Topological transitivity for a class of monotonic mod one transformations

Peter Raith and Angela Stachelberger

Abstract

Suppose that $f:[0,1] \rightarrow[0,2]$ is a continuous strictly increasing piecewise differentiable function, and define $T_{f} x:=f(x)(\bmod 1)$. Let $\beta \geq$ $\sqrt[3]{2}$. It is proved that T_{f} is topologically transitive if inf $f^{\prime} \geq \beta$ and $f(0) \geq$ $\frac{1}{\beta+1}$. Counterexamples are provided if the assumptions are not satisfied. For $\sqrt[3]{2} \leq \beta<\sqrt{2}$ and $0 \leq \alpha \leq 2-\beta$ it is shown that $\beta x+\alpha(\bmod 1)$ is topologically transitive if and only if $\alpha<\frac{1}{\beta^{2}+\beta}$ or $\alpha>2-\beta-\frac{1}{\beta^{2}+\beta}$.

Introduction

Let $f:[0,1] \rightarrow[0,2]$ be a continuous strictly increasing function. Define

$$
\begin{equation*}
T_{f} x:=f(x)(\bmod 1):=f(x)-[f(x)], \tag{1}
\end{equation*}
$$

where $[y]$ denotes the largest integer smaller than or equal to y. Such a map is called a monotonic mod one transformation (with two monotonic pieces). A general monotonic mod one transformation is also defined as in (1), but $f:[0,1] \rightarrow \mathbb{R}$. Assume that f is a piecewise differentiable function, that means f is differentiable on $(0,1) \backslash F$ where F is a finite set. The map T_{f} is called topologically transitive if there is an $x \in[0,1]$ such that $\left\{T_{f}{ }^{n} x: n \in \mathbb{N}\right\}$ is dense in $[0,1]$. This is equivalent to the property that there is an x whose ω-limit set equals $[0,1]$, where the ω-limit set is the set of all limit points of the sequence $\left(T_{f}{ }^{n} x\right)_{n \in \mathbb{N}}$. For further properties of topological transitivity see e.g. [1], 5], and [12].

The aim of this paper is to present conditions for f implying topological transitivity (obviously there will not be equivalent conditions). These conditions are related to the derivative of f. Set $\inf f^{\prime}:=\inf \left\{f^{\prime}(x): x \in(0,1) \backslash F\right\}$.

[^0]In fact, the condition inf $f^{\prime} \geq \beta$ used throughout this paper could be replaced by the weaker condition $|f(x)-f(y)| \geq \beta|x-y|$ for all $x, y \in[0,1]$. As in the proofs only the fact that an interval of length d is mapped to an interval of length at least βd is used they work also in the more general case. However, in the statements of the results we use $\inf f^{\prime} \geq \beta$, since this is the easier formulation.

Similar problems have been treated in [6], 6], and [10]. In [6] and (9] conditions implying the topological transitivity of piecewise monotonic maps are investigated. These results imply that a general monotonic mod one transformation is topologically transitive if inf $f^{\prime}>2$ (Corollary 1.1 in [9]). It has been proved in [10 that a monotonic mod one transformation with two monotonic pieces satisfying $\inf f^{\prime} \geq \sqrt{2}$ is topologically transitive (Theorem 1 in (10).

Throughout this paper we will only consider monotonic mod one transformations with two monotonic pieces. The main result (Theorem (1) states that a monotonic mod one transformation satisfying inf $f^{\prime} \geq \beta$ for some $\beta \geq \sqrt[3]{2}$ and $f(0) \geq \frac{1}{\beta+1}$ is topologically transitive. In particular (Corollary (1.1) any monotonic mod one transformation with $\inf f^{\prime} \geq \sqrt[3]{2}$ and $f(0) \geq \frac{1+\sqrt[3]{4}-\sqrt[3]{2}}{3}=\frac{1}{\sqrt[3]{2}+1}$ is topologically transitive. An example is presented where $\beta<\sqrt[3]{2}$, $\inf f^{\prime} \geq \beta, f(0) \geq \frac{1}{\beta+1}$ and T_{f} is not topologically transitive. Finally we give an example with $\inf f^{\prime} \geq \sqrt[3]{2}$ and $f(0)<\frac{1+\sqrt[3]{4}-\sqrt[3]{2}}{3}$ where T_{f} is not topologically transitive.

Then the special case $\beta x+\alpha(\bmod 1)$ is investigated. In this case the results are slightly different to the general case. Suppose that $\sqrt[3]{2} \leq \beta<\sqrt{2}$ and that $0 \leq \alpha \leq 2-\beta$. Then Theorem 4 states that $\beta x+\alpha(\bmod 1)$ is topologically transitive if and only if $\alpha<\frac{1}{\beta^{2}+\beta}$ or $\alpha>2-\beta-\frac{1}{\beta^{2}+\beta}$.

1. The Markov diagram of monotonic mod one transformations

Consider again a continuous strictly increasing piecewise differentiable function $f:[0,1] \rightarrow[0,2]$ and let T_{f} be as in (11). If inf $f^{\prime}>1$ then there exists a unique $c \in(0,1)$ with $f(c)=1$. Define $\mathcal{Z}:=\{(0, c),(c, 1)\}$. For each $Z \in \mathcal{Z}$ the map $\left.T_{f}\right|_{Z}$ is continuous and strictly increasing. Note that T_{f} is discontinuous at c.

A topological dynamical system (X, S) is a continuous map $S: X \rightarrow X$ on a compact metric space (see e.g. [12]). As T_{f} is not continuous ($[0,1], T_{f}$) is not a topological dynamical system. In order to get a topological dynamical system we use a standard doubling points construction as in [7] or [11. For details we refer to the papers mentioned above.

To investigate the orbit structure of a piecewise monotonic map Franz Hofbauer introduced the Markov diagram in [2] (see e.g. [2] and [4). It is an at most countable oriented graph. For the convenience of the reader we describe it for monotonic mod one transformations. Let $Z_{0} \in \mathcal{Z}$ and let D be an open subinterval of Z_{0}. We call a nonempty C a successor of D, if there exists a $Z \in \mathcal{Z}$ with $C=T_{f} D \cap Z$. In this case we write $D \rightarrow C$. Now let \mathcal{D} be the smallest set with $\mathcal{Z} \subseteq \mathcal{D}$ satisfying $D \in \mathcal{D}$ and $D \rightarrow C$ imply $C \in \mathcal{D}$. Then the oriented graph $(\mathcal{D}, \rightarrow)$ is called the Markov diagram of T_{f}. The set \mathcal{D} is at most countable and its elements are open subintervals of elements of \mathcal{Z}. A subset $\mathcal{C} \subseteq \mathcal{D}$ is called irreducible, if for every $C, D \in \mathcal{C}$ there exists a finite path $C_{0} \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{n}$ in \mathcal{C} with $C_{0}=C$ and $C_{n}=D$. We call $\mathcal{C} \subseteq \mathcal{D}$ closed if $C \in \mathcal{C}, D \in \mathcal{D}$ and $C \rightarrow D$ imply that $D \in \mathcal{C}$. In the proofs we need the following result of Franz Hofbauer which is also true for general piecewise monotonic maps.

Lemma 1. Assume that $f:[0,1] \rightarrow[0,2]$ is continuous and strictly increasing, and let $(\mathcal{D}, \rightarrow)$ be the Markov diagram of T_{f}. Moreover, suppose that there is an irreducible and closed $\mathcal{C} \subseteq \mathcal{D}$ with $\bigcup_{C \in \mathcal{C}} \bar{C}=[0,1]$. Then T_{f} is topologically transitive.

Proof. This result follows from (i) of Theorem 11 and Theorem 1 in [4].
For monotonic mod one transformations the Markov diagram has a special structure. More details of the Markov diagram of a monotonic mod one transformation can be found in [3] and [8]. However we will not need details of this special structure.

2. Topological transitivity

It is useful to modify the orbits of 0 and 1 in the following way for the map T_{f} defined in (11). For $n \in \mathbb{N}$ set $T_{f}{ }^{n} 0:=\lim _{x \rightarrow 0^{+}} T_{f}{ }^{n} x$ and $T_{f}{ }^{n} 1:=$ $\lim _{x \rightarrow 1^{-}} T_{f}{ }^{n} x$.

If C is an interval denote by $|C|$ the length of C.
Lemma 2. Assume that $f:[0,1] \rightarrow[0,2]$ is continuous, strictly increasing, piecewise differentiable and satisfies $\inf f^{\prime}>1$. Moreover, let $n \in \mathbb{N}, n \geq 2$, and suppose that $T_{f} 0>T_{f}{ }^{2} 0>\cdots>T_{f}{ }^{n-2} 0 \geq c$. Let $C \in \mathcal{D}$ be so that c is an endpoint of C. If $C \subseteq(c, 1)$ set $C_{0}:=C, C_{1}=T_{f} C \cap(0, c)$ and $C_{j}:=T_{f} C_{j-1} \cap(c, 1)$ for $j=2,3, \ldots, n$, and if $C \subseteq(0, c)$ set $C_{0}:=C$, $C_{j}:=T_{f} C_{j-1} \cap(c, 1)$ for $j=1,2, \ldots, n-1$ and $C_{n}=T_{f} C_{n-1} \cap(0, c)$. Suppose that $C_{0} \subseteq C_{n}$ and $\left|C_{n}\right|>\left|C_{0}\right|$. Then there exists a path $C \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k} \in\left\{(0, c),\left(c, T_{f}^{n-2} 1\right)\right\}$.

Proof. Define $\beta:=\inf f^{\prime}$ and $\delta:=\left|C_{n}\right|-\left|C_{0}\right|$. Assume that $C \subseteq(c, 1)$. Then the left endpoint of C_{j} is $T_{f}{ }^{j-1} 0$ for $j=1,2, \ldots, n-1$. For $j=1,2, \ldots, n$ let $Z_{j} \in \mathcal{Z}$ be so that $C_{j} \subseteq Z_{j}$. Now define $C_{t n+j}=T_{f} C_{t n+j-1} \cap Z_{j}$ for $t \in \mathbb{N}$ and $j=1,2, \ldots, n$. Next we prove by induction that $C_{(t-1) n+j} \subseteq C_{t n+j}$. By our assumption $C_{0} \subseteq C_{n}$ and hence $C_{1}=T_{f} C_{0} \cap Z_{1} \subseteq T_{f} C_{n} \cap Z_{1}=C_{n+1}$. Now let $t>1$ or $j>1$. Then $C_{(t-1) n+j-1} \subseteq C_{t n+j-1}$ and therefore $C_{(t-1) n+j}=$ $T_{f} C_{(t-1) n+j-1} \cap Z_{j} \subseteq T_{f} C_{t n+j-1} \cap Z_{j}=C_{t n+j}$.

Now we claim that for every $t \in \mathbb{N}$ there is an $p \leq t n$ such that C_{p} has a successor in $\left\{(0, c),\left(c, T_{f}{ }^{n-2} 1\right)\right\}$ or $\left|C_{t n}\right| \geq\left|C_{0}\right|+\beta^{n(t-1)} \delta$ and $\sup C_{t n} \geq$ $\sup C_{(t-1) n}+\beta^{(t-1) n} \delta$. This is obvious in the case $t=1$ by our assumptions. Let $t>1$. If C_{p} has a successor in $\left\{(0, c),\left(c, T_{f}{ }^{n-2} 1\right)\right\}$ for some $p \leq(t-1) n$ we are done. Otherwise $C_{(t-1) n} \subseteq(c, 1)$. If $C_{(t-1) n} \rightarrow(0, c)$ we are done. Assume that $C_{(t-1) n+1}$ is the only successor of $C_{(t-1) n}$. Then $C_{(t-1) n+j}$ is the only successor of $C_{(t-1) n+j-1}$ for $j=2,3, \ldots, n-1$ and $\sup C_{(t-1) n+j}-$ $\sup C_{(t-2) n+j} \geq \beta^{j}\left(\sup C_{(t-1) n}-\sup C_{(t-2) n}\right) \geq \beta^{(t-2) n+j} \delta$. Hence $\left|C_{t n}\right|=$ $\sup C_{t n}-c \geq \beta^{(t-1) n} \delta+\left|C_{0}\right|$.

Since $\beta>1,\left|C_{0}\right|+\beta^{(t-1) n} \delta$ tends to infinity, if $t \rightarrow \infty$. As $\left|C_{t n}\right| \leq 1$ for all n this implies that there is a k with $C_{k} \in\left\{(0, c),\left(c, T_{f}{ }^{n-2} 1\right)\right\}$. A similar reasoning works in the case $C \subseteq(0, c)$.
Lemma 3. Assume that $f:[0,1] \rightarrow[0,2]$ is continuous, strictly increasing, piecewise differentiable and satisfies $\inf f^{\prime}>1$. Then there exists an $r \in \mathbb{N}$ with $T_{f}{ }^{r} 0<c$. Let $r(f)$ be the smallest $r \in \mathbb{N}$ with $T_{f}{ }^{r} 0<c$. Then $T_{f} 0>$ $T_{f}{ }^{2} 0>\cdots>T_{f}{ }^{r(f)-1} 0 \geq c$ and $T_{f}{ }^{j} 0<T_{f}{ }^{j} 1$ for $j=1,2, \ldots, r(f)$.
Proof. Set $\beta:=\inf f^{\prime}$. As $f(1)-f(0) \geq \beta$ we get $T_{f} 1=f(1)-1 \geq$ $f(0)+\beta-1=T_{f} 0+(\beta-1)>T_{f} 0$. If $T_{f} 0<c$ we have $r(f)=1$ and we are done. Assume that $T_{f}{ }^{j} 0 \geq c$ for $j=1,2, \ldots, s$. Note that for $c \leq x<1$ we get $1-T_{f} x \geq T_{f} 1-T_{f} x=f(1)-f(x) \geq \beta(1-x)>1-x$ and therefore $T_{f} x<x$. Hence $T_{f} 0>T_{f}{ }^{2} 0>\cdots>T_{f}{ }^{s+1} 0$. Moreover, using $T_{f} 0<T_{f} 1$ and induction we get $T_{f}{ }^{j} 0<T_{f}{ }^{j} 1$ for $j=1,2, \ldots, s+1$. Also using induction we get $1-T_{f}{ }^{j} 0 \geq \beta^{j-1}\left(1-T_{f} 0\right)$, and therefore $0 \leq T_{f}{ }^{j} 0 \leq 1-\beta^{j-1}\left(1-T_{f} 0\right)$ for $j=1,2, \ldots, s+1$. Since $1-T_{f} 0>0$ and β^{j-1} tends to infinity for $j \rightarrow \infty$ there must be an r with $T_{f}{ }^{r} 0<c$. This completes the proof.
Remark. If $\inf f^{\prime} \geq \sqrt[3]{2}$ then $r(f) \leq 6$. To see this set $\beta:=\inf f^{\prime}$ and $r:=r(f)$. As shown above $\left|\left(T_{f} 0,1\right)\right| \geq T_{f} 1-T_{f} 0 \geq \beta-1$. Moreover $1 \geq\left|\left(T_{f}^{r} 0, T_{f}^{r-1} 1\right)\right| \geq \beta^{r-1}(\beta-1)=\beta^{r}-\beta^{r-1}$. Observe that $x \mapsto x^{r}-x^{r-1}-1$ is strictly increasing for $x>1$. Since $\sqrt[3]{2}>\frac{5}{4}$ this implies that $\beta^{7}-\beta^{6}-1 \geq$ $(\sqrt[3]{2})^{7}-(\sqrt[3]{2})^{6}-1=4 \sqrt[3]{2}-5>0$, and therefore $1 \geq \beta^{7}-\beta^{6}$ can not be satisfied.

Now we show the following result.

Lemma 4. Suppose that $f(x):=\sqrt[3]{2} x+\frac{2+\sqrt[3]{4}-2 \sqrt[3]{2}}{2}$. Then T_{f} is topologically transitive.

Proof. Set $\alpha:=\frac{2+\sqrt[3]{4}-2 \sqrt[3]{2}}{2}$. Then $T_{f} 0=\alpha, T_{f} 1=\sqrt[3]{2}+\alpha-1=\frac{1}{\sqrt[3]{2}}$ and $f(c)=1$ for $c:=\frac{1-\alpha}{\sqrt[3]{2}}=1-\frac{1}{\sqrt[3]{4}}$. Obviously $T_{f} 1>\alpha>c$. Therefore follows $T_{f}{ }^{2} 1=\alpha=T_{f} 0, T_{f}{ }^{2} 0=1-\frac{1}{\sqrt[3]{2}}<c$ and $T_{f}{ }^{3} 0=\frac{1}{\sqrt[3]{2}}=T_{f} 1$. This implies that $T_{f}\left(T_{f}{ }^{2} 0, c\right)=\left(T_{f} 1,1\right), T_{f}\left(c, T_{f} 0\right)=\left(0, T_{f}{ }^{2} 0\right), T_{f}\left(T_{f} 1,1\right)=T_{f}\left(0, T_{f}{ }^{2} 0\right)=$ $\left(T_{f} 0, T_{f} 1\right)$ and $T_{f}\left(T_{f} 0, T_{f} 1\right)=\left(T_{f}^{2} 0, T_{f} 0\right)$. Hence

$$
\mathcal{C}:=\left\{\left(0, T_{f}^{2} 0\right),\left(T_{f}^{2} 0, c\right),\left(c, T_{f} 0\right),\left(T_{f} 0, T_{f} 1\right),\left(T_{f} 1,1\right)\right\}
$$

is an irreducible and closed subset of the Markov diagram of T_{f} and $\bigcup_{C \in \mathcal{C}} \bar{C}=$ $[0,1]$. Now Lemma 11 implies that T_{f} is topologically transitive.

Lemma 5. Assume that $f:[0,1] \rightarrow[0,2]$ is continuous, strictly increasing and piecewise differentiable. Further assume that $\beta>0$, $\inf f^{\prime} \geq \beta$ and $f(0) \geq \frac{1}{\beta+1}$. Set $\alpha:=f(0)$. Then $\alpha \geq \frac{1}{\beta+1} \geq c$.
Proof. Because of $\alpha \geq \frac{1}{\beta+1}$ we get that $\frac{1-\alpha}{\beta} \leq \frac{1}{\beta+1}$. Since $1=f(c) \geq \alpha+\beta c$ we obtain $c \leq \frac{1-\alpha}{\beta} \leq \frac{1}{\beta+1} \leq \alpha$.

Remark. In particular Lemma 5 states that $r(f) \geq 2$ under the assumptions of Lemma 5

Lemma 6. Suppose that $f:[0,1] \rightarrow[0,2]$ is continuous, strictly increasing and piecewise differentiable. Further assume that $\beta \geq \sqrt[3]{2}$, $\inf f^{\prime} \geq \beta$ and $f(0) \geq \frac{1}{\beta+1}$. Moreover assume that $d_{1}<c<d_{2}, C_{0}:=\left(d_{1}, c\right), D_{0}:=\left(c, d_{2}\right)$, $\left|C_{0}\right|=\left|D_{0}\right|, T_{f} d_{2} \leq c, T_{f}^{2} d_{1} \geq c$ and $T_{f}{ }^{3}\left(d_{1}, c\right)=T_{f}{ }^{3}\left(c, d_{2}\right)=\left(d_{1}, d_{2}\right)$. Then $f(x)=\sqrt[3]{2} x+\frac{2+\sqrt[3]{4}-2 \sqrt[3]{2}}{2}$ for all $x \in[0,1]$.
Proof. From Lemma 5 it follows that $T_{f} d_{1} \geq T_{f} 0 \geq c$, hence $C_{1}:=T_{f} C_{0}=$ $\left(T_{f} d_{1}, 1\right) \subseteq(c, 1)$. As $T_{f}^{2} d_{1} \geq c$ we get that $C_{2}:=T_{f} C_{1}=\left(T_{f}^{2} d_{1}, T_{f} 1\right) \subseteq$ $(c, 1)$. Furthermore $T_{f} C_{2}=\left(d_{1}, d_{2}\right)$ by our assumptions. Since $T_{f} d_{2} \leq c$ we obtain that $D_{1}:=T_{f} D_{0}=\left(0, T_{f} d_{2}\right) \subseteq(0, c)$ and therefore $D_{2}:=T_{f} D_{1}=$ $\left(T_{f} 0, T_{f}^{2} d_{2}\right) \subseteq(c, 1)$. Again our assumptions give $T_{f} D_{2}=\left(d_{1}, d_{2}\right)$. In particular we have $T_{f} d_{2} \in[0, c]$ and $T_{f} 0, T_{f} 1, T_{f} d_{1}, T_{f}{ }^{2} d_{1}, T_{f}{ }^{2} d_{2} \in[c, 1]$. As $\inf f^{\prime} \geq \beta \geq \sqrt[3]{2}$ we get $\left|T_{f} C_{2}\right| \geq 2\left|C_{0}\right|$ and $\left|T_{f} D_{2}\right| \geq 2\left|D_{0}\right|$. Now $\left|C_{0}\right|=\left|D_{0}\right|$ and $T_{f}{ }^{3} C_{0}=T_{f}{ }^{3} D_{0}=\left(d_{1}, d_{2}\right)$ imply that there are $\alpha_{0}, \alpha_{1}, \alpha_{2}, \widehat{\alpha}_{0}, \widehat{\alpha}_{1}, \widehat{\alpha}_{2}$ with $f(x)=\sqrt[3]{2} x+\alpha_{j}$ for $x \in C_{j}$ and $f(x)=\sqrt[3]{2} x+\widehat{\alpha}_{j}$ for $x \in D_{j}$ if $j \in\{0,1,2\}$.

Assume that $T_{f} d_{2}<d_{1}$. Because of $T_{f}{ }^{3} d_{1}=d_{1}$ and $T_{f}^{4} d_{2}=T_{f} T_{f}{ }^{3} d_{2}=$ $T_{f} d_{2}$ we get

$$
\left|d_{1}-T_{f} d_{2}\right|=\left|T_{f}^{3} d_{1}-T_{f}^{4} d_{2}\right| \geq 2\left|d_{1}-T_{f} d_{2}\right|
$$

which is a contradiction. Hence $T_{f} d_{2} \geq d_{1}$ and therefore $T_{f}^{2} d_{2} \geq T_{f} d_{1}$ and $d_{2}=T_{f}^{3} d_{2} \geq T_{f}{ }^{2} d_{1}$. This implies that $\overline{C_{0} \cup C_{1} \cup C_{2} \cup D_{0} \cup D_{1} \cup D_{2}}=[0,1]$. Therefore $f(x)=\sqrt[3]{2} x+\alpha$ for some α. Now the conditions on d_{1} and d_{2} imply that $\alpha=\frac{2+\sqrt[3]{4}-2 \sqrt[3]{2}}{2}$ completing the proof.

Lemma 7. Suppose that $f:[0,1] \rightarrow[0,2]$ is continuous, strictly increasing and piecewise differentiable. Further assume that $\beta \geq \sqrt[3]{2}$, $\inf f^{\prime} \geq \beta$ and $f(0) \geq \frac{1}{\beta+1}$. Moreover assume that $f(x) \neq \sqrt[3]{2} x+\frac{2+\sqrt[3]{4}-2 \sqrt[3]{2}}{2}$ for some x. Let $C \in \mathcal{D}$ with c being an endpoint of C. Then there exists a finite path $C_{0}:=C \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{k}$ such that one endpoint of C_{k} is c and either $C_{k} \in\left\{(0, c),\left(c, T_{f}^{r(f)-1} 1\right)\right\}$ or $\left|C_{0}\right| \leq \beta\left|C_{k}\right|$.

Proof. Set $r:=r(f)$. We have either $C_{0}=(d, c)$ or $C_{0}=(c, d)$.
In the first case $T_{f} d \geq T_{f} 0 \geq c$ by Lemma 5. Setting $C_{j}:=\left(T_{f}^{j} d, T_{f}{ }^{j-1} 1\right)$ for $j=1,2, \ldots, r-1$ we get that C_{j} is the only successor of C_{j-1} for $j=$ $1,2, \ldots, r-1$. Then $T_{f} C_{r-1}=\left(T_{f}^{r} d, T_{f}^{r-1} 1\right)$ and $\left|T_{f} C_{r-1}\right| \geq \beta^{r}\left|C_{0}\right|$. If $T_{f}{ }^{r} d \leq c$ then $C_{r-1} \rightarrow\left(c, T_{f}{ }^{r-1} 1\right)$ and we are done. Otherwise $C_{r}:=T_{f} C_{r-1}$ is the only successor of C_{r-1}. By Lemma 1 of [10] there is a minimal $s \geq r$ such that $C_{j}=T_{f} C_{j-1}$ is the only successor of C_{j-1} for $j=1,2, \ldots, s$ and C_{s} has two different successors. As $\left|T_{f} C_{s}\right| \geq \beta^{s+1}\left|C_{0}\right|$ we get that C_{s} has a successor C_{s+1} with $\left|C_{s+1}\right| \geq \frac{\beta^{s+1}}{2}\left|C_{0}\right|$ and c is an endpoint of C_{s+1}. If $s \geq 3$ then $\frac{\beta^{s+1}}{2} \geq \beta$ since $\beta \geq \sqrt[3]{2}$ and we are done.

Otherwise $s=r=2$ and C_{2} has the successors $\left(T_{f}{ }^{3} d, c\right)$ and $\left(c, T_{f}{ }^{2} 1\right)$ and $\left|T_{f} C_{2}\right| \geq \beta^{3}\left|C_{0}\right| \geq 2\left|C_{0}\right|$. In the case $\left|\left(T_{f}{ }^{3} d, c\right)\right|>\left|C_{0}\right|$ Lemma 2 with $n=3$ implies the desired result. Otherwise set $C_{3}:=\left(c, T_{f}^{2} 1\right)$. Note that $\left|C_{3}\right| \geq\left|C_{0}\right|$. If $T_{f}{ }^{3} 1 \geq c$ then $C_{3} \rightarrow(0, c)$ and we are done. Now consider the case $T_{f}{ }^{3} 1<c$. Then $C_{4}:=\left(0, T_{f}{ }^{3} 1\right)$ is the only successor of C_{3}, and $C_{5}:=$ $\left(T_{f} 0, T_{f}{ }^{4} 1\right)$ is the only successor of C_{4}. Moreover $\left|T_{f} C_{5}\right| \geq \beta^{3}\left|C_{3}\right| \geq 2\left|C_{3}\right|$. If C_{5} has only one successor then by Lemma 1 of [10] there is a minimal $s \geq 3$ such that $C_{3+j}=T_{f} C_{3+j-1}$ is the only successor of C_{3+j-1} and C_{3+s} has two different successors. Because of $\left|T_{f} C_{3+s}\right| \geq \beta^{s+1}\left|C_{3}\right|$ we get that C_{3+s} has a successor C_{3+s+1} with $\left|C_{3+s+1}\right| \geq \frac{\beta^{s+1}}{2}\left|C_{3}\right| \geq \beta\left|C_{3}\right| \geq \beta\left|C_{0}\right|$ and c is an endpoint of C_{3+s+1}. We are done in this case. Otherwise C_{5} has the two successors $\left(T_{f}{ }^{2} 0, c\right)$ and $\left(c, T_{f}{ }^{5} 1\right)$. If $\left|\left(c, T_{f}{ }^{5} 1\right)\right|>\left|C_{3}\right|$ the desired result is implied by Lemma 2 with $n=3$. Otherwise set $C_{6}:=\left(T_{f}{ }^{2} 0, c\right)$. Observe that $\left|C_{6}\right| \geq\left|C_{3}\right| \geq\left|C_{0}\right|$, which implies $C_{0} \subseteq C_{6}$. Hence $C_{7}:=\left(T_{f}{ }^{3} 0,1\right) \supseteq C_{1}$ is the only successor of C_{6} and $T_{f} C_{7}=\left(T_{f}{ }^{4} 0, T_{f} 1\right) \supseteq C_{2}$. In the case $T_{f}^{4} 0 \leq c$ we get $C_{7} \rightarrow\left(c, T_{f} 1\right)$ and we are done as $r=2$. Otherwise $C_{8}:=T_{f} C_{7}$ is the only successor of C_{7} and $C_{3} \subseteq T_{f} C_{8}=\left(T_{f}{ }^{5} 0, T_{f}{ }^{2} 1\right)$. Hence C_{8} has the successors $C_{9}:=\left(T_{f}{ }^{5} 0, c\right)$ and $\left(c, T_{f}{ }^{2} 1\right)=C_{3}$. As $\left|T_{f} C_{8}\right| \geq \beta^{3}\left|C_{6}\right| \geq 2\left|C_{6}\right|$ and $\left|C_{6}\right| \geq$ $\left|C_{3}\right|$ we get that $\left|C_{9}\right|=\left|T_{f} C_{8}\right|-\left|C_{3}\right| \geq 2\left|C_{6}\right|-\left|C_{3}\right| \geq\left|C_{6}\right|$. If $\left|C_{9}\right|=\left|C_{6}\right|$
we get $C_{9}=C_{6}$ and we have the situation described in Lemma 6. Then Lemma 6 implies that $f(x)=\sqrt[3]{2} x+\frac{2+\sqrt[3]{4}-2 \sqrt[3]{2}}{2}$ for all $x \in[0,1]$ contradicting our assumption. Hence $\left|C_{9}\right|>\left|C_{6}\right|$. Applying Lemma 2 with $n=3$ we obtain the desired result.

Now we consider the case $C_{0}=(c, d)$. If $T_{f} d \geq c$ we have $C_{0} \rightarrow(0, c)$ and we are done. It remains to consider the case $T_{f} d<c$. Then $C_{1}:=\left(0, T_{f} d\right)$ is the only successor of C_{0}. Setting $C_{j}:=\left(T_{f}{ }^{j-1} 0, T_{f}{ }^{j} d\right)$ for $j=2,3, \ldots, r$ we get that C_{j} is the only successor of C_{j-1} for $j=1,2, \ldots, r$. Moreover $T_{f} C_{r}=\left(T_{f}^{r} 0, T_{f}^{r+1} d\right)$ and $\left|T_{f} C_{r}\right| \geq \beta^{r+1}\left|C_{0}\right|$. By Lemma 1 of [10] there is a minimal $s \geq r$ such that $C_{j}=T_{f} C_{j-1}$ is the only successor of C_{j-1} for $j=1,2, \ldots, s$ and C_{s} has two different successors. As $\left|T_{f} C_{s}\right| \geq \beta^{s+1}\left|C_{0}\right|$ we get that C_{s} has a successor C_{s+1} with $\left|C_{s+1}\right| \geq \frac{\beta^{s+1}}{2}\left|C_{0}\right|$ and c is an endpoint of C_{s+1}. If $s \geq 3$ then $\frac{\beta^{s+1}}{2} \geq \beta$ since $\beta \geq \sqrt[3]{2}$ and we are done.

It remains to assume that $s=r=2$. Then C_{2} has the successors $\left(T_{f}^{2} 0, c\right)$ and $\left(c, T_{f}^{3} d\right)$, and $\left|T_{f} C_{2}\right| \geq \beta^{3}\left|C_{0}\right| \geq 2\left|C_{0}\right|$. If $\left|\left(c, T_{f}^{3} d\right)\right|>\left|C_{0}\right|$ then Lemma2 with $n=3$ implies the desired result. Otherwise set $C_{3}:=\left(T_{f}^{2} 0, c\right)$. Hence $C_{3}=(d, c)$ for $d=T_{f}^{2} 0$ and $\left|C_{3}\right| \geq\left|C_{0}\right|$. In this case we have shown above that there exists a finite path $C_{3} \rightarrow C_{4} \rightarrow \cdots \rightarrow C_{k}$ such that one endpoint of C_{k} is c and either $C_{k} \in\left\{(0, c),\left(c, T_{f}^{r(f)-1} 1\right)\right\}$ or $\left|C_{0}\right| \leq\left|C_{3}\right| \leq \beta\left|C_{k}\right|$. This completes the proof.

Lemma 8. Suppose that $f:[0,1] \rightarrow[0,2]$ is continuous, strictly increasing and piecewise differentiable. Further assume that $\beta \geq \sqrt[3]{2}$, inf $f^{\prime} \geq \beta$ and $f(0) \geq \frac{1}{\beta+1}$. Moreover assume that $f(x) \neq \sqrt[3]{2} x+\frac{2+\sqrt[3]{4}-2 \sqrt[3]{2}}{2}$ for some x. Let $C \in \mathcal{D}$.
(1) If $r(f) \geq 3$, then there exists a finite path $C_{0}:=C \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{n}$ with $C_{n}=(0, c)$. Moreover $T_{f}^{r(f)} 1>c$.
(2) If $r(f)=2$, then there exists a finite path $C_{0}:=C \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{n}$ with $C_{n} \in\left\{(0, c),\left(c, T_{f} 1\right)\right\}$.

Proof. Set $r:=r(f)$. By Lemma 1 of [10] there exists a path $C_{0} \rightarrow C_{1} \rightarrow$ $\cdots \rightarrow C_{l}$ in \mathcal{D} with c is an endpoint of C_{l}. Now we prove by induction that for every $t \in \mathbb{N}$ there is a path $C_{l} \rightarrow C_{l+1} \rightarrow \cdots \rightarrow C_{n_{t}}$ such that c is an endpoint of $C_{n_{t}}$ and either $C_{n_{t}} \in\left\{(0, c),\left(c, T_{f}^{r-1} 1\right)\right\}$ or $\left|C_{n_{t}}\right| \geq \beta^{t}\left|C_{l}\right|$. For $t=1$ this follows immediately from Lemma 7. Now let $t>1$. If $C_{n_{t-1}} \in\left\{(0, c),\left(c, T_{f}^{r-1} 1\right)\right\}$ we are done. Otherwise by Lemma 7 there exists a path $C_{n_{t-1}} \rightarrow C_{n_{t-1}+1} \rightarrow \cdots \rightarrow C_{n_{t}}$ such that c is an endpoint of $C_{n_{t}}$ and either $C_{n_{t}} \in\left\{(0, c),\left(c, T_{f}^{r-1} 1\right)\right\}$ or $\left|C_{n_{t}}\right| \geq \beta\left|C_{n_{t-1}}\right| \geq \beta^{t}\left|C_{l}\right|$.

As β^{t} tends to infinity for $t \rightarrow \infty$ there exists a path $C_{0}:=C \rightarrow C_{1} \rightarrow$ $\cdots \rightarrow C_{n}$ with $C_{n} \in\left\{(0, c),\left(c, T_{f}^{r-1} 1\right)\right\}$. In the case $r=2$ we obtain (2).

Finally, assume that $r>2$. In order to show (1) it suffices to show that $\left(c, T_{f}{ }^{r-1} 1\right) \rightarrow(0, c)$. Setting $D_{0}:=(0, c), D_{j}:=\left(T_{f}{ }^{j} 0, T_{f}{ }^{j-1} 1\right)$ for $j=$ $1,2, \ldots, r-1$ we have that D_{j} is the only successor of D_{j-1} for $j=1,2, \ldots, r-$ 1. Moreover $T_{f} D_{r-1}=\left(T_{f}^{r} 0, T_{f}^{r-1} 1\right)$ satisfies $\left|T_{f} D_{r-1}\right| \geq \beta^{r}\left|D_{0}\right| \geq 2 c$. Since $T_{f}{ }^{r} 0 \geq 0$ this implies that $\left|\left(c, T_{f}{ }^{r-1} 1\right)\right| \geq\left|T_{f} D_{r-1}\right|-|(0, c)| \geq c$. Hence $\left|\left(0, T_{f}{ }^{r} 1\right)\right|=\left|T_{f}\left(c, T_{f}^{r-1} 1\right)\right| \geq \beta c$. Therefore $T_{f}{ }^{r} 1>c$ and this implies that $\left(c, T_{f}^{r-1} 1\right) \rightarrow(0, c)$.

Theorem 1. Let $f:[0,1] \rightarrow[0,2]$ be a continuous, strictly increasing and piecewise differentiable function. Moreover assume that $\beta \geq \sqrt[3]{2}$, inf $f^{\prime} \geq \beta$ and $f(0) \geq \frac{1}{\beta+1}$. Then T_{f} is topologically transitive.

Proof. If $f(x):=\sqrt[3]{2} x+\frac{2+\sqrt[3]{4}-2 \sqrt[3]{2}}{2}$ then topological transitivity follows from Lemma 4. Otherwise denote by $(\mathcal{D}, \rightarrow)$ the Markov diagram of T_{f}. Let $C \in \mathcal{D}$ and set $r:=r(f)$.

Assume at first that $T_{f}{ }^{2} 1<c$. Using Lemma 3 and Lemma 5 this implies $T_{f}{ }^{2} 0<T_{f}{ }^{2} 1<c, c \leq T_{f}{ }^{3} 0<T_{f}{ }^{3} 1$ and $r=2$. Define \mathcal{C} as the set of all $D \in \mathcal{D}$ such that there is a path $D_{0}:=\left(c, T_{f} 1\right) \rightarrow D_{1} \rightarrow \cdots \rightarrow D_{n}=D$ which is obviously closed. Set $C_{0}:=\left(c, T_{f} 1\right), C_{1}:=\left(0, T_{f}{ }^{2} 1\right), C_{2}:=\left(T_{f} 0, T_{f}{ }^{3} 1\right)$, $C_{3}:=\left(T_{f}{ }^{2} 0, c\right)$ and $C_{4}:=\left(T_{f}{ }^{3} 0,1\right)$. Because of $T_{f}{ }^{2} 0<c$ we have $(0, c) \rightarrow$ $\left(T_{f} 0,1\right) \rightarrow C_{0}$. By (2) of Lemma 8 for any $C \in \mathcal{D}$ there exists a path $D_{0}:=C \rightarrow D_{1} \rightarrow \cdots \rightarrow D_{p}$ with $D_{p} \in\left\{(0, c),\left(c, T_{f} 1\right)\right\}$. Therefore the set \mathcal{C} is closed and irreducible. Since $1 \geq\left|T_{f}(c, 1)\right| \geq \beta|(c, 1)|=\beta(1-c)$ we get $1-c \leq \frac{1}{\beta}$. Moreover $\left|C_{0}\right| \geq \beta-1$ as $T_{f} 1 \geq T_{f} 0+\beta-1 \geq c+\beta-1$ by Lemma 5 . By our assumptions C_{1} is the only successor of C_{0} and C_{2} is the only successor of C_{1}. Therefore $\left|C_{2}\right| \geq \beta^{2}(\beta-1)$ and $\left|T_{f} C_{2}\right|=\left|\left(T_{f}{ }^{2} 0, T_{f}{ }^{4} 1\right)\right| \geq \beta^{3}(\beta-1)>$ $\frac{1}{\beta+1}$ as $x^{5}-x^{3}-1>0$ for $x \geq \sqrt[3]{2}$. Hence $T_{f}^{4} 1>\frac{1}{\beta+1} \geq c$ by Lemma 5 and C_{2} has the two different successors C_{3} and $\left(c, T_{f}{ }^{4} 1\right)$. Moreover $C_{3} \rightarrow C_{4}$. Since $C_{0}, C_{1}, C_{2}, C_{3}, C_{4} \in \mathcal{C}$ and $\bigcup_{k=0}^{4} \overline{C_{k}}=[0,1]$ the topological transitivity is implied by Lemma 1.

Now assume that $T_{f}{ }^{2} 0>c$. Then $r \geq 3$ and $c \leq T_{f}{ }^{k} 0<T_{f}{ }^{k} 1$ for $k=1,2, \ldots, r-1$ by Lemma 3. Set $C_{0}:=(0, c), C_{k}:=\left(T_{f}{ }^{k} 0, T_{f}{ }^{k-1} 1\right)$ for $k=1,2, \ldots, r-1$, and $C_{r}:=\left(c, T_{f}^{r-1} 1\right)$. Define \mathcal{C} as the set of all $D \in \mathcal{D}$ such that there is a path $D_{0}:=(0, c) \rightarrow D_{1} \rightarrow \cdots \rightarrow D_{n}=D$. Obviously \mathcal{C} is closed. By (1) of Lemma 8 for any $C \in \mathcal{D}$ there exists a path $D_{0}:=C \rightarrow D_{1} \rightarrow \cdots \rightarrow D_{p}$ with $D_{p}=(0, c)$. Hence the set \mathcal{C} is closed and irreducible. Observe that $C_{0} \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{r-1} \rightarrow C_{r}$. Since $C_{0}, C_{1}, \ldots, C_{r} \in \mathcal{C}$ and $\bigcup_{k=0}^{r} \overline{C_{k}}=[0,1]$ the map T_{f} is topologically transitive by Lemma 1

Finally it remains to consider the case $T_{f}{ }^{2} 0 \leq c$ and $T_{f}{ }^{2} 1 \geq c$. Set $C_{0}:=(0, c), C_{1}:=\left(T_{f} 0,1\right)$ and $C_{2}:=\left(c, T_{f} 1\right)$. Define \mathcal{C} as the set of all
$D \in \mathcal{D}$ such that there is a path $D_{0}:=(0, c) \rightarrow D_{1} \rightarrow \cdots \rightarrow D_{n}=D$. Observe that $C_{0} \rightarrow C_{1} \rightarrow C_{2} \rightarrow C_{0}$. By Lemma 8 for any $C \in \mathcal{D}$ there exists a path $D_{0}:=C \rightarrow D_{1} \rightarrow \cdots \rightarrow D_{p}$ with $D_{p} \in\left\{(0, c),\left(c, T_{f} 1\right)\right\}$. This implies that \mathcal{C} is closed and irreducible. Moreover $C_{0}, C_{1}, C_{2} \in \mathcal{C}$ and $\bigcup_{k=0}^{2} \overline{C_{k}}=[0,1]$. Therefore T_{f} is topologically transitive by Lemma 1,

Corollary 1.1. Let $f:[0,1] \rightarrow[0,2]$ be a continuous, strictly increasing and piecewise differentiable function. Moreover assume that $\inf f^{\prime} \geq \sqrt[3]{2}$ and $f(0) \geq \frac{1+\sqrt[3]{4}-\sqrt[3]{2}}{3}$. Then T_{f} is topologically transitive.

Proof. Observe that $\frac{1}{\sqrt[3]{2}+1}=\frac{1+\sqrt[3]{4}-\sqrt[3]{2}}{3}$. Setting $\beta=\sqrt[3]{2}$ in Theorem 1 gives the desired result.

Remark. Using the conjugation $h(x):=1-x$ we see that T_{f} is conjugated to $T_{\widehat{f}}$, where $\widehat{f}(x):=2-f(1-x)$. Obviously $f(0) \geq \alpha$ is equivalent to $\widehat{f}(1) \leq$ $2-\alpha$. Hence Theorem 1 implies that for every continuous, strictly increasing and piecewise differentiable function $f:[0,1] \rightarrow[0,2]$ with $\inf f^{\prime} \geq \beta$ and $f(1) \leq 2-\frac{1}{\beta+1}$ the map T_{f} is topologically transitive.

3. Counterexamples

Let $1<\beta<\sqrt[3]{2}$. Define

$$
\begin{equation*}
f(x):=\beta x+\frac{\beta^{2}+1}{\beta^{3}+\beta^{2}+\beta} . \tag{2}
\end{equation*}
$$

Setting $c:=\frac{\beta^{3}+\beta-1}{\beta^{4}+\beta^{3}+\beta^{2}}$ we obtain $f(c)=1$. Such a map T_{f} is shown in Figure 1 , Now define $A:=\left[0, T_{f}{ }^{3} 1\right] \cup\left[T_{f}{ }^{2} 0, T_{f}{ }^{2} 1\right] \cup\left[T_{f} 0, T_{f} 1\right] \cup\left[T_{f}{ }^{3} 0,1\right]$. Note that $T_{f} 0=\frac{\beta^{2}+1}{\beta^{3}+\beta^{2}+\beta}>c, T_{f}{ }^{2} 0=\frac{1}{\beta^{3}+\beta^{2}+\beta}<c, T_{f}{ }^{3} 0=\frac{1}{\beta}>c, T_{f}{ }^{4} 0=\frac{\beta^{2}+1}{\beta^{3}+\beta^{2}+\beta}=$ $T_{f} 0, T_{f} 1=\frac{\beta^{4}+\beta^{2}-\beta+1}{\beta^{3}+\beta^{2}+\beta}>c, T_{f}{ }^{2} 1=\frac{\beta^{5}-\beta^{2}+1}{\beta^{3}+\beta^{2}+\beta}>c, T_{f}{ }^{3} 1=\frac{\beta^{6}-2 \beta^{3}+1}{\beta^{3}+\beta^{2}+\beta}<c$ and $T_{f}{ }^{4} 1=\frac{\beta^{7}-2 \beta^{4}+\beta^{2}+\beta+1}{\beta^{3}+\beta^{2}+\beta} \leq T_{f} 1$. Moreover, $T_{f}{ }^{3} 1<T_{f}{ }^{2} 0$ which implies that $[0,1] \backslash A \neq \emptyset$. Since $T_{f}{ }^{4} 1 \leq T_{f} 1$ and $T_{f}{ }^{4} 0=T_{f} 0$ we get that $T_{f} A \subseteq A$. Therefore T_{f} is not topologically transitive.

Observe that $f(0)=T_{f} 0=\frac{\beta^{2}+1}{\beta^{3}+\beta^{2}+\beta}$. The function $g:\{x \in \mathbb{R}: x>$ $0\} \rightarrow \mathbb{R}, g(x):=\frac{x^{2}+1}{x^{3}+x^{2}+x}$ is strictly decreasing as $g^{\prime}(x)=\frac{-x^{4}-2 x^{2}-2 x-1}{\left(x^{3}+x^{2}+x\right)^{2}}<0$. Hence $f(0)=\frac{\beta^{2}+1}{\beta^{3}+\beta^{2}+\beta}=g(\beta)>g(\sqrt[3]{2})=\frac{2+\sqrt[3]{4}-2 \sqrt[3]{2}}{2}$ because $\beta<\sqrt[3]{2}$. Note that $\frac{2+\sqrt[3]{4}-2 \sqrt[3]{2}}{2}>\frac{1+\sqrt[3]{4}-\sqrt[3]{2}}{3}\left(\frac{2+\sqrt[3]{4}-2 \sqrt[3]{2}}{2} \approx 0.533779, \frac{1+\sqrt[3]{4}-\sqrt[3]{2}}{3} \approx 0.442493\right)$. Moreover $f(0)=\frac{\beta^{2}+1}{\beta^{3}+\beta^{2}+\beta}>\frac{1}{\beta+1}$. This shows the following result.

Figure 1: This is T_{f} for f from (2).

Theorem 2. For $1<\beta<\sqrt[3]{2}$ there exists a continuous strictly increasing piecewise differentiable function $f:[0,1] \rightarrow[0,2]$ with $f(0)>\frac{2+\sqrt[3]{4}-2 \sqrt[3]{2}}{2}$, $f(0)>\frac{1}{\beta+1}$ and $\inf f^{\prime} \geq \beta$ such that T_{f} is not topologically transitive.

Remark. The proof above shows that the function f in Theorem 2 can be chosen as $f(x)=\beta x+\alpha$ for suitable α and β.

Now let β_{0} be the largest zero of the polynomial $x^{3}-x-1$. Assume that $\sqrt[3]{2} \leq \beta \leq \beta_{0}$ and $\alpha<\frac{1}{\beta+1}$. We will define a continuous strictly increasing function $f:[0,1] \rightarrow[0,2]$ in the following way. Choose $\delta>0$ such that

$$
\delta<\min \left\{\frac{1}{\beta+1}-\alpha, \frac{1}{(\beta+1)\left(\beta^{2}+1\right)}, \frac{1}{3+\beta^{3}+\beta^{2}}, \frac{\beta^{2}-1}{\beta^{4}+\beta^{3}+\beta^{2}-1}\right\} .
$$

We define f as the join the dots map with the dots

$$
\begin{gathered}
\left(0, \frac{1}{1+\beta}-\delta\right),\left(\beta^{2} \delta, \frac{1}{1+\beta}-\delta+\beta^{3} \delta\right),(c-\delta, 1-\beta \delta),\left(c+\beta \delta, 1+\beta^{2} \delta\right), \\
\left(\frac{1}{\beta}\left(1-\frac{3 \delta}{1+\beta}\right), 1+\frac{1-2 \delta}{1+\beta}\right),\left(\frac{1}{\beta}\left(1+\frac{\beta^{4}-1}{1+\beta} \delta\right), 1+\frac{1+\beta^{4} \delta}{1+\beta}\right), \\
\left(1-\beta \delta, \frac{1}{\beta}\left(\beta+1-\frac{3 \delta}{1+\beta}\right)\right) \text { and }\left(1, \frac{1}{\beta}\left(\beta+1+\frac{\left(\beta^{4}-1\right) \delta}{1+\beta}\right)\right) .
\end{gathered}
$$

Such a map T_{f} is shown in Figure 2. Note that $\inf f^{\prime} \geq \beta$. Furthermore $A:=\left[0, \beta^{2} \delta\right] \cup[c-\delta, c+\beta \delta] \cup\left[\frac{1}{\beta}\left(1-\frac{3 \delta}{1+\beta}\right), \frac{1}{\beta}\left(1+\frac{\beta^{4}-1}{1+\beta} \delta\right)\right] \cup[1-\beta \delta, 1]$ is T_{f}-invariant, and $\beta^{2} \delta<c-\delta$. Moreover note that $f(0)=\frac{1}{1+\beta}-\delta \geq \alpha$ by

Figure 2: This is T_{f} for f from Theorem 3.
the choice of δ. Therefore T_{f} is not topologically transitive. Hence we have shown the following result.

Theorem 3. For $\sqrt[3]{2} \leq \beta \leq \beta_{0}$ and $\alpha<\frac{1}{\beta+1}$ there exists a continuous strictly increasing piecewise differentiable function $f:[0,1] \rightarrow[0,2]$ with $f(0) \geq \alpha$ and $\inf f^{\prime} \geq \beta$ such that T_{f} is not topologically transitive.

Corollary 3.1. For $\alpha<\frac{1+\sqrt[3]{4}-\sqrt[3]{2}}{3}$ there exists a continuous strictly increasing piecewise differentiable function $f:[0,1] \rightarrow[0,2]$ with $f(0) \geq \alpha$ and $\inf f^{\prime} \geq \sqrt[3]{2}$ such that T_{f} is not topologically transitive.

4. The special case $\beta x+\alpha(\bmod 1)$

Finally we investigate the special case $\beta x+\alpha(\bmod 1)$. In this case the situation is slightly different. For any $\beta \geq \sqrt[3]{2}$ we will determine the set of all α such that $\beta x+\alpha(\bmod 1)$ is topologically transitive. Note that for every $\beta>0$ the map $f(x):=\beta x+\alpha$ satisfies $f([0,1]) \subseteq[0,2]$ if and only if $0 \leq \alpha \leq 2-\beta$. Furthermore observe that $c=\frac{1-\alpha}{\beta}$ in this case.

Lemma 9. Assume that $1<\beta<\sqrt{2}$ and $\frac{1}{\beta^{2}+\beta} \leq \alpha<\frac{1}{\beta+1}$, and set $f(x):=$ $\beta x+\alpha$. Then $T_{f} 0<c<T_{f} 1<T_{f}{ }^{2} 0$ and $T_{f}{ }^{3} 0 \geq T_{f} 0$. Moreover, $T_{f}{ }^{2} 1<c$
if and only if $\alpha<1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$. If $\alpha \leq 2-\beta-\frac{1}{\beta^{2}+\beta}$ then $T_{f}^{2} 1<c$ and $T_{f}{ }^{3} 1 \leq T_{f} 1$.

Proof. Because of $\alpha<\frac{1}{\beta+1}$ we get $T_{f} 0=\alpha<\frac{1-\alpha}{\beta}=c$, and therefore $T_{f}{ }^{2} 0=(\beta+1) \alpha$. Using $(\beta-1)^{2}(\beta+1)>0$ one obtains $\frac{-\beta^{2}+\beta+1}{\beta+1}<\frac{1}{\beta^{2}+\beta} \leq \alpha$ and hence $T_{f} 1=\alpha+\beta-1>\frac{1-\alpha}{\beta}=c$ and $T_{f}{ }^{2} 1=(\beta+1) \alpha+\beta^{2}-\beta-1$. Since $\beta<\sqrt{2}$ we obtain $(\beta-1)(\beta+1)<1$ which implies $\frac{\beta-1}{\beta}<\frac{1}{\beta^{2}+\beta} \leq \alpha$ and therefore $T_{f} 1=\alpha+\beta-1<(\beta+1) \alpha=T_{f}{ }^{2} 0$. In particular $T_{f}{ }^{2} 0>c$ which implies $T_{f}{ }^{3} 0=\left(\beta^{2}+\beta+1\right) \alpha-1$. As $\alpha \geq \frac{1}{\beta^{2}+\beta}$ we get $T_{f}{ }^{3} 0=$ $\left(\beta^{2}+\beta+1\right) \alpha-1 \geq \alpha=T_{f} 0$.

The property $\alpha<1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$ is equivalent to $T_{f}^{2} 1=(\beta+1) \alpha+\beta^{2}-\beta-1<$ $\frac{1-\alpha}{\beta}=c$. In this case one obtains that $T_{f}{ }^{3} 1=\left(\beta^{2}+\beta+1\right) \alpha+\beta^{3}-\beta^{2}-\beta$. Observe that $2-\beta-\frac{1}{\beta^{2}+\beta}=\frac{-\beta^{3}+\beta^{2}+2 \beta-1}{\beta^{2}+\beta}<\frac{-\beta^{3}+\beta^{2}+\beta+1}{\beta^{2}+\beta+1}=1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$. Hence $T_{f}{ }^{2} 1<c$ if $\alpha \leq 2-\beta-\frac{1}{\beta^{2}+\beta}$. Moreover in this case we get $T_{f}{ }^{3} 1=$ $\left(\beta^{2}+\beta+1\right) \alpha+\beta^{3}-\beta^{2}-\beta \leq \alpha+\beta-1=T_{f} 1$.
Remark. Observe that $\frac{1}{\beta+1} \leq 1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$ for $1<\beta \leq \beta_{0}$ where β_{0} be the largest zero of the polynomial $x^{3}-x-1$ as $\beta\left(\beta^{3}-\beta-1\right) \leq 0$. Hence $\alpha<1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$ is satisfied automatically in this case if $\alpha<\frac{1}{\beta+1}$.

Suppose that $\sqrt[3]{2} \leq \beta<\sqrt{2}$ and $\frac{1}{\beta^{2}+\beta} \leq \alpha \leq 2-\beta-\frac{1}{\beta^{2}+\beta}$, and define $f(x):=\beta x+\alpha$. Such a map is shown in Figure 3. By Lemma 9 the set $A:=\left[0, T_{f}{ }^{2} 1\right] \cup\left[T_{f} 0, T_{f} 1\right] \cup\left[T_{f}{ }^{2} 0,1\right]$ satisfies $T_{f} A \subseteq A$ and $[0,1] \backslash A \neq \emptyset$. Hence T_{f} is not topologically transitive.

Note that $(\beta-1)^{2}(\beta+1)>0$ implies $2-\beta-\frac{1}{\beta^{2}+\beta}=\frac{-\beta^{3}+\beta^{2}+2 \beta-1}{\beta^{2}+\beta}<\frac{1}{\beta+1}$. Moreover, for $\beta<\sqrt{2}$ we obtain $(\beta-1)\left(\beta^{2}-2\right)<0$ which implies that $\frac{1}{\beta^{2}+\beta}<\frac{-\beta^{3}+\beta^{2}+2 \beta-1}{\beta^{2}+\beta}=2-\beta-\frac{1}{\beta^{2}+\beta}<1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$.

Lemma 10. Suppose that $\sqrt[3]{2} \leq \beta<\sqrt{2}, 2-\beta-\frac{1}{\beta^{2}+\beta}<\alpha<\frac{1}{\beta+1}$ and $\alpha<1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$, and set $f(x):=\beta x+\alpha$. Then $(0, c) \rightarrow(c, 1)$, $(c, 1) \rightarrow(0, c),(0, c) \rightarrow\left(T_{f} 0, c\right),\left(T_{f}{ }^{2} 0,1\right)$ is the unique successor of $\left(T_{f} 0, c\right)$, $(c, 1) \rightarrow\left(c, T_{f} 1\right),\left(0, T_{f}{ }^{2} 1\right)$ is the unique successor of $\left(c, T_{f} 1\right)$ and $T_{f}{ }^{3} 1>T_{f} 1$. Furthermore for every $C \in \mathcal{D}$ there exists a finite path $C_{0} \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{0}=C$ and $C_{k} \in\left\{(0, c),\left(T_{f} 0, c\right),\left(c, T_{f} 1\right)\right\}$.

Proof. By Lemma 9 we get $(0, c) \rightarrow(c, 1),(c, 1) \rightarrow(0, c),(0, c) \rightarrow\left(T_{f} 0, c\right)$, $\left(T_{f}^{2} 0,1\right)$ is the unique successor of $\left(T_{f} 0, c\right),(c, 1) \rightarrow\left(c, T_{f} 1\right)$ and $\left(0, T_{f}{ }^{2} 1\right)$ is the unique successor of $\left(c, T_{f} 1\right)$. Moreover, using that $2-\beta-\frac{1}{\beta^{2}+\beta}<\alpha$ we obtain that $T_{f}^{3} 1=\left(\beta^{2}+\beta+1\right) \alpha+\beta^{3}-\beta^{2}-\beta>\alpha+\beta-1=T_{f} 1$.

Figure 3: This is $\beta x+\alpha(\bmod 1)$ with $\sqrt[3]{2} \leq \beta<\sqrt{2}$ and $\frac{1}{\beta^{2}+\beta} \leq \alpha \leq 2-\beta-\frac{1}{\beta^{2}+\beta}$.

Now we claim that for every $C \in \mathcal{D}$ having c as an endpoint there exists a finite path $C_{0}:=C \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{n}$ with c is an endpoint of C_{n} and $C_{n} \in\left\{(0, c),\left(T_{f} 0, c\right),\left(c, T_{f} 1\right)\right\}$ or $\left|C_{n}\right| \geq \beta|C|$. Assume at first that $C=(d, c)$ for some d. If $T_{f} d \leq c$ we are done as $C \rightarrow(c, 1) \rightarrow(0, c)$. Otherwise $C_{1}:=\left(T_{f} d, 1\right)=T_{f} C$ is the unique successor of $C_{0}:=C$. In the case $T_{f}^{2} d \leq c$ we are done because of $C_{1} \rightarrow\left(c, T_{f} 1\right)$. If $T_{f}{ }^{2} d>c$ then $C_{2}:=T_{f}{ }^{2} C=\left(T_{f}{ }^{2} 0, T_{f} 1\right) \subseteq\left(c, T_{f} 1\right)$ is the unique successor of C_{1} and therefore $C_{3}:=T_{f}{ }^{3} C$ is the unique successor of C_{2}. By Lemma 1 of [10] there is a minimal $s \geq 3$ such that $C_{j}:=T_{f}{ }^{j} C$ is the unique successor of C_{j-1} for $j=1,2, \ldots, s$ and C_{s} has two different successors. Each of these successors has c as an endpoint. Because of $T_{f} C_{s}=T_{f}^{s+1} C$ we get $\left|T_{f} C_{s}\right|=\beta^{s+1}|C|$ and therefore C_{s} has a successor C_{s+1} with $\left|C_{s+1}\right| \geq \frac{\beta^{s+1}}{2}|C|$. As $s \geq 3$ and $\beta \geq \sqrt[3]{2}$ we get $\frac{\beta^{s+1}}{2} \geq \beta$ and hence $\left|C_{s+1}\right| \geq \beta|C|$.

Similarly for $C=(c, d)$ for some d we have either $C \rightarrow(0, c)$ and are done or $C_{1}:=T_{f} C=\left(0, T_{f} d\right)$ is the unique successor of $C_{0}:=C$. If $T_{f}{ }^{2} d \geq c$ in the second case then $C_{1} \rightarrow\left(T_{f} 0, c\right)$ and we are done. It remains to consider the case $T_{f} d<c$ and $T_{f}{ }^{2} d<c$. Then $C_{2}:=T_{f}{ }^{2} C=\left(T_{f} 0, T_{f}{ }^{2} d\right) \subseteq\left(T_{f} 0, c\right)$ is the unique successor of C_{1} and $C_{3}:=T_{f}{ }^{3} C$ is the unique successor of C_{2}. By the same argument as above there exists an $s \geq 3$ and a finite path $C_{0}:=C \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{s+1}$ such that c is an endpoint of C_{s+1} and $\left|C_{s+1}\right| \geq \beta|C|$.

Next we prove by induction that for every $C \in \mathcal{D}$ having c as an endpoint and for any $t \in \mathbb{N}$ there exists a finite path $C_{0}:=C \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{n_{t}}$ with c is an endpoint of $C_{n_{t}}$ and $C_{n_{t}} \in\left\{(0, c),\left(T_{f} 0, c\right),\left(c, T_{f} 1\right)\right\}$ or $\left|C_{n_{t}}\right| \geq$ $\beta^{t}|C|$. For $t=1$ this is exactly the property proved above. Let $t>1$. If $C_{n_{t-1}} \in\left\{(0, c),\left(T_{f} 0, c\right),\left(c, T_{f} 1\right)\right\}$ set $n_{t}:=n_{t-1}$ and we are done. Otherwise by the property proved above there exists a finite path $C_{n_{t-1}} \rightarrow C_{n_{t-1}+1} \rightarrow$ $\cdots \rightarrow C_{n_{t}}$ with c is an endpoint of $C_{n_{t}}$ and $C_{n_{t}} \in\left\{(0, c),\left(T_{f} 0, c\right),\left(c, T_{f} 1\right)\right\}$ or $\left|C_{n_{t}}\right| \geq \beta\left|C_{n_{t-1}}\right| \geq \beta^{t}|C|$.

Finally let $C \in \mathcal{D}$. By Lemma 1 of 10 there exists a finite path $C_{0}:=$ $C \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{l}$ such that C_{l-1} has two different successors. Therefore c is an endpoint of C_{l}. Choose $t \in \mathbb{N}$ with $\beta^{t}\left|C_{l}\right|>1$. Then there exists a finite path $C_{l} \rightarrow C_{l+1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k} \in\left\{(0, c),\left(T_{f} 0, c\right),\left(c, T_{f} 1\right)\right\}$ or $\left|C_{k}\right| \geq \beta^{t}\left|C_{l}\right|$. As $\beta^{t}\left|C_{l}\right|>1$ the second case cannot occur. This completes the proof.

Lemma 11. Assume that $\sqrt[3]{2} \leq \beta<\sqrt{2}$ and $1-\frac{\beta^{3}}{\beta^{2}+\beta+1} \leq \alpha<\frac{1}{\beta+1}$, and set $f(x):=\beta x+\alpha$. Then $(0, c) \rightarrow(c, 1),(c, 1) \rightarrow(0, c),(0, c) \rightarrow\left(T_{f} 0, c\right)$, $\left(T_{f}{ }^{2} 0,1\right)$ is the unique successor of $\left(T_{f} 0, c\right),(c, 1) \rightarrow\left(c, T_{f} 1\right)$ and $\left(c, T_{f} 1\right) \rightarrow$ $(0, c)$. The interval $(0, c)$ is the unique successor of $\left(c, T_{f} 1\right)$ if $\alpha=1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$ and $\left(c, T_{f} 1\right) \rightarrow\left(c, T_{f}{ }^{2} 1\right)$ otherwise. Moreover for every $C \in \mathcal{D}$ there exists a finite path $C_{0}:=C \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k} \in\left\{(0, c),\left(T_{f} 0, c\right),\left(c, T_{f}{ }^{2} 1\right)\right\}$.

Proof. The properties $(0, c) \rightarrow(c, 1),(c, 1) \rightarrow(0, c),(0, c) \rightarrow\left(T_{f} 0, c\right)$, $\left(T_{f}{ }^{2} 0,1\right)$ is the unique successor of $\left(T_{f} 0, c\right),(c, 1) \rightarrow\left(c, T_{f} 1\right),\left(c, T_{f} 1\right) \rightarrow$ $(0, c),(0, c)$ is the unique successor of $\left(c, T_{f} 1\right)$ if $\alpha=1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$ and $\left(c, T_{f} 1\right) \rightarrow$ $\left(c, T_{f}{ }^{2} 1\right)$ otherwise follow immediately from Lemma 9 ,

We claim that for every $C \in \mathcal{D}$ having c as an endpoint there exists a finite path $C_{0}:=C \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{n}$ with c is an endpoint of C_{n} and $C_{n} \in\left\{(0, c),\left(T_{f} 0, c\right),\left(c, T_{f}{ }^{2} 1\right)\right\}$ or $\left|C_{n}\right| \geq \beta|C|$. To this end we assume at first that $C=(d, c)$ for some d. In the case $T_{f} d \leq c$ we are done as $C \rightarrow$ $(c, 1) \rightarrow(0, c)$. Otherwise $C_{1}:=T_{f} C=\left(T_{f} d, 1\right)$ is the unique successor of $C_{0}:=C$. If $T_{f}^{2} d \leq c$ we are done since $C_{1} \rightarrow\left(c, T_{f} 1\right) \rightarrow(0, c)$. Now suppose that $T_{f}{ }^{2} d>c$. Then $C_{2}:=T_{f}{ }^{2} C=\left(T_{f}^{2} 0, T_{f} 1\right)$ is the unique successor of C_{1}. Moreover, either $C_{2} \rightarrow\left(c, T_{f}{ }^{2} 1\right)$ and we are done or $C_{3}:=T_{f}{ }^{3} C$ is the unique successor of C_{2}. The same argument as in the proof of Lemma 10 gives the existence of an $s \geq 3$ and of a finite path $C_{0}:=C \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{s+1}$ such that c is an endpoint of C_{s+1} and $\left|C_{s+1}\right| \geq \beta|C|$.

For $C=(c, d)$ for some d exactly the same proof as in the proof of Lemma 10 shows that either $C \rightarrow(0, c)$ or $C \rightarrow T_{f} C \rightarrow\left(T_{f} 0, c\right)$ or there is an $s \geq 3$ and a finite path $C_{0}:=C \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{s+1}$ such that c is an endpoint of C_{s+1} and $\left|C_{s+1}\right| \geq \beta|C|$. Now the same arguments as in
the proof of Lemma 10 show that for every $C \in \mathcal{D}$ there exists a finite path $C_{0}:=C \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k} \in\left\{(0, c),\left(T_{f} 0, c\right),\left(c, T_{f}{ }^{2} 1\right)\right\}$.

Figure 4: For (β, α) in the white region of this triangle the map $\beta x+\alpha(\bmod 1)$ is topologically transitive and in the gray region it is not topologically transitive. The black region is not completely classified.

Our next result classify those (β, α) with $\sqrt[3]{2} \leq \beta<\sqrt{2}$ and $0 \leq \alpha \leq 2-\beta$ such that $\beta x+\alpha(\bmod 1)$ is topologically transitive. In Figure 4 the white region inside the triangle shows those (β, α) with $\sqrt[3]{2} \leq \beta \leq 2$ for which $\beta x+\alpha(\bmod 1)$ is topologically transitive. Recall that for $\beta \geq \sqrt{2}$ the $\operatorname{map} \beta x+\alpha(\bmod 1)$ is topologically transitive by Theorem 1 of [10]. The gray region shows those (β, α) with $\sqrt[3]{2} \leq \beta \leq 2$ where $\beta x+\alpha(\bmod 1)$ is not topologically transitive. For $1 \leq \beta<\sqrt[3]{2}$ the set of all (β, α) where $\beta x+\alpha(\bmod 1)$ is topologically transitive has not been described completely.

Theorem 4. Let $\sqrt[3]{2} \leq \beta<\sqrt{2}$ and let $0 \leq \alpha \leq 2-\beta$. Then $\beta x+\alpha(\bmod 1)$ is topologically transitive if and only if $0 \leq \alpha<\frac{1}{\beta^{2}+\beta}$ or $2-\beta-\frac{1}{\beta^{2}+\beta}<\alpha \leq$ $2-\beta$.

Proof. From Lemma 9 we obtain that $\beta x+\alpha(\bmod 1)$ is not topologically transitive for $\frac{1}{\beta^{2}+\beta} \leq \alpha \leq 2-\beta-\frac{1}{\beta^{2}+\beta}$ (see the paragraph below the remark following Lemma (9).

At first we consider the case $\alpha>2-\beta-\frac{1}{\beta^{2}+\beta}$. We start the proof investigating the case $\alpha<\frac{1}{\beta+1}$. Suppose at first that $\alpha<1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$. Set
$C_{0}:=\left(c, T_{f} 1\right)$. By Lemma 10 we get that $C_{1}:=\left(0, T_{f}{ }^{2} 1\right)$ is the unique successor of $C_{0}, C_{1} \rightarrow\left(T_{f} 0, c\right)$ and $C_{1} \rightarrow C_{2}:=\left(c, T_{f}{ }^{3} 1\right)$, and $\left|C_{2}\right|>\left|C_{0}\right|$. In particular this implies $C_{0} \subseteq C_{2}$. Note that $\left|C_{2}\right|=\beta^{2}\left|C_{0}\right|-\left|\left(T_{f}, c\right)\right|$. Now we prove by induction that for every $n \in \mathbb{N}$ there exists a $k \leq 2 n$ and a path $C_{0} \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k}=(0, c)$ or $C_{0} \subseteq C_{k}$ and $\left|C_{k}\right| \geq\left|C_{0}\right|+$ $\beta^{n-1}\left(\left|C_{2}\right|-\left|C_{0}\right|\right)$. For $n=1$ we have obviously $\left|C_{k}\right|=\left|C_{0}\right|+\beta^{0}\left(\left|C_{2}\right|-\left|C_{0}\right|\right)$. Let $n>1$ and assume that $l \leq 2 n-2, C_{0} \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{l}$ is a path with $C_{l}=(0, c)$ or $C_{0} \subseteq C_{l}$ and $\left|C_{l}\right| \geq\left|C_{0}\right|+\beta^{n-2}\left(\left|C_{2}\right|-\left|C_{0}\right|\right)$. If $C_{l}=(0, c)$ set $k:=l \leq 2 n$ and we are done. Otherwise either $C_{l} \rightarrow(0, c)$ or $C_{l+1}:=$ $T_{f} C_{l} \supseteq C_{1}$ is the unique successor of C_{l}. In the first case we are done setting $k:=l+1 \leq 2 n$ and $C_{k}:=(0, c)$. Consider the second case. Then C_{l+1} has the two successors $\left(T_{f} 0, c\right)$ and $C_{l+2}:=T f C_{l} \cap(c, 1) \supseteq C_{2} \supseteq C_{0}$. Set $k:=$ $l+2 \leq 2 n$. We have that $\left|C_{k}\right|+\left|\left(T_{f} 0, c\right)\right|=\beta^{2}\left|C_{l}\right| \geq \beta^{2}\left|C_{0}\right|+\beta^{n}\left(\left|C_{2}\right|-\left|C_{0}\right|\right)$. Since $\beta^{2}\left|C_{0}\right|-\left|\left(T_{f} 0, c\right)\right|=\left|C_{2}\right| \geq\left|C_{0}\right|$ and $\beta>1$ this implies $\left|C_{k}\right| \geq\left|C_{0}\right|+$ $\beta^{n-1}\left(\left|C_{2}\right|-\left|C_{0}\right|\right)$ finishing the induction. As $\left|C_{0}\right|+\beta^{n-1}\left(\left|C_{2}\right|-\left|C_{0}\right|\right)$ tends to infinity for $n \rightarrow \infty$ there exists a finite path $C_{0}:=\left(c, T_{f} 1\right) \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k}=(0, c)$.

Next assume that $d \leq T_{f} 0$ and set $C_{0}:=(d, c)$. If $T_{f} d \leq c$ then $C_{0} \rightarrow$ $C_{1}:=(c, 1) \rightarrow C_{2}:=(0, c)$. Otherwise $C_{1}:=T_{f} C_{0}=\left(T_{f} d\right) \subseteq(c, 1)$ is the unique successor of C_{0}. In the case $T_{f}{ }^{2} d \leq c$ we have $C_{1} \rightarrow\left(c, T_{f} 1\right)$. Then set $C_{2}:=\left(c, T_{f} 1\right)$ and as shown above there exists a finite path $C_{0} \rightarrow C_{1} \rightarrow C_{2}=$ $\left(c, T_{f} 1\right) \rightarrow \cdots \rightarrow C_{k}$ with $C_{k}=(0, c)$. Now we consider the case $T_{f}{ }^{2} d>c$. In this case $C_{2}:=T f C_{1}=\left(T_{f}^{2} d, T_{f} 1\right) \subseteq\left(c, T_{f} 1\right)$ is the unique successor of C_{1} and by Lemma $10 C_{3}:=T_{f} C_{2}=\left(T_{f}^{3} d, T_{f}{ }^{2} 1\right) \subseteq\left(0, T_{f}{ }^{2} 1\right)$ is the unique successor of C_{2}. Hence by Lemma 1 of [10] there is a minimal $s \geq 4$ such that $C_{j}:=T_{f}{ }^{j} C_{0}$ is the unique successor of C_{j-1} for $j=1,2, \ldots, s-1$ and C_{s-1} has two different successors. Then either C_{s-1} has a successor C_{s} with $C_{0} \subseteq C_{s}$ and $\left|C_{s}\right|>\left|C_{0}\right|$ or C_{s-1} has a successor $C_{s}=(c, \widetilde{d})$ with $\left|C_{s}\right| \geq\left(\beta^{s}-1\right)\left|C_{0}\right|$. Consider the latter case. If $s=4$ then $C_{4}=\left(c, T_{f}{ }^{3} 1\right)$ and we have shown above that there exists a finite path $C_{4} \rightarrow C_{5} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k}=(0, c)$. Otherwise $s \geq 5$ and therefore $\beta^{s} \geq 2 \beta^{2}>2$. In the case $T_{f} \widetilde{d} \geq c$ we get $C_{s} \rightarrow C_{s+1}:=(0, c)$. Now suppose that $T_{f} \widetilde{d}<c$. Then $C_{s+1}:=\left(0, T_{f} \widetilde{d}\right) \subseteq(0, c)$ is the unique successor of C_{s}. As $\beta^{2}\left(\beta^{s}-1\right)>$ $1(2-1)=1$ we get that $\left|T_{f} C_{s+1}\right| \geq \beta^{2}\left(\beta^{s}-1\right)\left|C_{0}\right|>\left|C_{0}\right| \geq\left|\left(T_{f} 0, c\right)\right|$. Hence C_{s+1} has two successors, $\left(T_{f} 0, c\right)$ and $C_{s+2}:=\left(c, T_{f}^{2} \widetilde{d}\right)$. Because of $\beta^{2} \geq \sqrt[3]{4}>\frac{3}{2}$ we obtain $2 \beta^{2}-3>0$ which implies $\left(\beta^{2}-1\right)\left(2 \beta^{2}-1\right)>1$. Hence $\left(\beta^{2}-1\right)\left|C_{s}\right| \geq\left(\beta^{2}-1\right)\left(\beta^{s}-1\right)\left|C_{0}\right| \geq\left(\beta^{2}-1\right)\left(2 \beta^{2}-1\right)\left|C_{0}\right|>\left|C_{0}\right|$. Therefore $\left|C_{s+2}\right| \geq \beta^{2}\left|C_{s}\right|-\left|C_{0}\right|>\left|C_{s}\right|$. In particular this implies $C_{s} \subseteq C_{s+2}$. Now an analogous proof as above in the case starting with $\left(c, T_{f} 1\right)$ shows that there exists a finite path $C_{s} \rightarrow C_{s+1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k}=(0, c)$.

This means that we have shown for $d \leq T_{f} 0$ that there exists a finite path starting in (d, c) and ending in $(0, c)$ or there is a path $C_{0}=(d, c) \rightarrow$ $C_{1} \rightarrow \cdots \rightarrow C_{s}$ with C_{j} is the unique successor of C_{j-1} for $j=1,2, \ldots, s-1$, C_{s-1} has two different successors, $s \geq 4, C_{0} \subseteq C_{s}$ and $\left|C_{s}\right|>\left|C_{0}\right|$. Now we set $C_{0}:=\left(T_{f} 0, c\right)$. Using induction we get that either there exists a finite path $C_{0} \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k}=(0, c)$ or there is an infinite path $C_{0} \rightarrow C_{1} \rightarrow C_{2} \rightarrow \cdots$ and a sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ of natural numbers with $s_{n} \geq 4$ for all n such that C_{j} is the unique successor of C_{j-1} for $j=$ $S_{n-1}, S_{n-1}+1, \ldots, S_{n-1}+s_{n}-1, C_{S_{n-1}+s_{n}-1}$ has two different successors, $C_{S_{n-1}} \subseteq C_{S_{n}}$ and $\left|C_{S_{n}}\right|>\left|C_{S_{n-1}}\right|$, where $S_{0}:=0$ and $S_{n}:=\sum_{j=1}^{n} s_{j}$ for $n \geq 1$. Consider the second case. Because of $C_{S_{n-1}} \subseteq C_{S_{n}}$ we get that $s_{n+1} \leq s_{n}$ for all n. Hence there exists an n_{0} and an $s \geq 4$ with $s_{n}=s$ for all $n \geq n_{0}$. For $n \geq n_{0}$ and $j=0,1, \ldots, s-1$ the intervals $C_{S_{n-1}+j}$ and $C_{S_{n}+j}$ have the same right endpoint. Analogous to the proof for the starting interval $\left(c, T_{f} 1\right)$ one proves by induction that $\left|C_{S_{n}}\right| \geq\left|C_{S_{n_{0}-1}}\right|+\beta^{n-n_{0}}\left(\left|C_{S_{n_{0}}}\right|-\left|C_{S_{n_{0}-1}}\right|\right)$. As the right hand side of this inequality tends to infinity for $n \rightarrow \infty$ this contradicts $\left|C_{S_{n}}\right| \leq 1$ for all n.

Hence we have proved that there exists a finite path starting in $\left(T_{f} 0, c\right)$ and ending in $(0, c)$ and there exists a finite path starting in $\left(c, T_{f} 1\right)$ and ending in $(0, c)$. Using Lemma 10 one obtains that for every $C \in \mathcal{D}$ there exists a finite path $C_{0} \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{0}=C$ and $C_{k}=(0, c)$. Now the topological transitivity of T_{f} follows from Lemma 2 of [10].

Next we investigate the case $1-\frac{\beta^{3}}{\beta^{2}+\beta+1} \leq \alpha<\frac{1}{\beta+1}$. By the remark after Lemma 9 this implies $\beta>\beta_{0}$ where β_{0} is the largest zero of the polynomial $x^{3}-x-1$. This implies $\beta^{3}-\beta-1>0$ and therefore $\beta^{3}-1>\beta$. Set $C_{0}:=\left(T_{f} 0, c\right)$. From Lemma 11 we get that $C_{1}:=\left(T_{f}{ }^{2} 0,1\right)$ is the unique successor of C_{0}. In the case $T_{f}{ }^{3} 0 \leq c$ using Lemma 11 one obtains that $C_{0} \rightarrow C_{1} \rightarrow C_{2}:=\left(c, T_{f} 1\right) \rightarrow C_{3}:=(0, c)$. Otherwise $C_{2}:=T_{f} C_{1}$ is the unique successor of C_{1}. By Lemma 1 of [10] there is a minimal $s \geq 3$ such that $C_{j}:=T_{f}{ }^{j} C_{0}$ is the unique successor of C_{j-1} for $j=1,2, \ldots, s-1$ and C_{s-1} has two different successors. We obtain that either C_{s-1} has a successor C_{s} with $C_{0} \subseteq C_{s}$ and $\left|C_{s}\right|>\left|C_{0}\right|$ or C_{s-1} has a successor $C_{s}=(c, \widetilde{d})$ with $\left|C_{s}\right| \geq\left(\beta^{s}-1\right)\left|C_{0}\right|$. In the second case $\left|C_{s}\right|>\beta\left|C_{0}\right|$ since $s \geq 3$ and $\beta^{3}-1>\beta$. If $T_{f} \widetilde{d} \geq c$ we get $C_{s} \rightarrow C_{s+1}:=(0, c)$. Otherwise $C_{s+1}:=\left(0, T_{f} \widetilde{d}\right)$ is the unique successor of $C_{s}, T_{f} C_{s+1}=\left(T_{f} 0, T_{f}^{2} \widetilde{d}\right)$ and $\left|T_{f} C_{s+1}\right|=\beta^{2}\left|C_{s}\right|>\left|C_{0}\right|$. Therefore C_{s+1} has two successors, $\left(T_{f} 0, c\right)$ and $C_{s+2}:=\left(c, T_{f}^{2} \widetilde{d}\right)$. Since $\beta^{3}-\beta>1$ we obtain $\left(\beta^{2}-1\right)\left|C_{s}\right|>\left(\beta^{3}-\beta\right)\left|C_{0}\right|>\left|C_{0}\right|$. This implies $\left|C_{s+2}\right|=\beta^{2}\left|C_{s}\right|-\left|C_{0}\right|>\left|C_{s}\right|$ and in particular $C_{s} \subseteq C_{s+2}$. A proof analogous as in the case $\alpha<1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$ shows the existence of a finite path $C_{s} \rightarrow$ $C_{s+1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k}=(0, c)$. Now assume that C_{s-1} has a successor C_{s} with $C_{0} \subseteq C_{s}$ and $\left|C_{s}\right|>\left|C_{0}\right|$. We can repeat the argument and obtain
analogous to the proof in the case $\alpha<1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$ the existence of a finite path $C_{0} \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k}=(0, c)$.

Suppose that $\alpha>1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$ and set $C_{0}:=\left(c, T_{f}{ }^{2} 1\right)$. If $T_{f}{ }^{3} 1 \geq c$ we get $C_{0} \rightarrow C_{1}:=(0, c)$. Now assume that $T_{f}{ }^{3} 1<c$. Then $C_{1}:=\left(0, T_{f}{ }^{3} 1\right)$ is the unique successor of C_{0}. If $T_{f}{ }^{4} 1 \geq c$ then $C_{2}:=\left(T_{f} 0, c\right)$ is a successor of C_{1} and as shown above there is a finite path $C_{2} \rightarrow C_{3} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k}=(0, c)$. Otherwise $C_{2}:=T_{f} C_{1} \subseteq\left(T_{f} 0, c\right)$ is the unique successor of C_{1} and by Lemma $11 C_{3}:=T_{f} C_{2}$ is the unique successor of C_{2}. It follows from Lemma 1 of [10 that there is a minimal $s \geq 4$ such that $C_{j}:=T_{f}{ }^{j} C_{0}$ is the unique successor of C_{j-1} for $j=1,2, \ldots, s-1$ and C_{s-1} has two different successors. Then either C_{s-1} has a successor C_{s} with $C_{0} \subseteq C_{s}$ and $\left|C_{s}\right|>\left|C_{0}\right|$ or C_{s-1} has a successor $C_{s}=(\widetilde{d}, c)$ with $\left|C_{s}\right| \geq\left(\beta^{s}-1\right)\left|C_{0}\right|$. At first we consider the second case. As $s \geq 4$ we get $\left|C_{s}\right|>\left|C_{0}\right|$. If $T_{f} \tilde{d} \leq c$ Lemma 11 implies that $C_{s} \rightarrow C_{s+1}:=(c, 1) \rightarrow C_{s+2}:=(0, c)$. In the case $T_{f} \widetilde{d}>c$ the interval $C_{s+1}:=\left(T_{f} \tilde{d}, 1\right)$ is the unique successor of C_{s}. By Lemma 11 we obtain $C_{s} \rightarrow C_{s+1} \rightarrow C_{s+2}:=\left(c, T_{f} 1\right) \rightarrow C_{s+3}:=(0, c)$ if $T_{f}{ }^{2} \widetilde{d} \leq c$. Otherwise $C_{s+2}:=\left(T_{f}{ }^{2} \widetilde{d}, T_{f} 1\right)$ is the unique successor of C_{s+1}. Moreover, $T_{f} C_{s+2}=\left(T_{f}^{3} \widetilde{d}, T_{f}^{2} 1\right)$ and $\left|T_{f} C_{s+2}\right|=\beta^{3}\left|C_{s}\right|>\left|C_{0}\right|$ imply that C_{s+2} has the two successors C_{0} and $C_{s+3}:=\left(T_{f}{ }^{3} \widetilde{d}, c\right)$. As $\beta \geq \beta_{0}>\sqrt[3]{2}$ we get that $\left|C_{s+3}\right|=\beta^{3}\left|C_{s}\right|-\left|C_{0}\right|>2\left|C_{s}\right|-\left|C_{0}\right|>\left|C_{s}\right|$. Now we get analogous to the proof in the case $\alpha<1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$ that there is a finite path $C_{s} \rightarrow$ $C_{s+1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k}=(0, c)$. Next assume that C_{s-1} has a successor C_{s} with $C_{0} \subseteq C_{s}$ and $\left|C_{s}\right|>\left|C_{0}\right|$. Then one obtains analogous to the proof in the case $\alpha<1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$ that there exits a finite path $C_{s} \rightarrow C_{s+1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k}=(0, c)$.

We have proved that there exists a finite path starting in $\left(T_{f} 0, c\right)$ and ending in $(0, c)$ and in the case $\alpha>1-\frac{\beta^{3}}{\beta^{2}+\beta+1}$ there exists a finite path starting in $\left(c, T_{f}{ }^{2} 1\right)$ and ending in $(0, c)$ (note that $\left(c, T_{f}{ }^{2} 1\right)=\emptyset$ for $\alpha=$ $\left.1-\frac{\beta^{3}}{\beta^{2}+\beta+1}\right)$. Therefore Lemma 11 implies that for every $C \in \mathcal{D}$ there exists a finite path $C_{0}:=C \rightarrow C_{1} \rightarrow \cdots \rightarrow C_{k}$ with $C_{k}=(0, c)$. By Lemma 2 of [10] the map T_{f} is topologically transitive.

In the case $\alpha \geq \frac{1}{\beta+1}$ it follows from Theorem 1 that T_{f} is topolologically transitive. Hence we have proved the topological transitivity of T_{f} for all $\alpha \in\left(2-\beta-\frac{1}{\beta^{2}+\beta}, 2-\beta\right]$.

Finally let $\alpha \in\left(0, \frac{1}{\beta^{2}+\beta}\right]$. The conjugation $h(x):=1-x$ conjugates $\beta x+\alpha(\bmod 1)$ to $\beta x+2-\beta-\alpha(\bmod 1)$. By the assumptions for α we obtain $2-\beta-\frac{1}{\beta^{2}+\beta}<2-\beta-\alpha \leq 2-\beta$. Hence $\beta x+2-\beta-\alpha(\bmod 1)$ is topologically transitive and therefore $\beta x+\alpha(\bmod 1)$ is topologically transitive.

References

[1] K. Brucks, H. Bruin, Topics from One-dimensional Dynamics, Cambridge University Press, Cambridge, 2004.
[2] F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math. 34 (1979), 213-237; Part 2, Israel J. Math. 38 (1979), 107-115.
[3] F. Hofbauer, Monotonic mod one transformations, Studia Math. 80 (1984), 17-40.
[4] F. Hofbauer, Piecewise invertible dynamical systems, Probab. Theory Relat. Fields 72 (1986), 359-386.
[5] S. Kolyada, L'. Snoha, Some aspects of topological transitivity - a survey, in Proceedings of the European Conference on Iteration Theory (ECIT 94), Opava 1994 (eds.: L. Reich, J. Smítal, Gy. Targoński), Grazer Math. Ber. 334 (1997), 3-35.
[6] A. Nagar, V. Kannan, K. Srinivas, Some simple conditions implying topological transitivity for interval maps, Aequationes Math. 67 (2004), 201-204.
[7] P. Raith, Continuity of the Hausdorff dimension for piecewise monotonic maps, Israel J. Math. 80 (1992), 97-133.
[8] P. Raith, Continuity of the entropy for monotonic mod one transformations, Acta Math. Hungar. 77 (1997), 247-262.
[9] P. Raith, Topological transitivity for expanding piecewise monotonic maps on the interval, Aequationes Math. 57 (1999), 303-311.
[10] P. Raith, Topological transitivity for expanding monotonic mod one transformations with two monotonic pieces, Ann. Math. Sil. 13 (1999), 233-241.
[11] P. Walters, Equilibrium states for β-transformations and related transformations, Math. Z. 159 (1978), 65-88.
[12] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982.

Peter Raith

Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, 1090 Wien, Austria e-mail address: peter.raith@univie.ac.at
Angela Stachelberger
Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, 1090 Wien, Austria
e-mail address: angela.stachelberger@univie.ac.at

[^0]: 2010 Mathematics Subject Classification. 37E05, 37B05, 37D20, 54H20.
 Key words and phrases. Monotonic mod one transformations, topological transitivity, expanding map.

