moved, not only points
(called individuals). In this direction we consider the set valued discrete
dynamical system

(2) Kny1 =T(K,),n=0,1,2,...
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where points K, belong to a set of all non-empty compact subsets of X and T
(called induced map) is the natural extension of T defined by T(K) = T(K)
for any compact subset of X.

2. Introduction

Let (X,d) be a compact metric space and T : X — X be a continuous
map. Denote by K(X) the set of all non-empty compact subsets of X i.e.

K(X) = {K CX: K is compact},

and let C(X) be the set of all compact and connected subsets of X.
On K(X) we will use the Hausdorff metric dy defined by

dp(Ky, Ky) = max{ sup d(z1, K3), sup d(%,Kl)}-

T1€K1 T2€ K2

This space endowed with the Hausdorff metric is compact. The topol-
ogy induced by the Hausdorff metric is equivalent to the Vietoris topology
whose base is defined for any finite collection of non-empty open subsets
Ul,UQ,...,Un Obey

(U1, Us, ... Up) ={K e KX)| K C | JUi, KNU; # O fori =1,2,...,n}.

i=1
We define the induced map T : K(X) — K(X) by
TK)=T(K)={T(z)|z € K}.

The main aim is to find all the dynamical properties which are preserved while
moving from T to T and conversely. Many of them are known. Transitivity
and mixing properties were discussed in [6] and [I0]. Various notions of
chaos were studied in [T}, [B], [@, [B], [8], [9], |11, [T2], [T4], and finally, some
properties about topological entropy were proved in [7].

As it was proved in [2] (or [7]) if T has PTE (positive topological entropy)
then also T does. The converse is not true (see, e.g. [A]). It is also true that
if T has PTE than topological entropy of T is infinite (see [2] or [7]). The
main aim of the present paper is to clarify these observance in more details.

The paper is organized as follows: First, we put some motivations in
Section [l and definitions in Sections Pl and Bl Then in Section Bl we prove
results on the interval, on the circle and on continua. We close in Section
with counter examples for general compact metric spaces.
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3. Definitions

Let T : X — X be a continuous map of a compact metric space (X, d).
Define d,(z,y) = maxo<j<n—1 d(T"(x), T"(y)) for any natural number n and
x,y € X. For a natural number n, ¢ > 0 and a compact subset K of X, a
subset F of X is said to (n, e) span K with respect to T if for any x € K there
is y € F such that d,(x,y) < e. Denote by r, (e, K) the smallest cardinality
of any (n, ) spanning set for K with respect to 7.

Definition 1. The topological entropy h(T) of T is defined by

1
(3) hT) = }jli% hnmﬁs;lp - logr,(¢,X) .

Now let A be any finite set (an alphabet) containing n elements (called
symbols). An infinite word is a map w: Ny — A, hence it is an infinite
sequence (wy, W, Wy, ...) where w; € A for any i € Ny. The set of all infinite
words over the alphabet A is denoted by ¥,,.

The set A is endowed with the discrete topology. Then ¥, is metrizable
by the following metric. For any z,y € ¥,, put

_ 2wy,
(4) d(z,y) = { 0,  otherwise,

where k is the length of the maximal common prefix of  and y. Now, define
a shift map o,: ¥, — X, by

(on(®))i = Tip1

The pair (X,,0,) is said to be the one-sided shift on n symbols.

If we consider the space AZ of bi-infinite words (i.e. sequences Z —
A), then we can build an analogous theory of shift spaces. Then the pair
({0,...,n —1}% 0,) is called two-sided shift on n symbols.

We denote by O(x) full orbit of x under T', by wr(z) an omega limit set
of z under T" and by w(T") union of all omega limit sets. By Fix(7T') we denote
the set of all fixed points and by Per(T') the set of all periodic points.

4. Results on continua

In this section we characterize topological entropy of homeomorphisms
and their induced maps on the interval T = [0, 1], the unit circle S* and on
continua X. The following proposition which follows directly from Theorem
7.5 and Corollary 8.6.1 in [I3] will be used in our proofs.
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Proposition 1. Let X be a compact metric space and T a continuous map.
If w(T) € My UMy U---U M,, where the sets M; are closed and invariant
under T for each i, then h(T) = maxj<;<, h(T

From the proof of Corollary 8.6.1 in [T3| we get the following result.

Proposition 2. Let T : X — X be a continuous map where X is a com-
pact metric space. Assume that for any x € X there is a y € Fix(T) with
lim,, yoo 7™(x) = y. Then h(T) = 0.

Firstly, we would like to concentrate our attention on homeomorphisms

defined on T and we distinguish between induced homeomorphisms on C(I)
and C(I).

Theorem 1. Let T be a homeomorphism on 1. Then h(T) = h(T|cx)) = 0.

Proof. Tt follows from Corollary 7.14.1 in [13] that h(T) = 0. The map T?
is increasing. If T2 is the identity then T is also the identity and hence
2h(T) = h(TZ) = 0. Therefore it remains to consider the case that T? is not
the identity.

Let K € C(I). Then K = [ki, ko). Set zy = inf{x € [k,1] : = €
Fix(T?)} if T?(ky) > ki, and 2y = sup{x € [0, k] : © € Fix(T?)} otherwise.
Analogously define zo = inf{z € [ko, 1] : x € Fix(T?)} if T?(ky) > ko, and
zy = sup{z € [0,k2] : € Fix(T?)} otherwise. Then limn%oo(TQ)”(K) =
[21, 25]. Hence Proposition B gives 2h(T|cr) = h((T|em)?) = 0, completing
the proof. O

Now we will prove a result on continua X. It will state that for a homeo-
morphism 7" on X the existence of a point = ¢ Fix(T") with lim,, ,, 7" (x) and
limy, oo T (x) exists implies that h(7|x(;)) = co. Note that these two limits
may be equal or may be different. In any case both have to be fixed points
of T. If both limits coincide the two-sided orbit of z would be homoclinic.

Lemma 1. Let X be a continuum and let T : X — X be a homeomor-
phism. Assume that there exist (1,)5 _ ., with T,, # Tn, for ni # ny and
T(x,) = Tpy1 for all n € Z. Moreover assume that a = lim,_ oz, and
b = lim, o v_p exist. Then there exist (Yrn)ieo oo With Ykyny F Yksms

for (ni, ki) # (n2, k), T(Ykn) = Ykntr for all k € Ny and all n € Z and
limy, o0 Yin = @ and lim, o Ypn, = b for all k € Ny.

Proof. Consider an arc y between z and z; such that Per(T)Nvy, = 0. AsT
is a homeomorphism there are (,)7 _ _ such that -, is an arc between z,_;
and z,, and T'(7,) = vn41 for all n. Choose a sequence (yx)52, in 7o \ {z1}
with yg, # yx, for k1 # ke. For k € Ny and n € Z define y,,, = T™(yx). Then

(V) ol o, obviously satisfy the desired properties. O
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Now we are able to present the above-mentioned result. The proof is
similar to the proof of Theorem 10 in [4].

Theorem 2. Let X be a continuum and let T : X — X be a homeomorphism.
Suppose that there exist (x,)5° with Ty, # Tn, for ny # ny and T(x,) =

n=—odo
Tpi1 for all n € Z. Moreover assume that lim,_, x, and lim,_,, x_, ezist.

Then h(T|IC(X)) = Q.

Proof. By Lemmal[llthere are (yxn)52 0 o2 _ o With Yk, n, 7 Ykyn, fOT (1, k1) #
(n2, ko) T (Ykn) = Yk.ny1 forallk € Ny and all n € Z and lim,, o Y, = @ and
lim,, oo Yi,n = b for all k € Ny, where lim,,_,oc 2, = @ and lim,,_, oz, = b.
Fixanr € N. Then L, = —{ O(yr0) = {thn : 0 < k <r—1,n € Z}U{a,b}.

We construct a conjugation ¢ between K(L,) and ({0,1}")% If K €
K(L,) define o(K) = ((wo,n, Wi, - - - ,wT,l,n))ZO:ﬂo where wy,, = 1 if yz,, €
K and wy,,, = 0 otherwise. This map is bijective and satisfies poT = g 0 ¢
where o is the shift map. Obviously ¢ is conjugated to the two-sided shift
on 2" symbols. Therefore h(T|icx)) > h(T|1,) = log(2"). Since this holds for
any 7 we obtain h(7|xx)) = oc. O

Next we consider again homeomorphisms on the interval. In Theorem [l
it was proved that h(T'|¢xx)) = 0. The situation is different if we consider

T|K(X).

Theorem 3. Let T : I — I be a homeomorphism such that T? is not the
identity. Then h(T) =0 and h(T'|xm)) = oo.

Proof. As in Theorem M h(T) = 0 (Corollary 7.14.1 from [I3]). Since T? is
not the identity there is an z with T?(z) < x or T?(x) > x. Without loss
of generality we may assume that T%(z) < x. Then (T?"(x))° _, satisfies
that 72" (z) < T?" () for ny < ng, lim,_,o T?*"(z) is a fixed point of T? and
lim,, ,_o T?%"(z) is a fixed point of T?. Therefore Theorem B implies that

2h(T |k (1)) = h(T?|xq)) = oo completing the proof. O

Remark 1. Let us note as a consequence of Theorems [[ and Bl that the
topological entropy of homeomorphisms on I is supported on the subspace of
non-connected subsets of X.

Next we consider homeomorphisms on the unit circle St. We like to find
the topological entropies of its induced maps with respect to the spaces K(Sh
and C(S"). At first we investigate T|¢(s).

Theorem 4. Let T’ be a homeomorphism on'S'. Then h(T') = h(T|¢sy) = 0.
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Proof. By Theorem 7.14 from [I3| we have that h(7') = 0. It remains to
show that h(T|¢s1)) = 0.

For x,y € S' let [z, y] be all points of S! lying in counterclockwise sense
between z and y ([z,y] = {z} if z = y). Then each non-empty A € C(S')
satisfies A = [z,y] for some z,y or A = Sl Define C( N = {(z, [z, y])
z,y € 81} U {(2,8") : v € S'} and define T :C(SY) — C(SY) by T(x, A) =
(T(x),T(A)). Then T is continuous and Tley is a factor of T. Now define
o(z,[z,y]) = (z,y) for 2,y € S! and p(z, Sl) = (z,z) for z € S'. The
map ¢ : C(S') = S! x S is continuous and satisfies ¢ o T = (T x T) o ¢.
Moreover, every element of S' x S! has at most two pre-images under ¢ and
¢! is continuous on S' x S'\ {(z,z) : z € S'}. Therefore h(T) = h(T x T).
From Theorem 7.10 in [I3] we obtain h(T XT) =h(T)+h(T) =0. As T|¢(sy)

is a factor of T its entropy is less than h(T') = 0, and hence h(T|esy) =0. O

On the interval there were two possibilities for h(T|x(s1)) by Theorem
If T2 is the identity this entropy equals zero, otherwise it equals infinity. Our
next result states that also for homeomorphisms on the circle the entropy is
either zero or infinity.

Theorem 5. Let T’ be a homeomorphism on S*. Then either h(T |x(s1)) = 0
or h(T'|x(s1) = o0

Proof. Assume at first that T has a periodic point. Then there is an z € S!
and a k € N with T*(z) = x. Every z € S! can be written as z = xe?™ for
some t € [0,1]. The map ¢(z) =t conjugates T* to a homeomorphism on I.
Hence Theorem Blimplies that kh(T|ic(s1)) = h(Tk|,C(S1)) € {0,00}.

It remains to consider the case that 7" has no periodic points. If T is
conjugated to an irrational rotation then T|]C(Sl) is conjugated to an isometry
(as any rotation is an isometry). Therefore h(T|,C(S1)) = 0 in this case.
Otherwise there exists an € S! which is not contained in the w-limit set of
T. Denote the a-limit set of x by A and the w-limit set of by B. Then the
two-sided orbit of z is disjoint from A U B. Now a proof analogous to the
proof of Theorem B (and the proof of Lemma [Il) shows that h(T|K(Sl)) =00
in this case. O

Remark 2. From Theorems [l Bl B and B one can derive the following re-
sults for a homeomorphism 7" on a graph X. We have again that h(T") =
h(T|cex)) = 0. Furthermore h(T |k (x)) € {0, 00}.

To the end of this section we present examples showing differences in
the behaviour for continuous interval maps. Our first example shows that
Theorem [l is not true for continuous maps on the interval. According to the
second example a one-sided analogon of Theorem ] does not hold.
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Ezample 1. Let T be the full tent map defined by T'(x) = 1 — |22 — 1| on
I. It is well known that h(7") = log2. Let K; C C(I) be a non-degenerated
interval. Then T"(K,) — I, for n — oco. If Ky C C(I) is a singleton then
T(K;) = T(K,) and h(T) = h(T|cq)) = log2. Obviously, by Proposition
below h(T|]C(]I)) = Q.

Remark 3. For the proof of the above constructions we need the map T to
be homeomorphism. The constructions are not valid for continuous maps. If
T is a continuous map, e.g. T(x) = 3z, then the essential subspace of K(X)
is conjugated to the right one-sided shift on two symbols. Put z € int(I)
and K = {T%(z) : j € N C N}. Then T(K) = {T"*'(z) : j € N C N}
and T is conjugated to the right one-sided shift on two symbols. Hence,
oy (Wo, Wy, Wy, . .. ) = (0, wq, wy, Wy, ... ) since & ¢ T(K). So, T (K) tends to
the fixed point {0} and h(T|xx)) = 0.

5. Results on compact metric spaces

In this section we formulate theorems on general compact metric spaces
and we find some counter examples. At first we present a result proved in

[2].

Proposition 3. Let T' be a continuous map on X such that h(T) > 0, then

Remark 4. Let us note, that the above proposition is not valid on C(X), see
Example [1

Finally, we construct examples of homeomorphisms such that they have
zero topological entropy and their induced maps have positive topological
entropy.

Theorem 6. For any positive integer n there is a disconnected compact met-
ric space X and a homeomorphism T on X such that h(T) = 0, h(T'|¢x)) = 0
and h(T|xx)) = nlog?2.

Proof. Let Y be the one point compactification of Z and define G : Y — Y
by

k+1, if kez,
(5) G k) = { 0, if k=o0,
(see the picture below). By [7] h(G) = log2 (in [7] a subsystem conjugate to
the two-shift has been constructed).
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Now, by collapsing {1,2,...n} x {oc} in {1,2,...n} X Y into a single
point, we get a compact metric space X. One can think of it as a subspace
of R®. The topology on X is given by the metric inherited from R*. We can
imagine the space X as a union of slices Y; = Y x {oco} with one common
point co. Let T': X — X be the map such that T restricted to Y; is equal to
G, for each 1.

Consequently, by the same arguments as in Theorem B we have h(T) =
log(2") = nlog?2. O

88— e+ 8 +6—— 8 > @ > @ i > @ >

Proposition 4. There is a disconnected compact metric space X and a home-
omorphism T on X such that h(T) = 0, h(T'|¢x)) = 0 and h(T|xx)) = oo.

Proof. If we replace the set {1,2,...,n} by the set D ={1/n:n € N} U{0}
in the proof of Theorem B then we get the assertion. O

6. Concluding Remarks

As it was proved, it is possible that h(T|¢(x)) is 0, finite or infinite for a
continuum X (see Example [[l Theorem [M). The natural question is whether
the same is true for h(7T|x(x)) on a continuum X. We analyzed this situation
for the interval I, circle S* and a finite graph. So the following problem
remains still open.
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Open problem. Is it possible that h(7'|cn)) is not zero and finite for a dendrite
D?

To the end we can pose a hypothesis.

Hypothesis. Let T be a homeomorphism on a continuum X. Then h(T[xcx)) =
oo or h(T|IC(X)) =0.

As it seems (see Section H) the assumption of continua makes sense. In
this direction one can ask the following question.

Open problem. Which topological spaces X satisfy that h(T|xx)) € {0, 00}
for all continuous maps 7' (or for all homeomorphisms 7).
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