This paper has been published after editorial input in Aequationes Math. **82** (2011), 91–109, (C) Birkhäuser, Basel.

Topological transitivity for a class of monotonic mod one transformations

PETER RAITH AND ANGELA STACHELBERGER

Abstract. Suppose that $f:[0,1] \to [0,2]$ is a continuous strictly increasing piecewise differentiable function, and define $T_f x := f(x) \pmod{1}$. Let $\beta \geq \sqrt[3]{2}$. It is proved that T_f is topologically transitive if $\inf f' \geq \beta$ and $f(0) \geq \frac{1}{\beta+1}$. Counterexamples are provided if the assumptions are not satisfied. For $\sqrt[3]{2} \leq \beta < \sqrt{2}$ and $0 \leq \alpha \leq 2 - \beta$ it is shown that $\beta x + \alpha \pmod{1}$ is topologically transitive if and only if $\alpha < \frac{1}{\beta^2+\beta}$ or $\alpha > 2 - \beta - \frac{1}{\beta^2+\beta}$.

Introduction

Let $f: [0,1] \to [0,2]$ be a continuous strictly increasing function. Define

(1)
$$T_f x := f(x) \pmod{1} := f(x) - [f(x)],$$

where [y] denotes the largest integer smaller than or equal to y. Such a map is called a monotonic mod one transformation (with two monotonic pieces). A general monotonic mod one transformation is also defined as in (1), but $f: [0,1] \to \mathbb{R}$. Assume that f is a piecewise differentiable function, that means f is differentiable on $(0,1) \setminus F$ where F is a finite set. The map T_f is called topologically transitive if there is an $x \in [0,1]$ such that $\{T_f{}^n x : n \in \mathbb{N}\}$ is dense in [0,1]. This is equivalent to the property that there is an x whose ω -limit set equals [0,1], where the ω -limit set is the set of all limit points of the sequence $(T_f{}^n x)_{n \in \mathbb{N}}$. For further properties of topological transitivity see e.g. [1], [5], and [12].

The aim of this paper is to present conditions for f implying topological transitivity (obviously there will not be equivalent conditions). These conditions are related to the derivative of f. Set $\inf f' := \inf \{ f'(x) : x \in (0,1) \setminus F \}$.

²⁰¹⁰ Mathematics Subject Classification. 37E05, 37B05, 37D20, 54H20.

Key words and phrases. Monotonic mod one transformations, topological transitivity, expanding map.

In fact, the condition $\inf f' \geq \beta$ used throughout this paper could be replaced by the weaker condition $|f(x) - f(y)| \geq \beta |x - y|$ for all $x, y \in [0, 1]$. As in the proofs only the fact that an interval of length d is mapped to an interval of length at least βd is used they work also in the more general case. However, in the statements of the results we use $\inf f' \geq \beta$, since this is the easier formulation.

Similar problems have been treated in [6], [9], and [10]. In [6] and [9] conditions implying the topological transitivity of piecewise monotonic maps are investigated. These results imply that a general monotonic mod one transformation is topologically transitive if inf f' > 2 (Corollary 1.1 in [9]). It has been proved in [10] that a monotonic mod one transformation with two monotonic pieces satisfying $inf f' \ge \sqrt{2}$ is topologically transitive (Theorem 1 in [10]).

Throughout this paper we will only consider monotonic mod one transformations with two monotonic pieces. The main result (Theorem 1) states that a monotonic mod one transformation satisfying $\inf f' \geq \beta$ for some $\beta \geq \sqrt[3]{2}$ and $f(0) \geq \frac{1}{\beta+1}$ is topologically transitive. In particular (Corollary 1.1) any monotonic mod one transformation with $\inf f' \geq \sqrt[3]{2}$ and $f(0) \geq \frac{1+\sqrt[3]{4}-\sqrt[3]{2}}{3} = \frac{1}{\sqrt[3]{2}+1}$ is topologically transitive. An example is presented where $\beta < \sqrt[3]{2}$, $\inf f' \geq \beta$, $f(0) \geq \frac{1}{\beta+1}$ and T_f is not topologically transitive. Finally we give an example with $\inf f' \geq \sqrt[3]{2}$ and $f(0) < \frac{1+\sqrt[3]{4}-\sqrt[3]{2}}{3}$ where T_f is not topologically transitive.

Then the special case $\beta x + \alpha \pmod{1}$ is investigated. In this case the results are slightly different to the general case. Suppose that $\sqrt[3]{2} \leq \beta < \sqrt{2}$ and that $0 \leq \alpha \leq 2 - \beta$. Then Theorem 4 states that $\beta x + \alpha \pmod{1}$ is topologically transitive if and only if $\alpha < \frac{1}{\beta^2 + \beta}$ or $\alpha > 2 - \beta - \frac{1}{\beta^2 + \beta}$.

1. The Markov diagram of monotonic mod one transformations

Consider again a continuous strictly increasing piecewise differentiable function $f : [0,1] \rightarrow [0,2]$ and let T_f be as in (1). If $\inf f' > 1$ then there exists a unique $c \in (0,1)$ with f(c) = 1. Define $\mathcal{Z} := \{(0,c), (c,1)\}$. For each $Z \in \mathcal{Z}$ the map $T_f|_Z$ is continuous and strictly increasing. Note that T_f is discontinuous at c.

A topological dynamical system (X, S) is a continuous map $S : X \to X$ on a compact metric space (see e.g. [12]). As T_f is not continuous $([0, 1], T_f)$ is not a topological dynamical system. In order to get a topological dynamical system we use a standard doubling points construction as in [7] or [11]. For details we refer to the papers mentioned above. To investigate the orbit structure of a piecewise monotonic map Franz Hofbauer introduced the Markov diagram in [2] (see e.g. [2] and [4]). It is an at most countable oriented graph. For the convenience of the reader we describe it for monotonic mod one transformations. Let $Z_0 \in \mathbb{Z}$ and let D be an open subinterval of Z_0 . We call a nonempty C a successor of D, if there exists a $Z \in \mathbb{Z}$ with $C = T_f D \cap Z$. In this case we write $D \to C$. Now let \mathcal{D} be the smallest set with $\mathbb{Z} \subseteq \mathcal{D}$ satisfying $D \in \mathcal{D}$ and $D \to C$ imply $C \in \mathcal{D}$. Then the oriented graph (\mathcal{D}, \to) is called the Markov diagram of T_f . The set \mathcal{D} is at most countable and its elements are open subintervals of elements of \mathbb{Z} . A subset $\mathcal{C} \subseteq \mathcal{D}$ is called *irreducible*, if for every $C, D \in \mathcal{C}$ there exists a finite path $C_0 \to C_1 \to \cdots \to C_n$ in \mathcal{C} with $C_0 = C$ and $C_n = D$. We call $\mathcal{C} \subseteq \mathcal{D}$ closed if $C \in \mathcal{C}, D \in \mathcal{D}$ and $C \to D$ imply that $D \in \mathcal{C}$. In the proofs we need the following result of Franz Hofbauer which is also true for general piecewise monotonic maps.

Lemma 1. Assume that $f : [0,1] \to [0,2]$ is continuous and strictly increasing, and let (\mathcal{D}, \to) be the Markov diagram of T_f . Moreover, suppose that there is an irreducible and closed $\mathcal{C} \subseteq \mathcal{D}$ with $\bigcup_{C \in \mathcal{C}} \overline{C} = [0,1]$. Then T_f is topologically transitive.

Proof. This result follows from (i) of Theorem 11 and Theorem 1 in [4]. \Box

For monotonic mod one transformations the Markov diagram has a special structure. More details of the Markov diagram of a monotonic mod one transformation can be found in [3] and [8]. However we will not need details of this special structure.

2. Topological transitivity

It is useful to modify the orbits of 0 and 1 in the following way for the map T_f defined in (1). For $n \in \mathbb{N}$ set $T_f^{n}0 := \lim_{x\to 0^+} T_f^{n}x$ and $T_f^{n}1 := \lim_{x\to 1^-} T_f^{n}x$.

If C is an interval denote by |C| the length of C.

Lemma 2. Assume that $f : [0,1] \to [0,2]$ is continuous, strictly increasing, piecewise differentiable and satisfies $\inf f' > 1$. Moreover, let $n \in \mathbb{N}$, $n \ge 2$, and suppose that $T_f 0 > T_f^{2} 0 > \cdots > T_f^{n-2} 0 \ge c$. Let $C \in \mathcal{D}$ be so that c is an endpoint of C. If $C \subseteq (c,1)$ set $C_0 := C$, $C_1 = T_f C \cap (0,c)$ and $C_j := T_f C_{j-1} \cap (c,1)$ for $j = 2,3,\ldots,n$, and if $C \subseteq (0,c)$ set $C_0 := C$, $C_j := T_f C_{j-1} \cap (c,1)$ for $j = 1,2,\ldots,n-1$ and $C_n = T_f C_{n-1} \cap (0,c)$. Suppose that $C_0 \subseteq C_n$ and $|C_n| > |C_0|$. Then there exists a path $C \to C_1 \to \cdots \to C_k$ with $C_k \in \{(0,c), (c,T_f^{n-2}1)\}$. Proof. Define $\beta := \inf f'$ and $\delta := |C_n| - |C_0|$. Assume that $C \subseteq (c, 1)$. Then the left endpoint of C_j is $T_f^{j-1}0$ for j = 1, 2, ..., n-1. For j = 1, 2, ..., n let $Z_j \in \mathcal{Z}$ be so that $C_j \subseteq Z_j$. Now define $C_{tn+j} = T_f C_{tn+j-1} \cap Z_j$ for $t \in \mathbb{N}$ and j = 1, 2, ..., n. Next we prove by induction that $C_{(t-1)n+j} \subseteq C_{tn+j}$. By our assumption $C_0 \subseteq C_n$ and hence $C_1 = T_f C_0 \cap Z_1 \subseteq T_f C_n \cap Z_1 = C_{n+1}$. Now let t > 1 or j > 1. Then $C_{(t-1)n+j-1} \subseteq C_{tn+j-1}$ and therefore $C_{(t-1)n+j} = T_f C_{(t-1)n+j-1} \cap Z_j \subseteq T_f C_{tn+j-1} \cap Z_j = C_{tn+j}$.

Now we claim that for every $t \in \mathbb{N}$ there is an $p \leq tn$ such that C_p has a successor in $\{(0,c), (c,T_f^{n-2}1)\}$ or $|C_{tn}| \geq |C_0| + \beta^{n(t-1)}\delta$ and $\sup C_{tn} \geq \sup C_{(t-1)n} + \beta^{(t-1)n}\delta$. This is obvious in the case t = 1 by our assumptions. Let t > 1. If C_p has a successor in $\{(0,c), (c,T_f^{n-2}1)\}$ for some $p \leq (t-1)n$ we are done. Otherwise $C_{(t-1)n} \subseteq (c,1)$. If $C_{(t-1)n} \to (0,c)$ we are done. Assume that $C_{(t-1)n+1}$ is the only successor of $C_{(t-1)n}$. Then $C_{(t-1)n+j}$ is the only successor of $C_{(t-1)n+j-1}$ for $j = 2, 3, \ldots, n-1$ and $\sup C_{(t-1)n+j} - \sup C_{(t-2)n+j} \geq \beta^j (\sup C_{(t-1)n} - \sup C_{(t-2)n+j}) \geq \beta^{(t-2)n+j}\delta$. Hence $|C_{tn}| = \sup C_{tn} - c \geq \beta^{(t-1)n}\delta + |C_0|$.

Since $\beta > 1$, $|C_0| + \beta^{(t-1)n}\delta$ tends to infinity, if $t \to \infty$. As $|C_{tn}| \le 1$ for all *n* this implies that there is a *k* with $C_k \in \{(0,c), (c,T_f^{n-2}1)\}$. A similar reasoning works in the case $C \subseteq (0,c)$.

Lemma 3. Assume that $f : [0,1] \to [0,2]$ is continuous, strictly increasing, piecewise differentiable and satisfies $\inf f' > 1$. Then there exists an $r \in \mathbb{N}$ with $T_f r 0 < c$. Let r(f) be the smallest $r \in \mathbb{N}$ with $T_f r 0 < c$. Then $T_f 0 >$ $T_f^{2} 0 > \cdots > T_f^{r(f)-1} 0 \ge c$ and $T_f 0 < T_f 1$ for $j = 1, 2, \ldots, r(f)$.

Proof. Set $\beta := \inf f'$. As $f(1) - f(0) \geq \beta$ we get $T_f 1 = f(1) - 1 \geq f(0) + \beta - 1 = T_f 0 + (\beta - 1) > T_f 0$. If $T_f 0 < c$ we have r(f) = 1 and we are done. Assume that $T_f{}^j 0 \geq c$ for $j = 1, 2, \ldots, s$. Note that for $c \leq x < 1$ we get $1 - T_f x \geq T_f 1 - T_f x = f(1) - f(x) \geq \beta(1 - x) > 1 - x$ and therefore $T_f x < x$. Hence $T_f 0 > T_f{}^2 0 > \cdots > T_f{}^{s+1} 0$. Moreover, using $T_f 0 < T_f 1$ and induction we get $T_f{}^j 0 < T_f{}^j 1$ for $j = 1, 2, \ldots, s + 1$. Also using induction we get $1 - T_f{}^j 0 \geq \beta^{j-1}(1 - T_f 0)$, and therefore $0 \leq T_f{}^j 0 \leq 1 - \beta^{j-1}(1 - T_f 0)$ for $j = 1, 2, \ldots, s + 1$. Since $1 - T_f 0 > 0$ and β^{j-1} tends to infinity for $j \to \infty$ there must be an r with $T_f{}^r 0 < c$. This completes the proof.

Remark. If $\inf f' \geq \sqrt[3]{2}$ then $r(f) \leq 6$. To see this set $\beta := \inf f'$ and r := r(f). As shown above $|(T_f 0, 1)| \geq T_f 1 - T_f 0 \geq \beta - 1$. Moreover $1 \geq |(T_f r 0, T_f^{r-1} 1)| \geq \beta^{r-1}(\beta - 1) = \beta^r - \beta^{r-1}$. Observe that $x \mapsto x^r - x^{r-1} - 1$ is strictly increasing for x > 1. Since $\sqrt[3]{2} > \frac{5}{4}$ this implies that $\beta^7 - \beta^6 - 1 \geq (\sqrt[3]{2})^7 - (\sqrt[3]{2})^6 - 1 = 4\sqrt[3]{2} - 5 > 0$, and therefore $1 \geq \beta^7 - \beta^6$ can not be satisfied.

Now we show the following result.

Lemma 4. Suppose that $f(x) := \sqrt[3]{2}x + \frac{2+\sqrt[3]{4}-2\sqrt[3]{2}}{2}$. Then T_f is topologically transitive.

Proof. Set $\alpha := \frac{2+\sqrt[3]{4}-2\sqrt[3]{2}}{2}$. Then $T_f 0 = \alpha$, $T_f 1 = \sqrt[3]{2} + \alpha - 1 = \frac{1}{\sqrt[3]{2}}$ and f(c) = 1 for $c := \frac{1-\alpha}{\sqrt[3]{2}} = 1 - \frac{1}{\sqrt[3]{4}}$. Obviously $T_f 1 > \alpha > c$. Therefore follows $T_f^{2}1 = \alpha = T_f 0, T_f^{2}0 = 1 - \frac{1}{\sqrt[3]{2}} < c$ and $T_f^{3}0 = \frac{1}{\sqrt[3]{2}} = T_f 1$. This implies that $T_f(T_f^{2}0, c) = (T_f 1, 1), T_f(c, T_f 0) = (0, T_f^{2}0), T_f(T_f 1, 1) = T_f(0, T_f^{2}0) = (T_f 0, T_f 1)$ and $T_f(T_f 0, T_f 1) = (T_f^{2}0, T_f 0)$. Hence

$$\mathcal{C} := \{(0, T_f{}^20), (T_f{}^20, c), (c, T_f0), (T_f0, T_f1), (T_f1, 1)\}$$

is an irreducible and closed subset of the Markov diagram of T_f and $\bigcup_{C \in \mathcal{C}} \overline{C} = [0, 1]$. Now Lemma 1 implies that T_f is topologically transitive.

Lemma 5. Assume that $f : [0,1] \to [0,2]$ is continuous, strictly increasing and piecewise differentiable. Further assume that $\beta > 0$, $\inf f' \ge \beta$ and $f(0) \ge \frac{1}{\beta+1}$. Set $\alpha := f(0)$. Then $\alpha \ge \frac{1}{\beta+1} \ge c$.

Proof. Because of $\alpha \geq \frac{1}{\beta+1}$ we get that $\frac{1-\alpha}{\beta} \leq \frac{1}{\beta+1}$. Since $1 = f(c) \geq \alpha + \beta c$ we obtain $c \leq \frac{1-\alpha}{\beta} \leq \frac{1}{\beta+1} \leq \alpha$.

Remark. In particular Lemma 5 states that $r(f) \ge 2$ under the assumptions of Lemma 5.

Lemma 6. Suppose that $f:[0,1] \to [0,2]$ is continuous, strictly increasing and piecewise differentiable. Further assume that $\beta \geq \sqrt[3]{2}$, $\inf f' \geq \beta$ and $f(0) \geq \frac{1}{\beta+1}$. Moreover assume that $d_1 < c < d_2$, $C_0 := (d_1,c)$, $D_0 := (c,d_2)$, $|C_0| = |D_0|$, $T_f d_2 \leq c$, $T_f^2 d_1 \geq c$ and $T_f^3(d_1,c) = T_f^3(c,d_2) = (d_1,d_2)$. Then $f(x) = \sqrt[3]{2}x + \frac{2+\sqrt[3]{4}-2\sqrt[3]{2}}{2}$ for all $x \in [0,1]$.

Proof. From Lemma 5 it follows that $T_f d_1 \geq T_f 0 \geq c$, hence $C_1 := T_f C_0 = (T_f d_1, 1) \subseteq (c, 1)$. As $T_f^2 d_1 \geq c$ we get that $C_2 := T_f C_1 = (T_f^2 d_1, T_f 1) \subseteq (c, 1)$. Furthermore $T_f C_2 = (d_1, d_2)$ by our assumptions. Since $T_f d_2 \leq c$ we obtain that $D_1 := T_f D_0 = (0, T_f d_2) \subseteq (0, c)$ and therefore $D_2 := T_f D_1 = (T_f 0, T_f^2 d_2) \subseteq (c, 1)$. Again our assumptions give $T_f D_2 = (d_1, d_2)$. In particular we have $T_f d_2 \in [0, c]$ and $T_f 0, T_f 1, T_f d_1, T_f^2 d_1, T_f^2 d_2 \in [c, 1]$. As inf $f' \geq \beta \geq \sqrt[3]{2}$ we get $|T_f C_2| \geq 2|C_0|$ and $|T_f D_2| \geq 2|D_0|$. Now $|C_0| = |D_0|$ and $T_f^3 C_0 = T_f^3 D_0 = (d_1, d_2)$ imply that there are $\alpha_0, \alpha_1, \alpha_2, \widehat{\alpha}_0, \widehat{\alpha}_1, \widehat{\alpha}_2$ with $f(x) = \sqrt[3]{2}x + \alpha_j$ for $x \in C_j$ and $f(x) = \sqrt[3]{2}x + \widehat{\alpha}_j$ for $x \in D_j$ if $j \in \{0, 1, 2\}$.

Assume that $T_f d_2 < d_1$. Because of $T_f^3 d_1 = d_1$ and $T_f^4 d_2 = T_f T_f^3 d_2 = T_f d_2$ we get

$$|d_1 - T_f d_2| = |T_f^3 d_1 - T_f^4 d_2| \ge 2|d_1 - T_f d_2|$$

which is a contradiction. Hence $T_f d_2 \geq d_1$ and therefore $T_f^2 d_2 \geq T_f d_1$ and $d_2 = T_f^3 d_2 \geq T_f^2 d_1$. This implies that $\overline{C_0 \cup C_1 \cup C_2 \cup D_0 \cup D_1 \cup D_2} = [0, 1]$. Therefore $f(x) = \sqrt[3]{2}x + \alpha$ for some α . Now the conditions on d_1 and d_2 imply that $\alpha = \frac{2+\sqrt[3]{4}-2\sqrt[3]{2}}{2}$ completing the proof.

Lemma 7. Suppose that $f : [0,1] \to [0,2]$ is continuous, strictly increasing and piecewise differentiable. Further assume that $\beta \geq \sqrt[3]{2}$, $\inf f' \geq \beta$ and $f(0) \geq \frac{1}{\beta+1}$. Moreover assume that $f(x) \neq \sqrt[3]{2}x + \frac{2+\sqrt[3]{4}-2\sqrt[3]{2}}{2}$ for some x. Let $C \in \mathcal{D}$ with c being an endpoint of C. Then there exists a finite path $C_0 := C \to C_1 \to \cdots \to C_k$ such that one endpoint of C_k is c and either $C_k \in \{(0,c), (c, T_f^{r(f)-1}1)\}$ or $|C_0| \leq \beta |C_k|$.

Proof. Set r := r(f). We have either $C_0 = (d, c)$ or $C_0 = (c, d)$.

In the first case $T_f d \ge T_f 0 \ge c$ by Lemma 5. Setting $C_j := (T_f{}^j d, T_f{}^{j-1}1)$ for $j = 1, 2, \ldots, r-1$ we get that C_j is the only successor of C_{j-1} for $j = 1, 2, \ldots, r-1$. Then $T_f C_{r-1} = (T_f{}^r d, T_f{}^{r-1}1)$ and $|T_f C_{r-1}| \ge \beta^r |C_0|$. If $T_f{}^r d \le c$ then $C_{r-1} \to (c, T_f{}^{r-1}1)$ and we are done. Otherwise $C_r := T_f C_{r-1}$ is the only successor of C_{r-1} . By Lemma 1 of [10] there is a minimal $s \ge r$ such that $C_j = T_f C_{j-1}$ is the only successor of C_{j-1} for $j = 1, 2, \ldots, s$ and C_s has two different successors. As $|T_f C_s| \ge \beta^{s+1} |C_0|$ we get that C_s has a successor C_{s+1} with $|C_{s+1}| \ge \frac{\beta^{s+1}}{2} |C_0|$ and c is an endpoint of C_{s+1} . If $s \ge 3$ then $\frac{\beta^{s+1}}{2} \ge \beta$ since $\beta \ge \sqrt[3]{2}$ and we are done. Otherwise s = r = 2 and C_2 has the successors $(T_f{}^3d, c)$ and $(c, T_f{}^21)$

and $|T_f C_2| \ge \beta^3 |C_0| \ge 2|C_0|$. In the case $|(T_f{}^3d, c)| > |C_0|$ Lemma 2 with n = 3 implies the desired result. Otherwise set $C_3 := (c, T_f^{-2}1)$. Note that $|C_3| \geq |C_0|$. If $T_f^{3} 1 \geq c$ then $C_3 \to (0, c)$ and we are done. Now consider the case $T_f^{31} < c$. Then $C_4 := (0, T_f^{31})$ is the only successor of C_3 , and $C_5 :=$ $(T_f 0, T_f^4 1)$ is the only successor of C_4 . Moreover $|T_f C_5| \ge \beta^3 |C_3| \ge 2|C_3|$. If C_5 has only one successor then by Lemma 1 of [10] there is a minimal $s \geq 3$ such that $C_{3+j} = T_f C_{3+j-1}$ is the only successor of C_{3+j-1} and C_{3+s} has two different successors. Because of $|T_f C_{3+s}| \ge \beta^{s+1} |C_3|$ we get that C_{3+s} has a successor C_{3+s+1} with $|C_{3+s+1}| \ge \frac{\beta^{s+1}}{2} |C_3| \ge \beta |C_3| \ge \beta |C_0|$ and c is an endpoint of C_{3+s+1} . We are done in this case. Otherwise C_5 has the two successors (T_f^{20}, c) and (c, T_f^{51}) . If $|(c, T_f^{51})| > |C_3|$ the desired result is implied by Lemma 2 with n = 3. Otherwise set $C_6 := (T_f^{20}, c)$. Observe that $|C_6| \ge |C_3| \ge |C_0|$, which implies $C_0 \subseteq C_6$. Hence $C_7 := (T_f{}^{3}0, 1) \supseteq C_1$ is the only successor of C_6 and $T_f C_7 = (T_f^{4}0, T_f 1) \supseteq C_2$. In the case $T_f^{4}0 \leq c$ we get $C_7 \to (c, T_f 1)$ and we are done as r = 2. Otherwise $C_8 := T_f C_7$ is the only successor of C_7 and $C_3 \subseteq T_f C_8 = (T_f{}^50, T_f{}^21)$. Hence C_8 has the successors $C_9 := (T_f{}^50, c) \text{ and } (c, T_f{}^21) = C_3.$ As $|T_fC_8| \ge \beta^3 |C_6| \ge 2|C_6|$ and $|C_6| \ge 2|C_6|$ $|C_3|$ we get that $|C_9| = |T_f C_8| - |C_3| \ge 2|C_6| - |C_3| \ge |C_6|$. If $|C_9| = |C_6|$

we get $C_9 = C_6$ and we have the situation described in Lemma 6. Then Lemma 6 implies that $f(x) = \sqrt[3]{2}x + \frac{2+\sqrt[3]{4}-2\sqrt[3]{2}}{2}$ for all $x \in [0,1]$ contradicting our assumption. Hence $|C_9| > |C_6|$. Applying Lemma 2 with n = 3 we obtain the desired result.

Now we consider the case $C_0 = (c, d)$. If $T_f d \ge c$ we have $C_0 \to (0, c)$ and we are done. It remains to consider the case $T_f d < c$. Then $C_1 := (0, T_f d)$ is the only successor of C_0 . Setting $C_j := (T_f^{j-1}0, T_f^{j}d)$ for $j = 2, 3, \ldots, r$ we get that C_j is the only successor of C_{j-1} for $j = 1, 2, \ldots, r$. Moreover $T_f C_r = (T_f^{r}0, T_f^{r+1}d)$ and $|T_f C_r| \ge \beta^{r+1}|C_0|$. By Lemma 1 of [10] there is a minimal $s \ge r$ such that $C_j = T_f C_{j-1}$ is the only successor of C_{j-1} for $j = 1, 2, \ldots, s$ and C_s has two different successors. As $|T_f C_s| \ge \beta^{s+1}|C_0|$ we get that C_s has a successor C_{s+1} with $|C_{s+1}| \ge \frac{\beta^{s+1}}{2}|C_0|$ and c is an endpoint of C_{s+1} . If $s \ge 3$ then $\frac{\beta^{s+1}}{2} \ge \beta$ since $\beta \ge \sqrt[3]{2}$ and we are done. It remains to assume that s = r = 2. Then C_2 has the successors

It remains to assume that s = r = 2. Then C_2 has the successors $(T_f{}^20, c)$ and $(c, T_f{}^3d)$, and $|T_fC_2| \ge \beta^3 |C_0| \ge 2|C_0|$. If $|(c, T_f{}^3d)| > |C_0|$ then Lemma 2 with n = 3 implies the desired result. Otherwise set $C_3 := (T_f{}^20, c)$. Hence $C_3 = (d, c)$ for $d = T_f{}^20$ and $|C_3| \ge |C_0|$. In this case we have shown above that there exists a finite path $C_3 \to C_4 \to \cdots \to C_k$ such that one endpoint of C_k is c and either $C_k \in \{(0, c), (c, T_f{}^{r(f)-1}1)\}$ or $|C_0| \le |C_3| \le \beta |C_k|$. This completes the proof.

Lemma 8. Suppose that $f : [0,1] \to [0,2]$ is continuous, strictly increasing and piecewise differentiable. Further assume that $\beta \geq \sqrt[3]{2}$, $\inf f' \geq \beta$ and $f(0) \geq \frac{1}{\beta+1}$. Moreover assume that $f(x) \neq \sqrt[3]{2}x + \frac{2+\sqrt[3]{4}-2\sqrt[3]{2}}{2}$ for some x. Let $C \in \mathcal{D}$.

- (1) If $r(f) \ge 3$, then there exists a finite path $C_0 := C \to C_1 \to \cdots \to C_n$ with $C_n = (0, c)$. Moreover $T_f^{r(f)} 1 > c$.
- (2) If r(f) = 2, then there exists a finite path $C_0 := C \to C_1 \to \cdots \to C_n$ with $C_n \in \{(0, c), (c, T_f 1)\}.$

Proof. Set r := r(f). By Lemma 1 of [10] there exists a path $C_0 \to C_1 \to \cdots \to C_l$ in \mathcal{D} with c is an endpoint of C_l . Now we prove by induction that for every $t \in \mathbb{N}$ there is a path $C_l \to C_{l+1} \to \cdots \to C_{n_t}$ such that c is an endpoint of C_{n_t} and either $C_{n_t} \in \{(0,c), (c,T_f^{r-1}1)\}$ or $|C_{n_t}| \ge \beta^t |C_l|$. For t = 1 this follows immediately from Lemma 7. Now let t > 1. If $C_{n_{t-1}} \in \{(0,c), (c,T_f^{r-1}1)\}$ we are done. Otherwise by Lemma 7 there exists a path $C_{n_{t-1}} \to C_{n_{t-1}+1} \to \cdots \to C_{n_t}$ such that c is an endpoint of C_{n_t} and either $C_{n_t} \in \{(0,c), (c,T_f^{r-1}1)\}$ or $|C_{n_t}| \ge \beta^t |C_l|$.

As β^t tends to infinity for $t \to \infty$ there exists a path $C_0 := C \to C_1 \to \cdots \to C_n$ with $C_n \in \{(0, c), (c, T_f^{r-1}1)\}$. In the case r = 2 we obtain (2).

Finally, assume that r > 2. In order to show (1) it suffices to show that $(c, T_f^{r-1}1) \to (0, c)$. Setting $D_0 := (0, c), D_j := (T_f^{j}0, T_f^{j-1}1)$ for $j = 1, 2, \ldots, r-1$ we have that D_j is the only successor of D_{j-1} for $j = 1, 2, \ldots, r-1$. Moreover $T_f D_{r-1} = (T_f^{r}0, T_f^{r-1}1)$ satisfies $|T_f D_{r-1}| \ge \beta^r |D_0| \ge 2c$. Since $T_f^{r}0 \ge 0$ this implies that $|(c, T_f^{r-1}1)| \ge |T_f D_{r-1}| - |(0, c)| \ge c$. Hence $|(0, T_f^{r}1)| = |T_f(c, T_f^{r-1}1)| \ge \beta c$. Therefore $T_f^{r}1 > c$ and this implies that $(c, T_f^{r-1}1) \to (0, c)$.

Theorem 1. Let $f : [0,1] \to [0,2]$ be a continuous, strictly increasing and piecewise differentiable function. Moreover assume that $\beta \geq \sqrt[3]{2}$, $\inf f' \geq \beta$ and $f(0) \geq \frac{1}{\beta+1}$. Then T_f is topologically transitive.

Proof. If $f(x) := \sqrt[3]{2}x + \frac{2+\sqrt[3]{4}-2\sqrt[3]{2}}{2}$ then topological transitivity follows from Lemma 4. Otherwise denote by $(\mathcal{D}, \rightarrow)$ the Markov diagram of T_f . Let $C \in \mathcal{D}$ and set r := r(f).

Assume at first that $T_f{}^{21} < c$. Using Lemma 3 and Lemma 5 this implies $T_f{}^{20} < T_f{}^{21} < c, c \leq T_f{}^{30} < T_f{}^{31}$ and r = 2. Define \mathcal{C} as the set of all $D \in \mathcal{D}$ such that there is a path $D_0 := (c, T_f 1) \to D_1 \to \cdots \to D_n = D$ which is obviously closed. Set $C_0 := (c, T_f 1), C_1 := (0, T_f{}^{21}), C_2 := (T_f 0, T_f{}^{31}), C_3 := (T_f{}^{20}, c)$ and $C_4 := (T_f{}^{30}, 1)$. Because of $T_f{}^{20} < c$ we have $(0, c) \to (T_f 0, 1) \to C_0$. By (2) of Lemma 8 for any $C \in \mathcal{D}$ there exists a path $D_0 := C \to D_1 \to \cdots \to D_p$ with $D_p \in \{(0, c), (c, T_f 1)\}$. Therefore the set \mathcal{C} is closed and irreducible. Since $1 \geq |T_f(c, 1)| \geq \beta|(c, 1)| = \beta(1 - c)$ we get $1 - c \leq \frac{1}{\beta}$. Moreover $|C_0| \geq \beta - 1$ as $T_f 1 \geq T_f 0 + \beta - 1 \geq c + \beta - 1$ by Lemma 5. By our assumptions C_1 is the only successor of C_0 and C_2 is the only successor of C_1 . Therefore $|C_2| \geq \beta^2(\beta - 1)$ and $|T_f C_2| = |(T_f{}^{20}, T_f{}^{41})| \geq \beta^3(\beta - 1) > \frac{1}{\beta + 1}$ as $x^5 - x^3 - 1 > 0$ for $x \geq \sqrt[3]{2}$. Hence $T_f{}^{41} > \frac{1}{\beta + 1} \geq c$ by Lemma 5 and C_2 has the two different successors C_3 and $(c, T_f{}^{41})$. Moreover $C_3 \to C_4$. Since $C_0, C_1, C_2, C_3, C_4 \in \mathcal{C}$ and $\bigcup_{k=0}^4 \overline{C_k} = [0, 1]$ the topological transitivity is implied by Lemma 1.

Now assume that $T_f^{20} > c$. Then $r \ge 3$ and $c \le T_f^{k0} < T_f^{k1}$ for $k = 1, 2, \ldots, r-1$ by Lemma 3. Set $C_0 := (0, c), C_k := (T_f^{k0}, T_f^{k-1}1)$ for $k = 1, 2, \ldots, r-1$, and $C_r := (c, T_f^{r-1}1)$. Define \mathcal{C} as the set of all $D \in \mathcal{D}$ such that there is a path $D_0 := (0, c) \to D_1 \to \cdots \to D_n = D$. Obviously \mathcal{C} is closed. By (1) of Lemma 8 for any $C \in \mathcal{D}$ there exists a path $D_0 := C \to D_1 \to \cdots \to D_p$ with $D_p = (0, c)$. Hence the set \mathcal{C} is closed and irreducible. Observe that $C_0 \to C_1 \to \cdots \to C_{r-1} \to C_r$. Since $C_0, C_1, \ldots, C_r \in \mathcal{C}$ and $\bigcup_{k=0}^r \overline{C_k} = [0, 1]$ the map T_f is topologically transitive by Lemma 1.

Finally it remains to consider the case $T_f^{20} \leq c$ and $T_f^{21} \geq c$. Set $C_0 := (0, c), C_1 := (T_f^{0, 1})$ and $C_2 := (c, T_f^{1})$. Define \mathcal{C} as the set of all

 $D \in \mathcal{D}$ such that there is a path $D_0 := (0, c) \to D_1 \to \cdots \to D_n = D$. Observe that $C_0 \to C_1 \to C_2 \to C_0$. By Lemma 8 for any $C \in \mathcal{D}$ there exists a path $D_0 := C \to D_1 \to \cdots \to D_p$ with $D_p \in \{(0, c), (c, T_f 1)\}$. This implies that \mathcal{C} is closed and irreducible. Moreover $C_0, C_1, C_2 \in \mathcal{C}$ and $\bigcup_{k=0}^2 \overline{C_k} = [0, 1]$. Therefore T_f is topologically transitive by Lemma 1. \Box

Corollary 1.1. Let $f : [0,1] \to [0,2]$ be a continuous, strictly increasing and piecewise differentiable function. Moreover assume that $\inf f' \ge \sqrt[3]{2}$ and $f(0) \ge \frac{1+\sqrt[3]{4}-\sqrt[3]{2}}{3}$. Then T_f is topologically transitive.

Proof. Observe that $\frac{1}{\sqrt[3]{2}+1} = \frac{1+\sqrt[3]{4}-\sqrt[3]{2}}{3}$. Setting $\beta = \sqrt[3]{2}$ in Theorem 1 gives the desired result.

Remark. Using the conjugation h(x) := 1 - x we see that T_f is conjugated to $T_{\widehat{f}}$, where $\widehat{f}(x) := 2 - f(1 - x)$. Obviously $f(0) \ge \alpha$ is equivalent to $\widehat{f}(1) \le 2 - \alpha$. Hence Theorem 1 implies that for every continuous, strictly increasing and piecewise differentiable function $f : [0, 1] \to [0, 2]$ with $\inf f' \ge \beta$ and $f(1) \le 2 - \frac{1}{\beta+1}$ the map T_f is topologically transitive.

3. Counterexamples

Let $1 < \beta < \sqrt[3]{2}$. Define

(2)
$$f(x) := \beta x + \frac{\beta^2 + 1}{\beta^3 + \beta^2 + \beta}.$$

Setting $c := \frac{\beta^3 + \beta - 1}{\beta^4 + \beta^3 + \beta^2}$ we obtain f(c) = 1. Such a map T_f is shown in Figure 1. Now define $A := [0, T_f{}^31] \cup [T_f{}^20, T_f{}^21] \cup [T_f0, T_f1] \cup [T_f{}^30, 1]$. Note that $T_f0 = \frac{\beta^2 + 1}{\beta^3 + \beta^2 + \beta} > c, T_f{}^20 = \frac{1}{\beta^3 + \beta^2 + \beta} < c, T_f{}^30 = \frac{1}{\beta} > c, T_f{}^40 = \frac{\beta^2 + 1}{\beta^3 + \beta^2 + \beta} = T_f0, T_f1 = \frac{\beta^4 + \beta^2 - \beta + 1}{\beta^3 + \beta^2 + \beta} > c, T_f{}^21 = \frac{\beta^5 - \beta^2 + 1}{\beta^3 + \beta^2 + \beta} > c, T_f{}^31 = \frac{\beta^6 - 2\beta^3 + 1}{\beta^3 + \beta^2 + \beta} < c$ and $T_f{}^41 = \frac{\beta^7 - 2\beta^4 + \beta^2 + \beta + 1}{\beta^3 + \beta^2 + \beta} \leq T_f1$. Moreover, $T_f{}^31 < T_f{}^20$ which implies that $[0, 1] \setminus A \neq \emptyset$. Since $T_f{}^41 \leq T_f1$ and $T_f{}^40 = T_f0$ we get that $T_fA \subseteq A$. Therefore T_f is not topologically transitive.

Observe that $f(0) = T_f 0 = \frac{\beta^2 + 1}{\beta^3 + \beta^2 + \beta}$. The function $g : \{x \in \mathbb{R} : x > 0\} \to \mathbb{R}, g(x) := \frac{x^2 + 1}{x^3 + x^2 + x}$ is strictly decreasing as $g'(x) = \frac{-x^4 - 2x^2 - 2x - 1}{(x^3 + x^2 + x)^2} < 0$. Hence $f(0) = \frac{\beta^2 + 1}{\beta^3 + \beta^2 + \beta} = g(\beta) > g(\sqrt[3]{2}) = \frac{2 + \sqrt[3]{4} - 2\sqrt[3]{2}}{2}$ because $\beta < \sqrt[3]{2}$. Note that $\frac{2 + \sqrt[3]{4} - 2\sqrt[3]{2}}{2} > \frac{1 + \sqrt[3]{4} - \sqrt[3]{2}}{3}$ $(\frac{2 + \sqrt[3]{4} - 2\sqrt[3]{2}}{2} \approx 0.533779, \frac{1 + \sqrt[3]{4} - \sqrt[3]{2}}{3} \approx 0.442493)$. Moreover $f(0) = \frac{\beta^2 + 1}{\beta^3 + \beta^2 + \beta} > \frac{1}{\beta + 1}$. This shows the following result.

Figure 1: This is T_f for f from (2).

Theorem 2. For $1 < \beta < \sqrt[3]{2}$ there exists a continuous strictly increasing piecewise differentiable function $f : [0,1] \rightarrow [0,2]$ with $f(0) > \frac{2+\sqrt[3]{4}-2\sqrt[3]{2}}{2}$, $f(0) > \frac{1}{\beta+1}$ and $\inf f' \geq \beta$ such that T_f is not topologically transitive.

Remark. The proof above shows that the function f in Theorem 2 can be chosen as $f(x) = \beta x + \alpha$ for suitable α and β .

Now let β_0 be the largest zero of the polynomial $x^3 - x - 1$. Assume that $\sqrt[3]{2} \leq \beta \leq \beta_0$ and $\alpha < \frac{1}{\beta+1}$. We will define a continuous strictly increasing function $f: [0,1] \rightarrow [0,2]$ in the following way. Choose $\delta > 0$ such that

$$\delta < \min\left\{\frac{1}{\beta+1} - \alpha, \frac{1}{(\beta+1)(\beta^2+1)}, \frac{1}{3+\beta^3+\beta^2}, \frac{\beta^2-1}{\beta^4+\beta^3+\beta^2-1}\right\}.$$

We define f as the join the dots map with the dots

$$\begin{aligned} (0, \frac{1}{1+\beta} - \delta), & (\beta^2 \delta, \frac{1}{1+\beta} - \delta + \beta^3 \delta), (c - \delta, 1 - \beta \delta), (c + \beta \delta, 1 + \beta^2 \delta), \\ & (\frac{1}{\beta} (1 - \frac{3\delta}{1+\beta}), 1 + \frac{1-2\delta}{1+\beta}), (\frac{1}{\beta} (1 + \frac{\beta^4 - 1}{1+\beta} \delta), 1 + \frac{1+\beta^4 \delta}{1+\beta}), \\ & (1 - \beta \delta, \frac{1}{\beta} (\beta + 1 - \frac{3\delta}{1+\beta})) \text{ and } (1, \frac{1}{\beta} (\beta + 1 + \frac{(\beta^4 - 1)\delta}{1+\beta})). \end{aligned}$$

Such a map T_f is shown in Figure 2. Note that $\inf f' \geq \beta$. Furthermore $A := [0, \beta^2 \delta] \cup [c - \delta, c + \beta \delta] \cup [\frac{1}{\beta}(1 - \frac{3\delta}{1+\beta}), \frac{1}{\beta}(1 + \frac{\beta^4 - 1}{1+\beta}\delta)] \cup [1 - \beta\delta, 1]$ is T_f -invariant, and $\beta^2 \delta < c - \delta$. Moreover note that $f(0) = \frac{1}{1+\beta} - \delta \geq \alpha$ by

Figure 2: This is T_f for f from Theorem 3.

the choice of δ . Therefore T_f is not topologically transitive. Hence we have shown the following result.

Theorem 3. For $\sqrt[3]{2} \leq \beta \leq \beta_0$ and $\alpha < \frac{1}{\beta+1}$ there exists a continuous strictly increasing piecewise differentiable function $f : [0,1] \rightarrow [0,2]$ with $f(0) \geq \alpha$ and $\inf f' \geq \beta$ such that T_f is not topologically transitive.

Corollary 3.1. For $\alpha < \frac{1+\sqrt[3]{4}-\sqrt[3]{2}}{3}$ there exists a continuous strictly increasing piecewise differentiable function $f : [0,1] \rightarrow [0,2]$ with $f(0) \geq \alpha$ and inf $f' \geq \sqrt[3]{2}$ such that T_f is not topologically transitive.

4. The special case $\beta x + \alpha \pmod{1}$

Finally we investigate the special case $\beta x + \alpha \pmod{1}$. In this case the situation is slightly different. For any $\beta \geq \sqrt[3]{2}$ we will determine the set of all α such that $\beta x + \alpha \pmod{1}$ is topologically transitive. Note that for every $\beta > 0$ the map $f(x) := \beta x + \alpha$ satisfies $f([0, 1]) \subseteq [0, 2]$ if and only if $0 \leq \alpha \leq 2 - \beta$. Furthermore observe that $c = \frac{1-\alpha}{\beta}$ in this case.

Lemma 9. Assume that $1 < \beta < \sqrt{2}$ and $\frac{1}{\beta^2 + \beta} \leq \alpha < \frac{1}{\beta + 1}$, and set $f(x) := \beta x + \alpha$. Then $T_f 0 < c < T_f 1 < T_f^{20}$ and $T_f^{30} \geq T_f 0$. Moreover, $T_f^{21} < c$

if and only if $\alpha < 1 - \frac{\beta^3}{\beta^2 + \beta + 1}$. If $\alpha \leq 2 - \beta - \frac{1}{\beta^2 + \beta}$ then $T_f^2 1 < c$ and $T_f^3 1 \leq T_f 1$.

Proof. Because of $\alpha < \frac{1}{\beta+1}$ we get $T_f 0 = \alpha < \frac{1-\alpha}{\beta} = c$, and therefore $T_f^{2}0 = (\beta+1)\alpha$. Using $(\beta-1)^2(\beta+1) > 0$ one obtains $\frac{-\beta^2+\beta+1}{\beta+1} < \frac{1}{\beta^2+\beta} \leq \alpha$ and hence $T_f 1 = \alpha + \beta - 1 > \frac{1-\alpha}{\beta} = c$ and $T_f^{-2}1 = (\beta+1)\alpha + \beta^2 - \beta - 1$. Since $\beta < \sqrt{2}$ we obtain $(\beta-1)(\beta+1) < 1$ which implies $\frac{\beta-1}{\beta} < \frac{1}{\beta^2+\beta} \leq \alpha$ and therefore $T_f 1 = \alpha + \beta - 1 < (\beta+1)\alpha = T_f^{-2}0$. In particular $T_f^{-2}0 > c$ which implies $T_f^{-3}0 = (\beta^2 + \beta + 1)\alpha - 1$. As $\alpha \geq \frac{1}{\beta^2+\beta}$ we get $T_f^{-3}0 = (\beta^2 + \beta + 1)\alpha - 1 \geq \alpha = T_f 0$.

The property $\alpha < 1 - \frac{\beta^3}{\beta^2 + \beta + 1}$ is equivalent to $T_f^2 1 = (\beta + 1)\alpha + \beta^2 - \beta - 1 < \frac{1-\alpha}{\beta} = c$. In this case one obtains that $T_f^3 1 = (\beta^2 + \beta + 1)\alpha + \beta^3 - \beta^2 - \beta$. Observe that $2 - \beta - \frac{1}{\beta^2 + \beta} = \frac{-\beta^3 + \beta^2 + 2\beta - 1}{\beta^2 + \beta} < \frac{-\beta^3 + \beta^2 + \beta + 1}{\beta^2 + \beta + 1} = 1 - \frac{\beta^3}{\beta^2 + \beta + 1}$. Hence $T_f^2 1 < c$ if $\alpha \le 2 - \beta - \frac{1}{\beta^2 + \beta}$. Moreover in this case we get $T_f^3 1 = (\beta^2 + \beta + 1)\alpha + \beta^3 - \beta^2 - \beta \le \alpha + \beta - 1 = T_f 1$.

Remark. Observe that $\frac{1}{\beta+1} \leq 1 - \frac{\beta^3}{\beta^2+\beta+1}$ for $1 < \beta \leq \beta_0$ where β_0 be the largest zero of the polynomial $x^3 - x - 1$ as $\beta(\beta^3 - \beta - 1) \leq 0$. Hence $\alpha < 1 - \frac{\beta^3}{\beta^2+\beta+1}$ is satisfied automatically in this case if $\alpha < \frac{1}{\beta+1}$.

Suppose that $\sqrt[3]{2} \leq \beta < \sqrt{2}$ and $\frac{1}{\beta^2+\beta} \leq \alpha \leq 2-\beta-\frac{1}{\beta^2+\beta}$, and define $f(x) := \beta x + \alpha$. Such a map is shown in Figure 3. By Lemma 9 the set $A := [0, T_f^{-2}1] \cup [T_f^{-1}0, T_f^{-1}1] \cup [T_f^{-2}0, 1]$ satisfies $T_f A \subseteq A$ and $[0, 1] \setminus A \neq \emptyset$. Hence T_f is not topologically transitive.

Note that $(\beta - 1)^2(\beta + 1) > 0$ implies $2 - \beta - \frac{1}{\beta^2 + \beta} = \frac{-\beta^3 + \beta^2 + 2\beta - 1}{\beta^2 + \beta} < \frac{1}{\beta + 1}$. Moreover, for $\beta < \sqrt{2}$ we obtain $(\beta - 1)(\beta^2 - 2) < 0$ which implies that $\frac{1}{\beta^2 + \beta} < \frac{-\beta^3 + \beta^2 + 2\beta - 1}{\beta^2 + \beta} = 2 - \beta - \frac{1}{\beta^2 + \beta} < 1 - \frac{\beta^3}{\beta^2 + \beta + 1}$.

Lemma 10. Suppose that $\sqrt[3]{2} \leq \beta < \sqrt{2}$, $2 - \beta - \frac{1}{\beta^2 + \beta} < \alpha < \frac{1}{\beta + 1}$ and $\alpha < 1 - \frac{\beta^3}{\beta^2 + \beta + 1}$, and set $f(x) := \beta x + \alpha$. Then $(0, c) \rightarrow (c, 1)$, $(c, 1) \rightarrow (0, c), (0, c) \rightarrow (T_f 0, c), (T_f^2 0, 1)$ is the unique successor of $(T_f 0, c),$ $(c, 1) \rightarrow (c, T_f 1), (0, T_f^2 1)$ is the unique successor of $(c, T_f 1)$ and $T_f^3 1 > T_f 1$. Furthermore for every $C \in \mathcal{D}$ there exists a finite path $C_0 \rightarrow C_1 \rightarrow \cdots \rightarrow C_k$ with $C_0 = C$ and $C_k \in \{(0, c), (T_f 0, c), (c, T_f 1)\}$.

Proof. By Lemma 9 we get $(0, c) \rightarrow (c, 1), (c, 1) \rightarrow (0, c), (0, c) \rightarrow (T_f 0, c), (T_f^{2} 0, 1)$ is the unique successor of $(T_f 0, c), (c, 1) \rightarrow (c, T_f 1)$ and $(0, T_f^{2} 1)$ is the unique successor of $(c, T_f 1)$. Moreover, using that $2 - \beta - \frac{1}{\beta^2 + \beta} < \alpha$ we obtain that $T_f^{3} 1 = (\beta^2 + \beta + 1)\alpha + \beta^3 - \beta^2 - \beta > \alpha + \beta - 1 = T_f 1$.

Figure 3: This is $\beta x + \alpha \pmod{1}$ with $\sqrt[3]{2} \le \beta < \sqrt{2}$ and $\frac{1}{\beta^2 + \beta} \le \alpha \le 2 - \beta - \frac{1}{\beta^2 + \beta}$.

Now we claim that for every $C \in \mathcal{D}$ having c as an endpoint there exists a finite path $C_0 := C \to C_1 \to \cdots \to C_n$ with c is an endpoint of C_n and $C_n \in \{(0,c), (T_f 0, c), (c, T_f 1)\}$ or $|C_n| \geq \beta |C|$. Assume at first that C = (d, c) for some d. If $T_f d \leq c$ we are done as $C \to (c, 1) \to (0, c)$. Otherwise $C_1 := (T_f d, 1) = T_f C$ is the unique successor of $C_0 := C$. In the case $T_f^2 d \leq c$ we are done because of $C_1 \to (c, T_f 1)$. If $T_f^2 d > c$ then $C_2 := T_f^2 C = (T_f^{20}, T_f 1) \subseteq (c, T_f 1)$ is the unique successor of C_1 and therefore $C_3 := T_f^3 C$ is the unique successor of C_2 . By Lemma 1 of [10] there is a minimal $s \geq 3$ such that $C_j := T_f^{\ j} C$ is the unique successor of C_{j-1} for $j = 1, 2, \ldots, s$ and C_s has two different successors. Each of these successors has c as an endpoint. Because of $T_f C_s = T_f^{\ s+1} C$ we get $|T_f C_s| = \beta^{s+1}|C|$ and therefore C_s has a successor C_{s+1} with $|C_{s+1}| \geq \frac{\beta^{s+1}}{2} |C|$. As $s \geq 3$ and $\beta \geq \sqrt[3]{2}$ we get $\frac{\beta^{s+1}}{2} \geq \beta$ and hence $|C_{s+1}| \geq \beta |C|$. Similarly for C = (c, d) for some d we have either $C \to (0, c)$ and are done

Similarly for C = (c, d) for some d we have either $C \to (0, c)$ and are done or $C_1 := T_f C = (0, T_f d)$ is the unique successor of $C_0 := C$. If $T_f^2 d \ge c$ in the second case then $C_1 \to (T_f 0, c)$ and we are done. It remains to consider the case $T_f d < c$ and $T_f^2 d < c$. Then $C_2 := T_f^2 C = (T_f 0, T_f^2 d) \subseteq (T_f 0, c)$ is the unique successor of C_1 and $C_3 := T_f^3 C$ is the unique successor of C_2 . By the same argument as above there exists an $s \ge 3$ and a finite path $C_0 := C \to C_1 \to \cdots \to C_{s+1}$ such that c is an endpoint of C_{s+1} and $|C_{s+1}| \ge \beta |C|$. Next we prove by induction that for every $C \in \mathcal{D}$ having c as an endpoint and for any $t \in \mathbb{N}$ there exists a finite path $C_0 := C \to C_1 \to \cdots \to C_{n_t}$ with c is an endpoint of C_{n_t} and $C_{n_t} \in \{(0,c), (T_f 0, c), (c, T_f 1)\}$ or $|C_{n_t}| \geq \beta^t |C|$. For t = 1 this is exactly the property proved above. Let t > 1. If $C_{n_{t-1}} \in \{(0,c), (T_f 0, c), (c, T_f 1)\}$ set $n_t := n_{t-1}$ and we are done. Otherwise by the property proved above there exists a finite path $C_{n_{t-1}} \to C_{n_{t-1}+1} \to \cdots \to C_{n_t}$ with c is an endpoint of C_{n_t} and $C_{n_t} \in \{(0,c), (T_f 0, c), (c, T_f 1)\}$ or $|C_{n_t}| \geq \beta |C_{n_{t-1}}| \geq \beta^t |C|$.

Finally let $C \in \mathcal{D}$. By Lemma 1 of [10] there exists a finite path $C_0 := C \to C_1 \to \cdots \to C_l$ such that C_{l-1} has two different successors. Therefore c is an endpoint of C_l . Choose $t \in \mathbb{N}$ with $\beta^t |C_l| > 1$. Then there exists a finite path $C_l \to C_{l+1} \to \cdots \to C_k$ with $C_k \in \{(0, c), (T_f 0, c), (c, T_f 1)\}$ or $|C_k| \geq \beta^t |C_l|$. As $\beta^t |C_l| > 1$ the second case cannot occur. This completes the proof.

Lemma 11. Assume that $\sqrt[3]{2} \leq \beta < \sqrt{2}$ and $1 - \frac{\beta^3}{\beta^2 + \beta + 1} \leq \alpha < \frac{1}{\beta + 1}$, and set $f(x) := \beta x + \alpha$. Then $(0, c) \to (c, 1)$, $(c, 1) \to (0, c)$, $(0, c) \to (T_f 0, c)$, $(T_f^{2}0, 1)$ is the unique successor of $(T_f 0, c)$, $(c, 1) \to (c, T_f 1)$ and $(c, T_f 1) \to$ (0, c). The interval (0, c) is the unique successor of $(c, T_f 1)$ if $\alpha = 1 - \frac{\beta^3}{\beta^2 + \beta + 1}$ and $(c, T_f 1) \to (c, T_f^{2} 1)$ otherwise. Moreover for every $C \in \mathcal{D}$ there exists a finite path $C_0 := C \to C_1 \to \cdots \to C_k$ with $C_k \in \{(0, c), (T_f 0, c), (c, T_f^{2} 1)\}$.

Proof. The properties $(0,c) \rightarrow (c,1)$, $(c,1) \rightarrow (0,c)$, $(0,c) \rightarrow (T_f0,c)$, $(T_f^{2}0,1)$ is the unique successor of (T_f0,c) , $(c,1) \rightarrow (c,T_f1)$, $(c,T_f1) \rightarrow (0,c)$, (0,c) is the unique successor of (c,T_f1) if $\alpha = 1 - \frac{\beta^3}{\beta^2 + \beta + 1}$ and $(c,T_f1) \rightarrow (c,T_f^{2}1)$ otherwise follow immediately from Lemma 9.

We claim that for every $C \in \mathcal{D}$ having c as an endpoint there exists a finite path $C_0 := C \to C_1 \to \cdots \to C_n$ with c is an endpoint of C_n and $C_n \in \{(0,c), (T_f 0, c), (c, T_f^{2} 1)\}$ or $|C_n| \geq \beta |C|$. To this end we assume at first that C = (d, c) for some d. In the case $T_f d \leq c$ we are done as $C \to$ $(c, 1) \to (0, c)$. Otherwise $C_1 := T_f C = (T_f d, 1)$ is the unique successor of $C_0 := C$. If $T_f^2 d \leq c$ we are done since $C_1 \to (c, T_f 1) \to (0, c)$. Now suppose that $T_f^2 d > c$. Then $C_2 := T_f^2 C = (T_f^2 0, T_f 1)$ is the unique successor of C_1 . Moreover, either $C_2 \to (c, T_f^2 1)$ and we are done or $C_3 := T_f^3 C$ is the unique successor of C_2 . The same argument as in the proof of Lemma 10 gives the existence of an $s \geq 3$ and of a finite path $C_0 := C \to C_1 \to \cdots \to C_{s+1}$ such that c is an endpoint of C_{s+1} and $|C_{s+1}| \geq \beta |C|$.

For C = (c, d) for some d exactly the same proof as in the proof of Lemma 10 shows that either $C \to (0, c)$ or $C \to T_f C \to (T_f 0, c)$ or there is an $s \ge 3$ and a finite path $C_0 := C \to C_1 \to \cdots \to C_{s+1}$ such that cis an endpoint of C_{s+1} and $|C_{s+1}| \ge \beta |C|$. Now the same arguments as in the proof of Lemma 10 show that for every $C \in \mathcal{D}$ there exists a finite path $C_0 := C \to C_1 \to \cdots \to C_k$ with $C_k \in \{(0,c), (T_f 0, c), (c, T_f^{-2} 1)\}$.

Figure 4: For (β, α) in the white region of this triangle the map $\beta x + \alpha \pmod{1}$ is topologically transitive and in the gray region it is not topologically transitive. The black region is not completely classified.

Our next result classify those (β, α) with $\sqrt[3]{2} \leq \beta < \sqrt{2}$ and $0 \leq \alpha \leq 2-\beta$ such that $\beta x + \alpha \pmod{1}$ is topologically transitive. In Figure 4 the white region inside the triangle shows those (β, α) with $\sqrt[3]{2} \leq \beta \leq 2$ for which $\beta x + \alpha \pmod{1}$ is topologically transitive. Recall that for $\beta \geq \sqrt{2}$ the map $\beta x + \alpha \pmod{1}$ is topologically transitive by Theorem 1 of [10]. The gray region shows those (β, α) with $\sqrt[3]{2} \leq \beta \leq 2$ where $\beta x + \alpha \pmod{1}$ is not topologically transitive. For $1 \leq \beta < \sqrt[3]{2}$ the set of all (β, α) where $\beta x + \alpha \pmod{1}$ is topologically transitive has not been described completely.

Theorem 4. Let $\sqrt[3]{2} \leq \beta < \sqrt{2}$ and let $0 \leq \alpha \leq 2-\beta$. Then $\beta x + \alpha \pmod{1}$ is topologically transitive if and only if $0 \leq \alpha < \frac{1}{\beta^2+\beta}$ or $2-\beta - \frac{1}{\beta^2+\beta} < \alpha \leq 2-\beta$.

Proof. From Lemma 9 we obtain that $\beta x + \alpha \pmod{1}$ is not topologically transitive for $\frac{1}{\beta^2+\beta} \leq \alpha \leq 2-\beta-\frac{1}{\beta^2+\beta}$ (see the paragraph below the remark following Lemma 9).

At first we consider the case $\alpha > 2 - \beta - \frac{1}{\beta^2 + \beta}$. We start the proof investigating the case $\alpha < \frac{1}{\beta + 1}$. Suppose at first that $\alpha < 1 - \frac{\beta^3}{\beta^2 + \beta + 1}$. Set

 $C_0 := (c, T_f 1)$. By Lemma 10 we get that $C_1 := (0, T_f^2 1)$ is the unique successor of $C_0, C_1 \to (T_f 0, c)$ and $C_1 \to C_2 := (c, T_f^{31})$, and $|C_2| > |C_0|$. In particular this implies $C_0 \subseteq C_2$. Note that $|C_2| = \beta^2 |C_0| - |(T_f, c)|$. Now we prove by induction that for every $n \in \mathbb{N}$ there exists a $k \leq 2n$ and a path $C_0 \to C_1 \to \cdots \to C_k$ with $C_k = (0, c)$ or $C_0 \subseteq C_k$ and $|C_k| \ge |C_0| + C_k$ $\beta^{n-1}(|C_2| - |C_0|)$. For n = 1 we have obviously $|C_k| = |C_0| + \beta^0(|C_2| - |C_0|)$. Let n > 1 and assume that $l \leq 2n - 2$, $C_0 \to C_1 \to \cdots \to C_l$ is a path with $C_l = (0,c)$ or $C_0 \subseteq C_l$ and $|C_l| \ge |C_0| + \beta^{n-2}(|C_2| - |C_0|)$. If $C_l = (0,c)$ set $k := l \leq 2n$ and we are done. Otherwise either $C_l \to (0, c)$ or $C_{l+1} :=$ $T_f C_l \supseteq C_1$ is the unique successor of C_l . In the first case we are done setting $k := l + 1 \leq 2n$ and $C_k := (0, c)$. Consider the second case. Then C_{l+1} has the two successors $(T_f 0, c)$ and $C_{l+2} := TfC_l \cap (c, 1) \supseteq C_2 \supseteq C_0$. Set k := $l+2 \leq 2n$. We have that $|C_k| + |(T_f 0, c)| = \beta^2 |C_l| \geq \beta^2 |C_0| + \beta^n (|C_2| - |C_0|)$. Since $\beta^2 |C_0| - |(T_f 0, c)| = |C_2| \ge |C_0|$ and $\beta > 1$ this implies $|C_k| \ge |C_0| + |C_0| + |C_0| \le |C_0| + |C_0| \le |C$ $\beta^{n-1}(|C_2|-|C_0|)$ finishing the induction. As $|C_0|+\beta^{n-1}(|C_2|-|C_0|)$ tends to infinity for $n \to \infty$ there exists a finite path $C_0 := (c, T_f 1) \to C_1 \to \cdots \to C_k$ with $C_k = (0, c)$.

Next assume that $d \leq T_f 0$ and set $C_0 := (d, c)$. If $T_f d \leq c$ then $C_0 \rightarrow$ $C_1 := (c, 1) \to C_2 := (0, c)$. Otherwise $C_1 := T_f C_0 = (T_f d) \subseteq (c, 1)$ is the unique successor of C_0 . In the case $T_f^2 d \leq c$ we have $C_1 \to (c, T_f 1)$. Then set $C_2 := (c, T_f 1)$ and as shown above there exists a finite path $C_0 \to C_1 \to C_2 =$ $(c, T_f 1) \to \cdots \to C_k$ with $C_k = (0, c)$. Now we consider the case $T_f^2 d > c$. In this case $C_2 := TfC_1 = (T_f^2d, T_f 1) \subseteq (c, T_f 1)$ is the unique successor of C_1 and by Lemma 10 $C_3 := T_f C_2 = (T_f^3 d, T_f^2 1) \subseteq (0, T_f^2 1)$ is the unique successor of C_2 . Hence by Lemma 1 of [10] there is a minimal $s \geq 4$ such that $C_j := T_j^{j} C_0$ is the unique successor of C_{j-1} for $j = 1, 2, \ldots, s-1$ and C_{s-1} has two different successors. Then either C_{s-1} has a successor C_s with $C_0 \subseteq C_s$ and $|C_s| > |C_0|$ or C_{s-1} has a successor $C_s = (c, d)$ with $|C_s| \geq (\beta^s - 1)|C_0|$. Consider the latter case. If s = 4 then $C_4 = (c, T_f^{-3}1)$ and we have shown above that there exists a finite path $C_4 \to C_5 \to \cdots \to C_k$ with $C_k = (0, c)$. Otherwise $s \ge 5$ and therefore $\beta^s \ge 2\beta^2 > 2$. In the case $T_f d \geq c$ we get $C_s \rightarrow C_{s+1} := (0, c)$. Now suppose that $T_f d < c$. Then $C_{s+1} := (0, T_f d) \subseteq (0, c)$ is the unique successor of C_s . As $\beta^2(\beta^s - 1) > 0$ 1(2-1) = 1 we get that $|T_f C_{s+1}| \ge \beta^2 (\beta^s - 1) |C_0| > |C_0| \ge |(T_f 0, c)|.$ Hence C_{s+1} has two successors, $(T_f 0, c)$ and $C_{s+2} := (c, T_f^2 \widetilde{d})$. Because of $\beta^2 \ge \sqrt[3]{4} > \frac{3}{2}$ we obtain $2\beta^2 - 3 > 0$ which implies $(\beta^2 - 1)(2\beta^2 - 1) > 1$. Hence $(\beta^2 - 1)|C_s| \ge (\beta^2 - 1)(\beta^s - 1)|C_0| \ge (\beta^2 - 1)(2\beta^2 - 1)|C_0| > |C_0|.$ Therefore $|C_{s+2}| \ge \beta^2 |C_s| - |C_0| > |C_s|$. In particular this implies $C_s \subseteq C_{s+2}$. Now an analogous proof as above in the case starting with $(c, T_f 1)$ shows that there exists a finite path $C_s \to C_{s+1} \to \cdots \to C_k$ with $C_k = (0, c)$.

This means that we have shown for $d < T_f 0$ that there exists a finite path starting in (d, c) and ending in (0, c) or there is a path $C_0 = (d, c) \rightarrow$ $C_1 \to \cdots \to C_s$ with C_j is the unique successor of C_{j-1} for $j = 1, 2, \ldots, s-1$, C_{s-1} has two different successors, $s \geq 4$, $C_0 \subseteq C_s$ and $|C_s| > |C_0|$. Now we set $C_0 := (T_f 0, c)$. Using induction we get that either there exists a finite path $C_0 \to C_1 \to \cdots \to C_k$ with $C_k = (0, c)$ or there is an infinite path $C_0 \to C_1 \to C_2 \to \cdots$ and a sequence $(s_n)_{n \in \mathbb{N}}$ of natural numbers with $s_n \geq 4$ for all n such that C_j is the unique successor of C_{j-1} for j = $S_{n-1}, S_{n-1} + 1, \ldots, S_{n-1} + s_n - 1, C_{S_{n-1}+s_n-1}$ has two different successors, $C_{S_{n-1}} \subseteq C_{S_n}$ and $|C_{S_n}| > |C_{S_{n-1}}|$, where $S_0 := 0$ and $S_n := \sum_{j=1}^n s_j$ for $n \ge 1$. Consider the second case. Because of $C_{S_{n-1}} \subseteq C_{S_n}$ we get that $s_{n+1} \leq s_n$ for all n. Hence there exists an n_0 and an $s \ge 4$ with $s_n = s$ for all $n \ge n_0$. For $n \geq n_0$ and $j = 0, 1, \ldots, s-1$ the intervals $C_{S_{n-1}+j}$ and C_{S_n+j} have the same right endpoint. Analogous to the proof for the starting interval $(c, T_f 1)$ one proves by induction that $|C_{S_n}| \ge |C_{S_{n_0-1}}| + \beta^{n-n_0}(|C_{S_{n_0}}| - |C_{S_{n_0-1}}|)$. As the right hand side of this inequality tends to infinity for $n \to \infty$ this contradicts $|C_{S_n}| \leq 1$ for all n.

Hence we have proved that there exists a finite path starting in $(T_f 0, c)$ and ending in (0, c) and there exists a finite path starting in $(c, T_f 1)$ and ending in (0, c). Using Lemma 10 one obtains that for every $C \in \mathcal{D}$ there exists a finite path $C_0 \to C_1 \to \cdots \to C_k$ with $C_0 = C$ and $C_k = (0, c)$. Now the topological transitivity of T_f follows from Lemma 2 of [10].

Next we investigate the case $1 - \frac{\beta^3}{\beta^2 + \beta + 1} \le \alpha < \frac{1}{\beta + 1}$. By the remark after Lemma 9 this implies $\beta > \beta_0$ where β_0 is the largest zero of the polynomial $x^3 - x - 1$. This implies $\beta^3 - \beta - 1 > 0$ and therefore $\beta^3 - 1 > \beta$. Set $C_0 := (T_f 0, c)$. From Lemma 11 we get that $C_1 := (T_f^2 0, 1)$ is the unique successor of C_0 . In the case $T_f^{30} \leq c$ using Lemma 11 one obtains that $C_0 \to C_1 \to C_2 := (c, T_f 1) \to C_3 := (0, c)$. Otherwise $C_2 := T_f C_1$ is the unique successor of C_1 . By Lemma 1 of [10] there is a minimal $s \geq 3$ such that $C_j := T_f^{j} C_0$ is the unique successor of C_{j-1} for $j = 1, 2, \ldots, s-1$ and C_{s-1} has two different successors. We obtain that either C_{s-1} has a successor C_s with $C_0 \subseteq C_s$ and $|C_s| > |C_0|$ or C_{s-1} has a successor $C_s = (c, d)$ with $|C_s| \ge (\beta^s - 1)|C_0|$. In the second case $|C_s| > \beta|C_0|$ since $s \ge 3$ and $\beta^3 - 1 > \beta$. If $T_f d \geq c$ we get $C_s \to C_{s+1} := (0, c)$. Otherwise $C_{s+1} := (0, T_f d)$ is the unique successor of C_s , $T_f C_{s+1} = (T_f 0, T_f^2 \tilde{d})$ and $|T_f C_{s+1}| = \beta^2 |C_s| > |C_0|$. Therefore C_{s+1} has two successors, $(T_f 0, c)$ and $C_{s+2} := (c, T_f^2 d)$. Since $\beta^{3} - \beta > 1$ we obtain $(\beta^{2} - 1)|C_{s}| > (\beta^{3} - \beta)|C_{0}| > |C_{0}|$. This implies $|C_{s+2}| = \beta^2 |C_s| - |C_0| > |C_s|$ and in particular $C_s \subseteq C_{s+2}$. A proof analogous as in the case $\alpha < 1 - \frac{\beta^3}{\beta^2 + \beta + 1}$ shows the existence of a finite path $C_s \rightarrow$ $C_{s+1} \to \cdots \to C_k$ with $C_k = (0, c)$. Now assume that C_{s-1} has a successor C_s with $C_0 \subseteq C_s$ and $|C_s| > |C_0|$. We can repeat the argument and obtain

analogous to the proof in the case $\alpha < 1 - \frac{\beta^3}{\beta^2 + \beta + 1}$ the existence of a finite

path $C_0 \to C_1 \to \cdots \to C_k$ with $C_k = (0, c)$. Suppose that $\alpha > 1 - \frac{\beta^3}{\beta^2 + \beta + 1}$ and set $C_0 := (c, T_f^{-2}1)$. If $T_f^{-3}1 \ge c$ we get $C_0 \to C_1 := (0, c)$. Now assume that $T_f{}^3 1 < c$. Then $C_1 := (0, T_f{}^3 1)$ is the unique successor of C_0 . If $T_f^{4} 1 \ge c$ then $C_2 := (T_f 0, c)$ is a successor of C_1 and as shown above there is a finite path $C_2 \to C_3 \to \cdots \to C_k$ with $C_k = (0, c)$. Otherwise $C_2 := T_f C_1 \subseteq (T_f 0, c)$ is the unique successor of C_1 and by Lemma 11 $C_3 := T_f C_2$ is the unique successor of C_2 . It follows from Lemma 1 of [10] that there is a minimal $s \geq 4$ such that $C_i := T_f^{\ j} C_0$ is the unique successor of C_{j-1} for $j = 1, 2, \ldots, s-1$ and C_{s-1} has two different successors. Then either C_{s-1} has a successor C_s with $C_0 \subseteq C_s$ and $|C_s| > |C_0|$ or C_{s-1} has a successor $C_s = (d, c)$ with $|C_s| \ge (\beta^s - 1)|C_0|$. At first we consider the second case. As $s \ge 4$ we get $|C_s| > |C_0|$. If $T_f d \le c$ Lemma 11 implies that $C_s \to C_{s+1} := (c, 1) \to C_{s+2} := (0, c)$. In the case $T_f d > c$ the interval $C_{s+1} := (T_f d, 1)$ is the unique successor of C_s . By Lemma 11 we obtain $C_s \rightarrow C_{s+1} \rightarrow C_{s+2} := (c, T_f 1) \rightarrow C_{s+3} := (0, c)$ if $T_f^2 \widetilde{d} \leq c$. Otherwise $C_{s+2} := (T_f^2 \widetilde{d}, T_f 1)$ is the unique successor of C_{s+1} . Moreover, $T_f C_{s+2} = (T_f{}^3 \tilde{d}, T_f{}^2 1)$ and $|T_f C_{s+2}| = \beta^3 |C_s| > |C_0|$ imply that C_{s+2} has the two successors C_0 and $C_{s+3} := (T_f{}^3\widetilde{d}, c)$. As $\beta \geq \beta_0 > \sqrt[3]{2}$ we get that $|C_{s+3}| = \beta^3 |C_s| - |C_0| > 2|C_s| - |C_0| > |C_s|$. Now we get analogous to the proof in the case $\alpha < 1 - \frac{\beta^3}{\beta^2 + \beta + 1}$ that there is a finite path $C_s \to C_s$ $C_{s+1} \to \cdots \to C_k$ with $C_k = (0, c)$. Next assume that C_{s-1} has a successor C_s with $C_0 \subseteq C_s$ and $|C_s| > |C_0|$. Then one obtains analogous to the proof in the case $\alpha < 1 - \frac{\beta^3}{\beta^2 + \beta + 1}$ that there exits a finite path $C_s \to C_{s+1} \to \cdots \to C_k$ with $C_k = (0, c)$.

We have proved that there exists a finite path starting in $(T_f 0, c)$ and ending in (0,c) and in the case $\alpha > 1 - \frac{\beta^3}{\beta^2 + \beta + 1}$ there exists a finite path starting in $(c, T_f^2 1)$ and ending in (0, c) (note that $(c, T_f^2 1) = \emptyset$ for $\alpha =$ $1 - \frac{\beta^3}{\beta^2 + \beta + 1}$). Therefore Lemma 11 implies that for every $C \in \mathcal{D}$ there exists a finite path $C_0 := C \to C_1 \to \cdots \to C_k$ with $C_k = (0, c)$. By Lemma 2 of [10] the map T_f is topologically transitive.

In the case $\alpha \geq \frac{1}{\beta+1}$ it follows from Theorem 1 that T_f is topolologically transitive. Hence we have proved the topological transitivity of T_f for all $\alpha \in \left(2 - \beta - \frac{1}{\beta^2 + \beta}, 2 - \beta\right].$

Finally let $\alpha \in \left(0, \frac{1}{\beta^2 + \beta}\right)$. The conjugation h(x) := 1 - x conjugates $\beta x + \alpha \pmod{1}$ to $\beta x + 2 - \beta - \alpha \pmod{1}$. By the assumptions for α we obtain $2 - \beta - \frac{1}{\beta^2 + \beta} < 2 - \beta - \alpha \le 2 - \beta$. Hence $\beta x + 2 - \beta - \alpha \pmod{1}$ is topologically transitive and therefore $\beta x + \alpha \pmod{1}$ is topologically transitive.

References

- K. Brucks, H. Bruin, *Topics from One-dimensional Dynamics*, Cambridge University Press, Cambridge, 2004.
- F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math. 34 (1979), 213–237; Part 2, Israel J. Math. 38 (1979), 107–115.
- [3] F. Hofbauer, Monotonic mod one transformations, Studia Math. 80 (1984), 17–40.
- [4] F. Hofbauer, *Piecewise invertible dynamical systems*, Probab. Theory Relat. Fields 72 (1986), 359–386.
- [5] S. Kolyada, L. Snoha, Some aspects of topological transitivity a survey, in Proceedings of the European Conference on Iteration Theory (ECIT 94), Opava 1994 (eds.: L. Reich, J. Smítal, Gy. Targoński), Grazer Math. Ber. 334 (1997), 3–35.
- [6] A. Nagar, V. Kannan, K. Srinivas, Some simple conditions implying topological transitivity for interval maps, Aequationes Math. 67 (2004), 201–204.
- [7] P. Raith, Continuity of the Hausdorff dimension for piecewise monotonic maps, Israel J. Math. 80 (1992), 97–133.
- [8] P. Raith, Continuity of the entropy for monotonic mod one transformations, Acta Math. Hungar. 77 (1997), 247–262.
- P. Raith, Topological transitivity for expanding piecewise monotonic maps on the interval, Aequationes Math. 57 (1999), 303-311.
- [10] P. Raith, Topological transitivity for expanding monotonic mod one transformations with two monotonic pieces, Ann. Math. Sil. 13 (1999), 233–241.
- [11] P. Walters, Equilibrium states for β-transformations and related transformations, Math. Z. 159 (1978), 65–88.
- [12] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982.

Peter Raith

Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, 1090 Wien, Austria *e-mail address:* peter.raith@univie.ac.at

ANGELA STACHELBERGER

Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, 1090 Wien, Austria *e-mail address:* angela.stachelberger@univie.ac.at