This paper has been published after editorial input in
Aequationes Math. |82 (2011), 91-1009,
(©) Birkhéuser, Basel.

Topological transitivity for a class
of monotonic mod one transformations

PETER RAITH AND ANGELA STACHELBERGER

Abstract. Suppose that f :[0,1] — [0,2] is a continuous strictly increasing
piecewise differentiable function, and define Tyx := f(z) (mod 1). Let § >
/2. Tt is proved that T} is topologically transitive if inf f* > § and f(0) >
—1- Counterexamples are provided if the assumptions are not satisfied. For

B+1-

V2 < B < V2and 0 < o < 2 — it is shown that Sz + « (mod 1) is

topologically transitive if and only if a < ﬁ ora>2—pf— ﬁ
Introduction

Let f:[0,1] — [0, 2] be a continuous strictly increasing function. Define

(1) Tyx = f(x) (mod 1) := f(z) — [f(2)],

where [y] denotes the largest integer smaller than or equal to y. Such a map
is called a monotonic mod one transformation (with two monotonic pieces).
A general monotonic mod one transformation is also defined as in (), but
f :]0,1] = R. Assume that f is a piecewise differentiable function, that
means f is differentiable on (0, 1) \ F' where F' is a finite set. The map T} is
called topologically transitive if there is an « € [0, 1] such that {7"z : n € N}
is dense in [0, 1]. This is equivalent to the property that there is an = whose
w-limit set equals [0, 1], where the w-limit set is the set of all limit points of
the sequence (74"x),en. For further properties of topological transitivity see
e.g. [1, [B], and [12].

The aim of this paper is to present conditions for f implying topological
transitivity (obviously there will not be equivalent conditions). These condi-
tions are related to the derivative of f. Set inf f' := inf{f'(z) : x € (0, 1)\ F'}.
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Key words and phrases. Monotonic mod one transformations, topological transitivity,
expanding map.


http://www.springer.com/birkhauser/mathematics/journal/10
http://www.springerlink.com/content/424708t806p62814/

2 PETER RAITH AND ANGELA STACHELBERGER

In fact, the condition inf f’ > [ used throughout this paper could be replaced
by the weaker condition |f(z)— f(y)| > 8|z —y| for all z,y € [0,1]. Asin the
proofs only the fact that an interval of length d is mapped to an interval of
length at least (d is used they work also in the more general case. However,
in the statements of the results we use inf f’ > [, since this is the easier
formulation.

Similar problems have been treated in [6], [9], and [I0]. In [6] and [9]
conditions implying the topological transitivity of piecewise monotonic maps
are investigated. These results imply that a general monotonic mod one
transformation is topologically transitive if inf f* > 2 (Corollary 1.1 in [9]).
It has been proved in [I0] that a monotonic mod one transformation with two
monotonic pieces satisfying inf f’ > /2 is topologically transitive (Theorem 1
in [10]).

Throughout this paper we will only consider monotonic mod one trans-
formations with two monotonic pieces. The main result (Theorem [I) states
that a monotonic mod one transformation satisfying inf f’ > [ for some
B > /2 and f(0) > ﬁ is topologically transitive. In particular (Co-
rollary [LT)) any monotonic mod one transformation with inf f/ > /2 and

f(0) > 1+ %/;I_% = §/§1+ T Is topologically transitive. An example is presented

where 8 < /2, inf ' > 3, f(0) > ﬁ and T is not topologically transitive.
Finally we give an example with inf f’ > v/2 and f(0) < M where T
is not topologically transitive.

Then the special case Sz + « (mod 1) is investigated. In this case the
results are slightly different to the general case. Suppose that v/2 < 3 < /2
and that 0 < o < 2 — 4. Then Theorem M states that Sz + « (mod 1) is

topologically transitive if and only if & < = or a > 2 — 3

1
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1. The Markov diagram of monotonic mod one transformations

Consider again a continuous strictly increasing piecewise differentiable
function f : [0,1] — [0,2] and let Ty be as in ({). If inf f' > 1 then there
exists a unique ¢ € (0, 1) with f(c¢) = 1. Define Z := {(0,¢), (¢,1)}. For each
Z € Z the map Ty|z is continuous and strictly increasing. Note that T} is
discontinuous at c.

A topological dynamical system (X, S) is a continuous map S : X — X on
a compact metric space (see e.g. [12]). As T} is not continuous ([0, 1], T%) is
not a topological dynamical system. In order to get a topological dynamical
system we use a standard doubling points construction as in [7] or [II]. For
details we refer to the papers mentioned above.
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To investigate the orbit structure of a piecewise monotonic map Franz
Hofbauer introduced the Markov diagram in [2] (see e.g. [2] and [4]). Tt is
an at most countable oriented graph. For the convenience of the reader we
describe it for monotonic mod one transformations. Let Zy € Z and let D be
an open subinterval of Z;. We call a nonempty C' a successor of D, if there
exists a Z € Z with C =TyD N Z. In this case we write D — C. Now let D
be the smallest set with Z C D satistying D € D and D — C' imply C € D.
Then the oriented graph (D, —) is called the Markov diagram of Ty. The set
D is at most countable and its elements are open subintervals of elements of
Z. A subset C C D is called irreducible, if for every C, D € C there exists a
finite path Cy — C; — -+ — C, in C with Cy = C and C,, = D. We call
C CDclosed it C € C, D € Dand C — D imply that D € C. In the proofs
we need the following result of Franz Hofbauer which is also true for general
piecewise monotonic maps.

Lemma 1. Assume that f : [0,1] — [0,2] is continuous and strictly increa-
sing, and let (D,—) be the Markov diagram of Ty. Moreover, suppose that
there is an irreducible and closed C C D with Joco C = [0,1]. Then Ty is
topologically transitive.

Proof. This result follows from (i) of Theorem 11 and Theorem 1 in [4]. O

For monotonic mod one transformations the Markov diagram has a special
structure. More details of the Markov diagram of a monotonic mod one
transformation can be found in [3] and [§]. However we will not need details
of this special structure.

2. Topological transitivity

It is useful to modify the orbits of 0 and 1 in the following way for the
map T defined in ([Il). For n € N set T;"0 := lim, o+ Tf"x and T}"1 :=
lim, ;- T} x.

If C is an interval denote by |C| the length of C.

Lemma 2. Assume that f : [0,1] — [0,2] is continuous, strictly increasing,
piecewise differentiable and satisfies inf f' > 1. Moreover, let n € N, n > 2,
and suppose that T;0 > T4?0 > -+ > Tf"’20 > c. Let C € D be so that
¢ is an endpoint of C. If C C (c,1) set Cy := C, C; = TyC N (0,c) and
C; = TyCi-1 N (c,1) for j = 2,3,...,n, and if C C (0,c) set Cy = C,
C; =T¢C;-1N(c, 1) forj=1,2,...,n—1 and C,, = T;yC,,_1N (0, ¢). Suppose
that Cy C C,, and |C,| > |Cy|. Then there exists a path C — Cy — -+ — C
with Cy € {(0,¢), (¢, Ty"21)}.
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Proof. Define  :=inf f" and § := |C,,| — |Cy|. Assume that C' C (¢, 1). Then
the left endpoint of Cj is Tfj_lo forj=1,2,...,n—1. Forj =1,2,...,nlet
Zj € Z besothat C; C Z;. Now define Cy,yj = T§Cypyj—1NZ; for t € N and
Jj=1,2,...,n. Next we prove by induction that Cy_1),4+; € Cynyj. By our
assumption Cy C C,, and hence Cy, = TyCyN Z; C TyC, N Z; = Cpyq. Now
let £ > 1orj > 1. Then Cy_1ypyj—1 € Cyyj—1 and therefore Ciy_1)ny; =
TrCe—ryn+j—1 N Z; € TyCyyj—1 N Zj = Cinyj-

Now we claim that for every ¢ € N there is an p < tn such that C), has
a successor in {(0,¢), (¢, Tf" 1)} or |Ch| > |Co| + BM=V6 and sup Cy, >
sup Cy—1)n + =15 This is obvious in the case ¢t = 1 by our assumptions.
Let t > 1. If C, has a successor in {(0,¢), (¢, Tf"?1)} for some p < (t — 1)n
we are done. Otherwise Cy_1y, C (c,1). If Cy—1), — (0,c¢) we are done.
Assume that C;_1),41 is the only successor of Cy_1y,. Then Cy_qy,q; is
the only successor of Cy_1yn4j—1 for j = 2,3,...,n — 1 and sup Cy—1)p+; —
sup Ct—ayntj > B (sup Cy—1yn — sup Cy—ay,) > BU=2"H5. Hence |G| =
sup Cy, — ¢ > BEIE +|Cy].

Since B > 1, |Cy| + B4Y"6 tends to infinity, if t — co. As |Cy,| < 1 for
all n this implies that there is a k with C), € {(0,¢), (¢, Ty"*1)}. A similar
reasoning works in the case C' C (0, ¢). O

Lemma 3. Assume that f : [0,1] — [0,2] is continuous, strictly increasing,
piecewise differentiable and satisfies inf f' > 1. Then there exists an r € N
with Ty"0 < c. Let r(f) be the smallest r € N with Ty"0 < c¢. Then T(0 >

T20> - > T/ V70> ¢ and TA0 < TP 1 for j=1,2,...,r(f).

Proof. Set B = inf f'. As f(1) — f(0) > B we get Tyl = f(1) —1 >
fO)+8—-1=T0+ (8 —1) > T70. If T§0 < ¢ we have r(f) = 1 and we are
done. Assume that Tij >cfor j=1,2,...,s. Note that for c < x <1 we
get 1 —Tyxr > Tpl — Tz = f(1) — f(z) > B(1 —2) > 1 — z and therefore
Tyx < . Hence T40 > T¢?0 > - -- > Ty**10. Moreover, using 770 < Ty1 and
induction we get Tfj 0< Tfj 1forj=1,2,...,s+1. Also using induction we
get 1 —T;/0 > /=11 = T;0), and therefore 0 < T//0 < 1 — #7~1(1 — T}0) for
j=1,2,...,s+ 1. Since 1 — T40 > 0 and /"' tends to infinity for j — oo
there must be an r with 74”0 < c¢. This completes the proof. O

Remark. If inf f' > /2 then r(f) < 6. To see this set 3 := inf f' and
r = r(f). As shown above |(T}0,1)] > Ty1 —T;0 > g — 1. Moreover
1> |(Ty70, T 11)| > Br=Y(B—1) = B7—p L. Observe that z + 2" —2" 11
is strictly increasing for > 1. Since v/2 > % this implies that 37— 8¢ -1 >
(vV2)" — (V/2)8 =1 = 4/2 — 5 > 0, and therefore 1 > 37 — 3% can not be
satisfied.

Now we show the following result.
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Lemma 4. Suppose that f(z) := </2x + M. Then Ty is topologically
transitive.

Proof. Set o := %2_2%@. Then T70 = o, T¢1 = V2+a—1= 3%/5 and
f(c) =1 for ¢ := 1;—;‘ =1- %. Obviously T41 > a > c. Therefore follows
TP1=a=T;0,T/°0=1— 3%/5 < cand T30 = 3%/5 = Ty1. This implies that
Ty(T§°0,c) = (Ty1,1), Ty(c,Ty0) = (0, T4°0), Ty(Ty1,1) = Ty(0,7%°0) =
(T70,T41) and Ty(T}0,Ty1) = (1420, T;0). Hence

C :={(0,75°0), (T*0, ¢), (¢, T;0), (T10, Ty 1), (T51, 1)}

is an irreducible and closed subset of the Markov diagram of T and (.. C
[0,1]. Now Lemma [Iimplies that T} is topologically transitive. O]

Lemma 5. Assume that f : [0,1] — [0,2] is continuous, strictly increasing
and pz’ecewz’se differentiable. Further assume that § > 0, inf f' > B and

f(0) > BH Set a:= f(0). Thena>m>c

Proof. Because of @ > B

lea o 1
we obtain ¢ < 5 < 51

T we get thatlT BL Since 1 = f(c) > a+ fc
<« O
Remark. In particular Lemma [{ states that r(f) > 2 under the assumptions
of Lemma [Bl

Lemma 6. Suppose that [ :[0,1] — [0,2] is continuous, strictly increasing
and pz’ecewise differentiable. Further assume that 8 > /2, inf f' > B and
f(0) > 6+1 Moreover assume that dy < ¢ < dy, Cp := (dy,¢), Do := (¢, da),
|Co| = |Dy|, Tydy < ¢, Tf*dy > ¢ and Tj*(dy, ¢) = Ty*(¢c,dy) = (dy,dz). Then
f(z) = V2x + M for all x € [0, 1].

Proof. From Lemma [ it follows that T¢d; > T¢0 > ¢, hence C; := T{Cy =
(Tydy, 1) C (c,1). As T¢*dy > ¢ we get that Cy := TyCy = (Tp*dy, Tyl) C
(¢,1). Furthermore TyCy = (dy,ds2) by our assumptions. Since Tydy < ¢ we
obtain that Dy := TyDy = (0,Tydz) C (0,¢) and therefore Dy := TyDy =
(T70,T¢?*dy) C (c,1). Again our assumptions give TyDy = (dy,ds). In par-
ticular we have Tydy € [0,c] and Ty0,T1, Tydy, Tpdy, Ty?dy € [c,1]. As
inf f > B > /2 we get |T;Cy| > 2|Co| and |TyDy| > 2|Dy|. Now |Co| = | Dy
and T;*Co = Ty Dy = (dy, ds) imply that there are ag, oy, ag, G, Q1, g With
f(z) = V2r+a; for x € Cj and f(z) = V2x +a; for x € D; if j € {0,1,2}.

Assume that Tydy < d;. Because of Ty*dy = dy and Tytdy = Ty Ty dy =
Tydy we get

‘dl - dez‘ - |Tf3d1 - Tf4d2‘ Z 2|d1 - de2|
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which is a contradiction. Hence Tyd, > d; and therefore Tf2d2 > Ttdy and

dg = Tf3d2 Z Tdel. This implies that C() U 01 U 02 U DO U D1 U D2 = [0, 1]

Therefore f(x) = /22 + « for some a. Now the conditions on d; and d

2+ V4-29/2
2

imply that o = completing the proof. O

Lemma 7. Suppose that f :[0,1] — [0,2] is continuous, strictly increasing
and piecewise differentiable. Further assume that B > /2, inf f' > B and
f(0) > ﬁ Moreover assume that f(x) # 2z + H%;z% for some x.
Let C' € D with ¢ being an endpoint of C'. Then there exists a finite path
Co =C — Cy = -+ = O such that one endpoint of Cy is ¢ and either

Cr € {(0,0), (e, T/} or |Col < BICK|.

Proof. Set r :=r(f). We have either Cy = (d, ¢) or Cy = (¢, d).

In the first case Tyd > Ty0 > ¢ by Lemmalil Setting C; := (Tfjd, Tfjfll)
for j = 1,2,...,r — 1 we get that C; is the only successor of C;_; for j =
1,2,...,r — 1. Then TyC,_y = (Ty"d,Ty" '1) and |T;C,_i| > B7|Co|. If
Ty d < ¢ then C,_1 — (c, Tfr_ll) and we are done. Otherwise C, := TyC,_4
is the only successor of C,_;. By Lemma 1 of [10] there is a minimal s > r
such that C; = TyC;_; is the only successor of C;_; for j = 1,2,...,s and
C; has two different successors. As |TyCs| > 311 Co| we get that Cs has a

successor Cyyq with |Cyyq| > 552“ |Co| and ¢ is an endpoint of Cyyq. If s > 3

then BTH > [ since § > /2 and we are done.

Otherwise s = r = 2 and Cy has the successors (T}%d,c) and (¢, T4*1)
and |T;Cy| > B3Co| > 2|Cyl. In the case |(Td,c)| > |Cy| Lemma 2 with
n = 3 implies the desired result. Otherwise set C3 := (¢, 74%1). Note that
|C5| > |Col. If T4*1 > ¢ then C3 — (0, ¢) and we are done. Now consider the
case Ty?1 < ¢. Then C, := (0,74°1) is the only successor of Cs, and C5 :=
(T70,T*1) is the only successor of Cy. Moreover |T;Cs| > 52|C5| > 2|C5|. If
C’5 has only one successor then by Lemma 1 of [I0] there is a minimal s > 3
such that Cs,; = TyC54 ;-1 is the only successor of Cs, ;1 and Csy, has two
different successors. Because of |TyCs 5| > B571|C3] we get that Csyg has
a successor Csigr1 with [Cyeq] > ﬁs2+1|C’3| > B|Cs] > B|Cy| and ¢ is an
endpoint of C5,5.1. We are done in this case. Otherwise C5 has the two
successors (7420, c¢) and (¢, Ty°1). If |(¢, T°1)| > |Cs] the desired result is
implied by Lemma 2l with n = 3. Otherwise set Cg := (720, ¢). Observe that
|Cs| > |C5] > |Col|, which implies Cy C Cs. Hence C; := (T4%0,1) 2 C} is the
only successor of Cs and TyC7 = (T4*0,T1) D Cy. In the case T4*0 < ¢ we
get C7 — (¢, Tf1) and we are done as r = 2. Otherwise Cg := T;C? is the only
successor of C7 and C5 C TyCs = (Tf50, szl). Hence Cg has the successors
Cy := (T4°0,¢) and (¢, Tf*1) = C5. As |TyCs| > 2|Cs| > 2|Cs| and |Co| >
|Cs| we get that |Co| = |T7Cs| — |Cs| > 2|Cs| — |Cs] > |Cg|. If |Cy| = |Cs|
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we get C9 = Cg and we have the situation described in Lemma [ Then
Lemma [ implies that f(z) = v/2x+ M for all z € [0, 1] contradicting
our assumption. Hence |Cy| > |Cg|. Applying Lemma 2 with n = 3 we
obtain the desired result.

Now we consider the case Cy = (¢, d). If Tyd > ¢ we have Cy — (0, ¢) and
we are done. It remains to consider the case Tyd < c¢. Then Cy := (0,Tyd)
is the only successor of Cy. Setting C; := (Tfj_IO,Tfjd) for j =2,3,...,r
we get that C; is the only successor of C;_; for j = 1,2,...,r. Moreover
T¢C, = (Ty"0, Ty 'd) and |T;C,| > 571 Cy|. By Lemma 1 of [10] there is
a minimal s > r such that C; = TyC;_; is the only successor of C;_; for

j=1,2,...,s and C; has two different successors. As |T;Cs| > 3571 Co| we
get that C has a successor Cy, 1 with |Cyyq| > 8 ; ' |Co| and ¢ is an endpoint

of Cyyq. If s > 3 then ﬁTH > [ since > /2 and we are done.

It remains to assume that s = r = 2. Then C5 has the successors
(T420, ¢) and (¢, T§d), and |TyCs| > B3|Co| > 2|Cyl. If |(¢, Ty3d)| > |Co| then
Lemma[2 with n = 3 implies the desired result. Otherwise set C5 := (720, ¢).
Hence C3 = (d, ¢) for d = T§?0 and |C3| > |Cp|. In this case we have shown
above that there exists a finite path Cs — Cy — - -+ — C}, such that one end-
point of Cy is ¢ and either Cy € {(0, ¢), (c, Tfr(f)_ll)} or |Co| < |Cs] < B|Ckl-
This completes the proof. O

Lemma 8. Suppose that f :[0,1] — [0,2] is continuous, strictly increasing
and piecewise differentiable. Further assume that B > /2, inf f' > B and
3 3
f(0) > ﬁ Moreover assume that f(z) # 2z + %7_2‘/5 for some x. Let
CeD.
(1) If r(f) > 3, then there exists a finite path Cy :==C — C; — --- — C,,
with Cp, = (0,c). Moreover T;"1 > c.

(2) If r(f) =2, then there exists a finite path Cy := C — Cy — -+ = C),
with C, € {(0,¢), (¢, Tf1)}.

Proof. Set r := r(f). By Lemma 1 of [10] there exists a path Cy — C; —
- — () in D with ¢ is an endpoint of C;. Now we prove by induction
that for every ¢ € N there is a path C; — Cj;qy — -+ — C,, such that c
is an endpoint of ), and either C,,, € {(0,¢), (¢, Tf""'1)} or |Cy,| > BC1].
For t = 1 this follows immediately from Lemma [l Now let ¢ > 1. If
Chry € {(0,¢), (¢, Ty"'1)} we are done. Otherwise by Lemma [7] there exists
a path C,, , = C,, 11 — -+ — C,, such that c is an endpoint of (), and
either an S {(O’C)’ (C’ Tfr_ll)} or |Om| > 6|Cnt71| > 6t|0l|
As (! tends to infinity for ¢ — oo there exists a path Cy := C — C; —
-oo — Oy, with C,, € {(0,¢), (¢, Ty""'1)}. In the case r = 2 we obtain (2).
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Finally, assume that » > 2. In order to show (1) it suffices to show
that (¢, Ty""'1) — (0,¢). Setting Dy := (0,¢), D; := (T/0, T/ "1) for j =
1,2,...,r—1 we have that D; is the only successor of D;_; for j = 1,2,...,r—
1. Moreover Ty D,y = (Ty"0,T;"~'1) satisfies [Ty D,_1| > 8"|Dy| > 2c. Since
Ty"0 > 0 this implies that |(c, T}""'1)| > |[TyD,_1] — [(0,¢)] > c. Hence
(0, T¢"1)| = |Ty(c, Ty"~'1)| > Be. Therefore T;"1 > ¢ and this implies that
(e, Tf"11) — (0, ¢). O

Theorem 1. Let f : [0,1] — [0,2] be a continuous, strictly increasing and
piecewise differentiable function. Moreover assume that B > /2, inf f' > f3
and f(0) > ﬁ Then Ty is topologically transitive.

Proof. If f(x) := ¥/2z + M then topological transitivity follows from
Lemma M4l Otherwise denote by (D, —) the Markov diagram of T}. Let
C € D and set r :=r(f).

Assume at first that 7?1 < ¢. Using Lemma [land Lemma [5 this implies
Ti?0 < Tp*1 < ¢, ¢ < Ty?0 < T4*1 and r = 2. Define C as the set of all D € D
such that there is a path Dy := (¢,Ty1) — Dy — --- — D,, = D which is
obviously closed. Set Cy := (¢, Ty1), Cy := (0,T4*1), Cy = (T40,T4%1),
Cs := (T4*0,¢) and Cy := (T4%0,1). Because of T;?0 < ¢ we have (0,c¢) —
(T70,1) — Cy. By (2) of Lemma [ for any C' € D there exists a path
Dy:=C — Dy = ---—= D, with D, € {(0,¢), (c,Tf1)}. Therefore the set
C is closed and irreducible. Since 1 > |T%(c,1)| > (¢, 1)] = B(1 — ¢) we get
1—c< % Moreover |Cy| > f—1as Tl > Tf0+F—1 > ¢+ —1 by Lemmalil
By our assumptions (' is the only successor of Cy and () is the only successor
of Cy. Therefore |Cy| > B2(8 — 1) and |TCs| = |(T420,T4*1)| > B3(B—1) >
ﬁ as 2° —2° — 1 > 0 for # > /2. Hence T*1 > B~1H > ¢ by Lemma [
and Cy has the two different successors C3 and (¢, T¢*1). Moreover C3 — C.
Since Cy, Cy, Cy, C3,Cy € C and Ui:oﬁk = [0, 1] the topological transitivity
is implied by Lemma [Tl

Now assume that 7420 > c¢. Then r > 3 and ¢ < Ty*0 < Ty*1 for
k=1,2,....,r =1 by Lemma Bl Set Cy := (0,¢), Cx := (Ty*0,T(*'1)
for k = 1,2,...,7 — 1, and C, := (¢, 7" '1). Define C as the set of all
D € D such that there is a path Dy := (0,¢) - Dy — -+ — D,, = D.
Obviously C is closed. By (1) of Lemma [§ for any C' € D there exists a
path Dy :== C — Dy — --- — D, with D, = (0,¢). Hence the set C is
closed and irreducible. Observe that Cy — C; — --- — C,_; — C,.. Since
Co,C4,...,C, € Cand |J,_, Cy, = [0,1] the map T} is topologically transitive
by Lemma [I1

Finally it remains to consider the case TfQO < ¢ and Tf21 > c¢. Set
Co == (0,¢), Cy := (170,1) and Cy := (¢,T1). Define C as the set of all
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D € D such that there is a path Dy := (0,¢) - Dy — -+ — D, = D.
Observe that Cy — C; — Cy — Cy. By Lemma [ for any C' € D there
exists a path Dy .= C — Dy — --- = D, with D, € {(0,¢),(c,Tf1)}.
This implies that C is closed and irreducible. Moreover Cy, C7,Cy € C and
Uz:o Cy, = [0,1]. Therefore T} is topologically transitive by Lemma [ O

Corollary 1.1. Let f : [0,1] — [0,2] be a continuous, strictly increasing
and piecewise differentiable function. Moreover assume that inf f' > v/2 and

f(0) > %{%. Then Ty is topologically transitive.

Proof. Observe that \3/51+1 =1 *B/g_%. Setting f = v/2 in Theorem [ gives
the desired result. O

Remark. Using the conjugation h(z) := 1 —x we see that T is conjugated to

~

T%, where f(x) :=2— f(1—z). Obviously f(0) > a is equivalent to f(1) <

2—a. Hence Theorem 1 implies that for every continuous, strictly increasing

and piecewise differentiable function f : [0,1] — [0, 2] with inf f* > § and
1

f()<2- 717 the map T is topologically transitive.

3. Counterexamples

Let 1 < B < v/2. Define

p2+1
2 x)i=0r+ .
) fla) o= gt
Setting ¢ := % we obtain f(c) = 1. Such a map T is shown in Figure[ll

Now define A := [0,7*1] U [T}20,T4*1] U [T;0,T;1] U [T#0,1]. Note that

2 1 2 1
Ti0 = s > & T10 = gy < ¢ TP0 = 5 > ¢, Ty'0 = 5 =
4 2_ 5_132 6_933
T:0, Tyl = % > ¢, Tyl = % > ¢, Tf%1 = %f’ﬁjﬁl < ¢ and
Tl = %ﬁ;ﬂﬂ < Ty1. Moreover, T4*1 < T?0 which implies that

[0,1]\ A # 0. Since T4*1 < Ty1 and T4*0 = T;0 we get that TfA C A.
Therefore T is not topologically transitive.
Observe that f(0) = 770 = F41 The function g : {reR:z>

2 m. 4 2
0} = R, g(z) := 55— is strictly decreasingg as 3g’(ac) = % < 0.
2
Hence f(0) = % = g(B) > g(V2) = M because 3 < v/2. Note

that 2VA2V8 o LV VE (22 VA2Y8 o (533779, VAV2 ~ (.442493).

Moreover f(0) = W’TTELB > ﬁ This shows the following result.
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0 c 1

Figure 1: This is Ty for f from ().

Theorem 2. For 1 < < /2 there exists a continuous strictly increasing

3 3
piecewise differentiable function f : [0,1] — [0,2] with f(0) > M,
f(0) > ﬁ and inf f' > B such that Ty is not topologically transitive.

Remark. The proof above shows that the function f in Theorem [2] can be
chosen as f(z) = Sz + « for suitable a and S.

Now let 3y be the largest zero of the polynomial 23 — 2z — 1. Assume that
V2 < b < Py and a < # We will define a continuous strictly increasing
function f : [0,1] — [0, 2] in the following way. Choose ¢ > 0 such that

1 1 1 B2 -1 }
o T Q, ) ; .
B+l TBADE+1) 34+ L+ B+ O+ 67 -1
We define f as the join the dots map with the dots

(0, 155 — ), (8%0, 75 — 6 + £°0), (¢ — 6,1 = B4), (c + B, 1 + $%9),

(G0 =51+ 5, G+ 5501+ 55,

(1- 80, 1(8+1—8)) and (1,3(5+ 1+ &71%)).

Such a map T% is shown in Figure Note that inf f/ > 3. Furthermore

= 08U fe = dc+ 88 U [5(1 — 5,50 + Sl UL - p3.1] s
Ts-invariant, and 32§ < ¢ — 6. Moreover note that f(0) = — 0> aby

1) <min{

1+5
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0 c 1

Figure 2: This is T for f from Theorem (3l

the choice of §. Therefore T is not topologically transitive. Hence we have
shown the following result.

Theorem 3. For /2 < < By and o < ﬁ there exists a continuous strictly
increasing piecewise differentiable function f : [0,1] — [0,2] with f(0) > «

and inf f" > B such that T is not topologically transitive.

Corollary 3.1. For a < M there exists a continuous strictly increa-
sing piecewise differentiable function f : [0,1] — [0,2] with f(0) > « and
inf f' > /2 such that Ty is not topologically transitive.

4. The special case Sz + « (mod 1)

Finally we investigate the special case Sz + a (mod 1). In this case the
situation is slightly different. For any § > /2 we will determine the set of
all @ such that Sz + « (mod 1) is topologically transitive. Note that for
every 3 > 0 the map f(x) := Sz + « satisfies f([0,1]) C [0,2] if and only if

1—a

0 < a <2 — (. Furthermore observe that ¢ = 5 in this case.

Lemma 9. Assume that 1 < 8 < V2 and ﬁ <a< ﬁ, and set f(x) :=
Bz + a. Then T;0 < ¢ < Tyl < Tp?*0 and T§30 > T(0. Moreover, Tf*1 < ¢
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ifandonlyifoz<1—52f7;+1. ]faﬁ?—ﬁ—ﬁthean21<ccmd

T/31 < Tyl
1 l—«

Proof. Because of @ < 71 We get 70 = a < 5 = ¢ and therefore

T4?0 = (B4 1)a. Using (8—1)*(8+1) > 0 one obtains _Bﬁﬁﬂ < BQIJFB S«

and hence Tyl = a+ -1 > 1_70‘ = c and Ty*1 = (B—i—l)oz—l—BQ—ﬁ—l
Since 8 < v/2 we obtain (8 — 1)(3+ 1) < 1 which implies % < 62+B <«
and therefore Tj1 = a+  —1 < (8 + 1)a = T4?0. In particular 7420 > ¢
which implies T4/%0 = (8 4+ S+ 1)a — 1. As a > we get Tp%0 =
(BFP+B+La—-1 >a_Tfo

The property o < 1— 52+ﬁ+1 is equivalent to 7?1 = (B+1)a+3*— -1 <

17 = c¢. In this case one obtains that T*1 = (82 + 8+ 1)a+ 3% — 52 — .

a1 =B4B%+2p-1 —8348248+1 4 B3
Observe that 2 — =5 = L < @ T 1 A
Hence Ty?1 < cif a <2 - — ﬁ Moreover in this case we get T;*1 =

B+B+a+p - —B<a+p—1=T1. O

Remark. Observe that B+1 <1- ﬁ2+ﬁ+1 for 1 < 8 < By where Sy be the
largest zero of the polynomial 2® — z — 1 as §(8° — 8 — 1) < 0. Hence

a<l-—

_1
B2+B

is satisfied automatically in this case if a < ) +1

53
B2+B+1
Suppose that v/2 < 8 < v/2 and B2+5 <a<2-p0-— 521+ , and define
f(z) := px + «. Such a map is shown in Figure Bl By Lemma [0 the set
A = [0,T/21) U [T;0,T1] U [T}?0, 1] satisfies TyA C A and [0,1] \ A # 0.

Hence T is not topologically transitive.

Note that (8 —1)*(8+1) > 0 implies 2 — 3 — ﬁQw —53;@;5‘1 < m

Moreover, for B < /2 we obtaln (8 — 1)(8? —2) < 0 which implies that

1 —B34B%2428-1 33
75 < pms — =2- B~ <1 -
Lemma 10. Suppose that V2 < f < V2, 2 —f — 2= < a < —

s B2+p B+1
and a < 1 — %, and set f(x) := pxr + a. Then (0,¢) — (c 1),
(¢,1) = (0,¢), (0,¢) = (T}0,c¢), (T420,1) is the unique successor of (T10,c),
(¢,1) = (¢, Tf1), (0,Tf?1) is the unique successor of (¢, Tyl) and Ty*1 > Ty1.
Furthermore for every C' € D there exists a finite path Cy — C7 — -+ — C},
with Cy = C and Cy, € {(0,¢), (T}0,¢), (¢, Tf1)}.

Proof. By Lemma [0 we get (0,¢) = (¢, 1), (¢,1) = (0,¢), (0,¢) — (T%0,¢),
(T420,1) is the unique successor of (T}0,¢), (¢,1) = (¢, Ty1) and (O T4%1) is

the unique successor of (¢,Ty1). Moreover, using that 2 — 3 — 52 5 < awe
obtain that /1 = (82 + S+ a+ B2 -2 —B>a+ 5 —1="T;1.
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0

0 c 1

Figure 3: This is Sz + « (mod 1) with %§ﬂ<\/§andﬁ§a§2fﬂf

_1
B2+
Now we claim that for every C' € D having c as an endpoint there exists
a finite path Cy .= C — C; — --- — (), with ¢ is an endpoint of C,
and C,, € {(0,¢),(7T0,¢), (¢, Tf1)} or |C,| > B|C|. Assume at first that
C = (d,c) for some d. If Tyd < ¢ we are done as C' — (¢,1) — (0,¢).
Otherwise C; := (Tyd,1) = T;C is the unique successor of Cy := C. In
the case Ty?d < ¢ we are done because of C; — (¢, Tfl). If Tyd > ¢
then Cy := Ty?C = (T4%0,T41) C (¢, Ty1) is the unique successor of Cy and
therefore C3 := T;*C is the unique successor of Cy. By Lemma 1 of [10] there
is a minimal s > 3 such that C; := Tfj C' is the unique successor of C;_; for
j=1,2,...,s and Cy has two different successors. Each of these successors
has ¢ as an endpoint. Because of T;C, = T;*"'C we get |T;C,| = p**1|C)|

55;1\C|. As s > 3 and

and therefore C; has a successor Cy 1 with |Cyiq| >
B> /2 we get BTH > [ and hence |Cs11| > B|C].

Similarly for C' = (¢, d) for some d we have either C' — (0, ¢) and are done
or Cy :=T;C = (0,T¢d) is the unique successor of Cy := C. If Tj*d > ¢ in
the second case then C; — (740, ¢) and we are done. It remains to consider
the case Tyd < ¢ and Ty*d < c¢. Then Cy := Ty*C = (T70,T4*d) C (T0,¢)
is the unique successor of C; and C5 := T}3C is the unique successor of
(5. By the same argument as above there exists an s > 3 and a finite
path Cy .= C — Cy — --- — (1 such that ¢ is an endpoint of Cs;; and
|Csa| > B|C.
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Next we prove by induction that for every C' € D having c as an endpoint
and for any ¢ € N there exists a finite path Cy := C — C; — .-+ = (),
with ¢ is an endpoint of C,, and C,, € {(0,¢), (T%0,¢), (¢,Tf1)} or |Cy,| >
Bf|C|. For t = 1 this is exactly the property proved above. Let ¢ > 1. If
Chn,, € {(0,¢),(T%0,¢), (¢, Tf1)} set n, := ny—y and we are done. Otherwise
by the property proved above there exists a finite path C,, , — C,,_,+1 —
.-+ — C,, with ¢ is an endpoint of C,,, and C,,, € {(0,¢), (70, ¢), (¢, Tf1)} or
|Cni| 2 BCr, | = B1C

Finally let C' € D. By Lemma 1 of [10] there exists a finite path Cy :=
C — Cy — -+ — () such that C)_; has two different successors. Therefore
¢ is an endpoint of C;. Choose t € N with 5*|C}] > 1. Then there exists
a finite path C; — Cj1y — -+ — Cj with Cy € {(0,¢), (T%0,¢), (¢,T¢1)} or
|Cx| > BCy]. As |Cy| > 1 the second case cannot occur. This completes
the proof. O
Lemma 11. Assume that v2 < f < /2 and 1 — BQ%ZH <a< ﬁ, and
set f(z) .= Pz + . Then (0,¢) = (c,1), (¢,1) = (0,¢), (0,¢) = (1%0,¢),
(T420,1) is the unique successor of (T70,¢), (¢,1) = (¢, Ty1) and (¢, Tfl) —
(0,¢). The interval (0,c) is the unique successor of (¢,Tfl) if o« =1— 5257;“
and (¢, Ty1) = (¢, T§*1) otherwise. Moreover for every C € D there exists a
finite path Cy := C — Cy — -+ = Cy, with Cy, € {(0,¢), (T70,¢), (¢, Tf*1)}.

Proof. The properties (0,¢) — (¢, 1), (¢,1) — (0,¢), (0,¢) — (T%0,¢),
(T420,1) is the unique successor of (T70,¢), (¢,1) — (¢, Tf1), (¢, T1) —
(0,¢), (0, c) is the unique successor of (¢, Tr1) if o = 1_6257;1 and (¢, Tfl) —
(¢, T4*1) otherwise follow immediately from Lemma [9.

We claim that for every C' € D having ¢ as an endpoint there exists a
finite path Cy := C — C} — --- — C, with ¢ is an endpoint of C,, and
C, € {(0,¢), (T%0,c¢), (¢, Tf*1)} or |C,| > B|C]. To this end we assume at
first that C' = (d,c¢) for some d. In the case Tyd < ¢ we are done as C' —
(¢,1) = (0,¢). Otherwise C; := TyC = (Td, 1) is the unique successor of
Co := C. If Ty*d < ¢ we are done since C; — (¢, Ty1) — (0,¢). Now suppose
that Ty*d > c¢. Then Cy := Ty*C = (T}*0,Ty1) is the unique successor of Cf.
Moreover, either Cy — (¢, T4?1) and we are done or C3 := T;*C' is the unique
successor of Cy. The same argument as in the proof of Lemma [I0 gives the
existence of an s > 3 and of a finite path Cy :=C — C; — -+ — (1 such
that ¢ is an endpoint of Cs1; and |Csyq| > B|C.

For C' = (c,d) for some d exactly the same proof as in the proof of
Lemma [I0 shows that either C' — (0,¢) or C — TyC' — (T%0,¢) or there
is an s > 3 and a finite path Cy := C — C; — --- — (11 such that ¢
is an endpoint of Csyq and |Csyq| > B|C|. Now the same arguments as in
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the proof of Lemma [I0 show that for every C' € D there exists a finite path
Co=C—Cy—---— (Cpwith C}, € {(O,C), (TfO,c), (C, szl)} ]

0

1 2 A2 2 B

Figure 4: For (8,«) in the white region of this triangle the map Sz + « (mod 1) is
topologically transitive and in the gray region it is not topologically transitive. The black
region is not completely classified.

Our next result classify those (3, a) with v/2 < f < v2and 0 < a < 2—f
such that Sz + « (mod 1) is topologically transitive. In Figure @l the white
region inside the triangle shows those (3, ) with v/2 < 3 < 2 for which
Bz 4+ o (mod 1) is topologically transitive. Recall that for § > /2 the
map Sz + « (mod 1) is topologically transitive by Theorem 1 of [10]. The
gray region shows those (3,a) with v/2 < 8 < 2 where Sz + o (mod 1)
is not topologically transitive. For 1 < 3 < v/2 the set of all (3, a) where
px+a (mod 1) is topologically transitive has not been described completely.

Theorem 4. Let /2 < 8 < V2 and let 0 < o < 2—f. Then fz+a (mod 1)

;s togologically transitive if and only if 0 < a < ﬁ or2— [ — ﬁ <a<

Proof. From Lemma [0 we obtain that Sz 4+ « (mod 1) is not topologically

transitive for ﬁg—lﬂg <a<L2-p- ﬁ (see the paragraph below the remark

following Lemma [0)).

At first we consider the case o > 2 — 3 — ﬁ We start the proof
= Set

51 Suppose at first that a < 1 —

investigating the case a < 6257[#1



16 PETER RAITH AND ANGELA STACHELBERGER

Co = (¢,Tf1). By Lemma [0 we get that C; := (0,74%1) is the unique
successor of Cy, C; — (T40,¢) and C; — Cy := (¢, T4*1), and |Cy| > |C|.
In particular this implies Cy C Cy. Note that |Cy| = 5%|Co| — |(T}, ¢)|. Now
we prove by induction that for every n € N there exists a £ < 2n and a
path Cp — C; — -+ — C}, with C}, = (0,¢) or Cy C Cy and |Cy| > |Co| +
B H|Cy| — |Co]). For n = 1 we have obviously |Ci| = |Co| + 8°(|Cs| — |Co)).
Let n > 1 and assume that [ < 2n — 2, Cy — C; — --- — (] is a path with
C; = (0,¢) or Cy C Cy and |C)| > |Co| + B 2(|Co| — |Col). Tf C; = (0, ¢)
set k := 1 < 2n and we are done. Otherwise either C; — (0,¢) or Cjyq =
TyC; 2 C) is the unique successor of Cj. In the first case we are done setting
k:=141<2n and Cy := (0,c¢). Consider the second case. Then Cj; has
the two successors (770, c¢) and Ciyo :=TfC; N (¢, 1) D Cy 2 Cy. Set k =
[+2 < 2n. We have that |Ci|+|(T}0, ¢)| = 82|Ci| > B2|Co| + B™(|Ca| — |Co]).
Since 8%Co| — [(T}0,¢)| = |Ca| > |Co| and 8 > 1 this implies |Cy| > |Co| +
B"71(|Cy| — |Co)) finishing the induction. As |Cy|+ 87 1(|Cy| —|Co|) tends to
infinity for n — oo there exists a finite path Cy := (¢, Tf1) = Cy = --- = C
with Cy, = (0, ¢).

Next assume that d < T}0 and set Cy := (d,c). If Tyd < c then Cy —
Cy = (¢, 1) = Cy := (0,¢). Otherwise Cy := TyCy = (Tyd) C (c,1) is the
unique successor of Cp. In the case Ty?d < ¢ we have C; — (¢, Ty1). Then set
Cy := (¢, Ty1) and as shown above there exists a finite path Cp — C; — Cy =
(¢, Tfl) — -+ = Cy with C), = (0,¢). Now we consider the case Ty*d > c.
In this case Cy := T fCy = (Ty*d, Ty1) C (¢, Ty1) is the unique successor of
Cy and by Lemma [I0 C; := T;Cy = (Ty*d, Ty*1) C (0,74°1) is the unique
successor of Cy. Hence by Lemma 1 of [I0] there is a minimal s > 4 such
that C; = TijO is the unique successor of C;_; for j = 1,2,...,5 — 1
and Cs_; has two different successors. Then either C;_; has a successor
Cs with Cy C Cy and |Cy] > |Cy| or Cy_1 has a successor Cy = (¢,d) with
|C5] > (B8°—1)|Cp|. Consider the latter case. If s = 4 then Cy = (¢, T*1) and
we have shown above that there exists a finite path Cy — C5 — -+ — C}
with Cj, = (0,¢). Otherwise s > 5 and therefore 3% > 232 > 2. In the case
ng > ¢ we get Cy — Cyyq = (0,¢). Now suppose that ng < ¢. Then
Csp1 = (O,ch;fv) C (0,c¢) is the unique successor of Cy. As B?(5% — 1) >
12— 1) = 1 we get that [TyCona| > B2(8° — 1)|Col > [Co| > |(T70.0)].
Hence C,41 has two successors, (T70,c¢) and Cyyg := (c, Tﬂg). Because of
B% > /4 > % we obtain 23% — 3 > 0 which implies (3% —1)(28% - 1) > 1.
Hence (52 — 1)|Cy| = (8 — 1)(5" — 1)|Col = (8 — 1)(268° — DICol > |Co.
Therefore |Cyy 2| > 8%|Cy| —|Co| > |Cs|. In particular this implies Cy C Cy .
Now an analogous proof as above in the case starting with (¢, 7¢1) shows that
there exists a finite path Cy — Csy1 — - -+ — Cy with Cy, = (0, ¢).
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This means that we have shown for d < T%0 that there exists a finite
path starting in (d, c) and ending in (0, ¢) or there is a path Cy = (d,c) —
Cy — - -+ = C, with C} is the unique successor of C;_; for j =1,2,...,5—1,
Cs—1 has two different successors, s > 4, Cy C C; and |C5| > |Cy|. Now
we set Cp := (770,c¢). Using induction we get that either there exists a
finite path Cy — C; — -+ — C) with Cx = (0,¢) or there is an infinite
path Cy — C; — Cy — --- and a sequence (S,),eny Of natural numbers
with s, > 4 for all n such that C; is the unique successor of C;_; for j =
Spn-1,Sn-1+1,...,8,-1+5s, —1, Cs, ,+s,-1 has two different successors,
Cs, , € Cs, and |Cs,| > |Cs, |, where Sy := 0 and S, := 37, s; forn > 1.
Consider the second case. Because of Cg,_, C Cg, we get that s,.1 < s, for
all n. Hence there exists an ng and an s > 4 with s,, = s for all n > ng. For
n>ngand j =0,1,...,5—1 the intervals Cgs, ,; and Cg,; have the same
right endpoint. Analogous to the proof for the starting interval (c,71) one
proves by induction that |Cs, | > |Cs, |+ 8"7"(|Cs, | = |Cs,, ;). As the
right hand side of this inequality tends to infinity for n — oo this contradicts
|Cs, | <1 for all n.

Hence we have proved that there exists a finite path starting in (770, c)
and ending in (0, c) and there exists a finite path starting in (¢, 771) and
ending in (0,c). Using Lemma [I0] one obtains that for every C' € D there
exists a finite path Cy — Cy — - -+ — C with Cy = C and Cj, = (0,¢). Now
the topological transitivity of T follows from Lemma 2 of [10].

Next we investigate the case 1 — 5257;“ <a< ﬁ By the remark after
Lemma [9] this implies 5 > [, where 3, is the largest zero of the polynomial
2> — x — 1. This implies 82 — 8 — 1 > 0 and therefore 8% — 1 > 3. Set
Co = (T40,¢). From Lemma I we get that C} := (7,20,1) is the unique
successor of Cy. In the case Tf30 < ¢ using Lemma [I1] one obtains that
Co = C1 = Cy := (¢, Tfl) = C5 := (0,¢). Otherwise Cy := TyC is the
unique successor of C;. By Lemma 1 of [I0] there is a minimal s > 3 such
that C; := Tij'O is the unique successor of C;_; for j = 1,2,...,5 — 1 and
C,_1 has two different successors. We obtain that either Cs_; has a successor
Cs with Cy C Cs and |Cy] > |Cp| or Cs_1 has a successor Cy = (¢, d) with
|Cs| > (8°—1)|Cp]. In the second case |C,| > B|Co| since s > 3and 3—1 > j.
If Tsz ¢ we get Cy — Cysyq = (0,¢). Otherwise Csyq = (O,ng) is the
unique successor of Cy, TyCyyq = (TfO,Tf2c;fv) and |TyCsi1| = B%Cs| > |Co.
Therefore Cyyy has two successors, (770,c) and Csio = (c, Tﬂg). Since
% — B > 1 we obtain (8% — 1)|Cs| > (8% — 8)|Co| > |Cp|. This implies
|Cyia| = 5%C4| — |Co| > |Cy| and in particular Cy C Cy 9. A proof analogous
as in the case a < 1 — % shows the existence of a finite path C; —
Csi1 — -+ = Cf with Cy = (0,¢). Now assume that C,_; has a successor
Cs with Cy C C5 and |Cs| > |Cy|. We can repeat the argument and obtain
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analogous to the proof in the case a < 1 — the existence of a finite
path Cy — Cy — -+ — Cy with C, = (0, ¢).

Suppose that a > 1 — 6257;1 and set Cy = (¢, Tf*1). If T4*1 > ¢ we
get Co — Cy := (0,¢). Now assume that T*1 < ¢. Then C; := (0,T}%1)
is the unique successor of Cy. If Ty*1 > ¢ then Cy := (T}0,¢) is a successor
of C'; and as shown above there is a finite path Cy — C5 — --- — () with
Cr = (0,¢). Otherwise Cy := T7yCy; C (T%0,c¢) is the unique successor of
Cy and by Lemma [l C5 := T;C, is the unique successor of Cy. It follows
from Lemma 1 of [I0] that there is a minimal s > 4 such that C; := T}’ C,
is the unique successor of C;_; for j = 1,2,...,5s — 1 and Cs_; has two
different successors. Then either Cs_; has a successor Cs with Cy C Cs and
|Cs| > |Co| or Cs_y has a successor Cs = (d, ¢) with |Cy] > (8* — 1)|Co|. At
first we consider the second case. As s > 4 we get |Cs| > |Cpl. If nglvg c
Lemma [[I] implies that Cs — Csy1 := (¢,1) = Csyo := (0,¢). In the case
ng > c the interval Cyyq = (Tfi 1) is the unique successor of Cs. By
Lemma [[I] we obtain Cy — Cs41 — Csyg = (¢,Tf1) = Cyys := (0,¢) if
szglv < ¢. Otherwise Cy o 1= (TfQLfiv, Tr1) is the unique successor of Cyiq.
Moreover, TyCyyy = (Ty3d, Tf21) and |T;Cyyo] = 5°|Cs| > |Co| imply that
Cs12 has the two successors Cy and Cy, 3 := (Tf3£Z: c). As B> By > V2 we
get that |Cyy 3] = B3Cy| — |Co| > 2|C,| — |Co| > |Cs|. Now we get analogous
to the proof in the case a < 1 — 52+Z+1 that there is a finite path Cy —
Csy1 — --+ — Cp with C = (0,¢). Next assume that C;_; has a successor
Cs with C’O C Cs and |Cs| > |Co|. Then one obtains analogous to the proof in
the case o < 1— that there exits a finite path Cy — Cs;qy — -+ — Cy
with C}, = (0, ¢).

We have proved that there exists a finite path starting in (7%0,c) and

53
EERNcRS|

52+B+1

ending in (0,c¢) and in the case @ > 1 — Wfi;rl there exists a finite path
starting in (c,77%1) and ending in (0,¢) (note that (¢, 74?1) = @ for a =
1— %) Therefore Lemma [IT] implies that for every C' € D there exists
a finite path Cy := C — C; — -+ — Cj with Cy = (0,¢). By Lemma 2 of
[10] the map T} is topologically transitive.

In the case a > it follows from Theorem [l that T’ is topolologically

5-1—1
transitive. Hence we have proved the topological transitivity of 7' for all

1
a€ <2—B—m,2—5]‘
Finally let o € <0, 52+5]

fxr + a (mod 1) to fz+2 — f — «a (mod 1). By the assumptions for o we
obtain 2 — 3 — ﬁQw<2 f—a<2—p. Hence fz+2— -« (mod 1)
is topologically transitive and therefore Sx + « (mod 1) is topologically
transitive. U

The conjugation h(x) := 1 — x conjugates
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