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Topological transitivity for a class

of monotonic mod one transformations

Peter Raith and Angela Stachelberger

Abstract. Suppose that f : [0, 1] → [0, 2] is a continuous strictly increasing
piecewise differentiable function, and define Tfx := f(x) (mod 1). Let β ≥
3
√
2. It is proved that Tf is topologically transitive if inf f ′ ≥ β and f(0) ≥
1

β+1
. Counterexamples are provided if the assumptions are not satisfied. For

3
√
2 ≤ β <

√
2 and 0 ≤ α ≤ 2 − β it is shown that βx + α (mod 1) is

topologically transitive if and only if α < 1

β2+β
or α > 2− β − 1

β2+β
.

Introduction

Let f : [0, 1] → [0, 2] be a continuous strictly increasing function. Define

(1) Tfx := f(x) (mod 1) := f(x)− [f(x)] ,

where [y] denotes the largest integer smaller than or equal to y. Such a map
is called a monotonic mod one transformation (with two monotonic pieces).
A general monotonic mod one transformation is also defined as in (1), but
f : [0, 1] → R. Assume that f is a piecewise differentiable function, that
means f is differentiable on (0, 1) \ F where F is a finite set. The map Tf is
called topologically transitive if there is an x ∈ [0, 1] such that {Tf

nx : n ∈ N}
is dense in [0, 1]. This is equivalent to the property that there is an x whose
ω-limit set equals [0, 1], where the ω-limit set is the set of all limit points of
the sequence (Tf

nx)n∈N. For further properties of topological transitivity see
e.g. [1], [5], and [12].

The aim of this paper is to present conditions for f implying topological
transitivity (obviously there will not be equivalent conditions). These condi-
tions are related to the derivative of f . Set inf f ′ := inf{f ′(x) : x ∈ (0, 1)\F}.
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In fact, the condition inf f ′ ≥ β used throughout this paper could be replaced
by the weaker condition |f(x)−f(y)| ≥ β|x−y| for all x, y ∈ [0, 1]. As in the
proofs only the fact that an interval of length d is mapped to an interval of
length at least βd is used they work also in the more general case. However,
in the statements of the results we use inf f ′ ≥ β, since this is the easier
formulation.

Similar problems have been treated in [6], [9], and [10]. In [6] and [9]
conditions implying the topological transitivity of piecewise monotonic maps
are investigated. These results imply that a general monotonic mod one
transformation is topologically transitive if inf f ′ > 2 (Corollary 1.1 in [9]).
It has been proved in [10] that a monotonic mod one transformation with two
monotonic pieces satisfying inf f ′ ≥

√
2 is topologically transitive (Theorem 1

in [10]).
Throughout this paper we will only consider monotonic mod one trans-

formations with two monotonic pieces. The main result (Theorem 1) states
that a monotonic mod one transformation satisfying inf f ′ ≥ β for some
β ≥ 3

√
2 and f(0) ≥ 1

β+1
is topologically transitive. In particular (Co-

rollary 1.1) any monotonic mod one transformation with inf f ′ ≥ 3
√
2 and

f(0) ≥ 1+ 3
√
4− 3

√
2

3
= 1

3
√
2+1

is topologically transitive. An example is presented

where β <
3
√
2, inf f ′ ≥ β, f(0) ≥ 1

β+1
and Tf is not topologically transitive.

Finally we give an example with inf f ′ ≥ 3
√
2 and f(0) < 1+ 3

√
4− 3

√
2

3
where Tf

is not topologically transitive.
Then the special case βx + α (mod 1) is investigated. In this case the

results are slightly different to the general case. Suppose that 3
√
2 ≤ β <

√
2

and that 0 ≤ α ≤ 2 − β. Then Theorem 4 states that βx + α (mod 1) is
topologically transitive if and only if α < 1

β2+β
or α > 2− β − 1

β2+β
.

1. The Markov diagram of monotonic mod one transformations

Consider again a continuous strictly increasing piecewise differentiable
function f : [0, 1] → [0, 2] and let Tf be as in (1). If inf f ′ > 1 then there
exists a unique c ∈ (0, 1) with f(c) = 1. Define Z := {(0, c), (c, 1)}. For each
Z ∈ Z the map Tf |Z is continuous and strictly increasing. Note that Tf is
discontinuous at c.

A topological dynamical system (X,S) is a continuous map S : X → X on
a compact metric space (see e.g. [12]). As Tf is not continuous ([0, 1], Tf) is
not a topological dynamical system. In order to get a topological dynamical
system we use a standard doubling points construction as in [7] or [11]. For
details we refer to the papers mentioned above.
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To investigate the orbit structure of a piecewise monotonic map Franz
Hofbauer introduced the Markov diagram in [2] (see e.g. [2] and [4]). It is
an at most countable oriented graph. For the convenience of the reader we
describe it for monotonic mod one transformations. Let Z0 ∈ Z and let D be
an open subinterval of Z0. We call a nonempty C a successor of D, if there
exists a Z ∈ Z with C = TfD ∩Z. In this case we write D → C. Now let D
be the smallest set with Z ⊆ D satisfying D ∈ D and D → C imply C ∈ D.
Then the oriented graph (D,→) is called the Markov diagram of Tf . The set
D is at most countable and its elements are open subintervals of elements of
Z. A subset C ⊆ D is called irreducible, if for every C,D ∈ C there exists a
finite path C0 → C1 → · · · → Cn in C with C0 = C and Cn = D. We call
C ⊆ D closed if C ∈ C, D ∈ D and C → D imply that D ∈ C. In the proofs
we need the following result of Franz Hofbauer which is also true for general
piecewise monotonic maps.

Lemma 1. Assume that f : [0, 1] → [0, 2] is continuous and strictly increa-

sing, and let (D,→) be the Markov diagram of Tf . Moreover, suppose that

there is an irreducible and closed C ⊆ D with
⋃

C∈C C = [0, 1]. Then Tf is

topologically transitive.

Proof. This result follows from (i) of Theorem 11 and Theorem 1 in [4].

For monotonic mod one transformations the Markov diagram has a special
structure. More details of the Markov diagram of a monotonic mod one
transformation can be found in [3] and [8]. However we will not need details
of this special structure.

2. Topological transitivity

It is useful to modify the orbits of 0 and 1 in the following way for the
map Tf defined in (1). For n ∈ N set Tf

n0 := limx→0+ Tf
nx and Tf

n1 :=
limx→1− Tf

nx.
If C is an interval denote by |C| the length of C.

Lemma 2. Assume that f : [0, 1] → [0, 2] is continuous, strictly increasing,

piecewise differentiable and satisfies inf f ′ > 1. Moreover, let n ∈ N, n ≥ 2,
and suppose that Tf0 > Tf

20 > · · · > Tf
n−20 ≥ c. Let C ∈ D be so that

c is an endpoint of C. If C ⊆ (c, 1) set C0 := C, C1 = TfC ∩ (0, c) and

Cj := TfCj−1 ∩ (c, 1) for j = 2, 3, . . . , n, and if C ⊆ (0, c) set C0 := C,

Cj := TfCj−1∩(c, 1) for j = 1, 2, . . . , n−1 and Cn = TfCn−1∩(0, c). Suppose

that C0 ⊆ Cn and |Cn| > |C0|. Then there exists a path C → C1 → · · · → Ck

with Ck ∈ {(0, c), (c, Tf
n−21)}.
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Proof. Define β := inf f ′ and δ := |Cn|−|C0|. Assume that C ⊆ (c, 1). Then
the left endpoint of Cj is Tf

j−10 for j = 1, 2, . . . , n−1. For j = 1, 2, . . . , n let
Zj ∈ Z be so that Cj ⊆ Zj. Now define Ctn+j = TfCtn+j−1∩Zj for t ∈ N and
j = 1, 2, . . . , n. Next we prove by induction that C(t−1)n+j ⊆ Ctn+j . By our
assumption C0 ⊆ Cn and hence C1 = TfC0 ∩ Z1 ⊆ TfCn ∩ Z1 = Cn+1. Now
let t > 1 or j > 1. Then C(t−1)n+j−1 ⊆ Ctn+j−1 and therefore C(t−1)n+j =
TfC(t−1)n+j−1 ∩ Zj ⊆ TfCtn+j−1 ∩ Zj = Ctn+j.

Now we claim that for every t ∈ N there is an p ≤ tn such that Cp has
a successor in {(0, c), (c, Tf

n−21)} or |Ctn| ≥ |C0| + βn(t−1)δ and supCtn ≥
supC(t−1)n + β(t−1)nδ. This is obvious in the case t = 1 by our assumptions.
Let t > 1. If Cp has a successor in {(0, c), (c, Tf

n−21)} for some p ≤ (t− 1)n
we are done. Otherwise C(t−1)n ⊆ (c, 1). If C(t−1)n → (0, c) we are done.
Assume that C(t−1)n+1 is the only successor of C(t−1)n. Then C(t−1)n+j is
the only successor of C(t−1)n+j−1 for j = 2, 3, . . . , n − 1 and supC(t−1)n+j −
supC(t−2)n+j ≥ βj(supC(t−1)n − supC(t−2)n) ≥ β(t−2)n+jδ. Hence |Ctn| =
supCtn − c ≥ β(t−1)nδ + |C0|.

Since β > 1, |C0| + β(t−1)nδ tends to infinity, if t → ∞. As |Ctn| ≤ 1 for
all n this implies that there is a k with Ck ∈ {(0, c), (c, Tf

n−21)}. A similar
reasoning works in the case C ⊆ (0, c).

Lemma 3. Assume that f : [0, 1] → [0, 2] is continuous, strictly increasing,

piecewise differentiable and satisfies inf f ′ > 1. Then there exists an r ∈ N

with Tf
r0 < c. Let r(f) be the smallest r ∈ N with Tf

r0 < c. Then Tf0 >

Tf
20 > · · · > Tf

r(f)−1
0 ≥ c and Tf

j0 < Tf
j1 for j = 1, 2, . . . , r(f).

Proof. Set β := inf f ′. As f(1) − f(0) ≥ β we get Tf1 = f(1) − 1 ≥
f(0) + β − 1 = Tf0 + (β − 1) > Tf0. If Tf0 < c we have r(f) = 1 and we are
done. Assume that Tf

j0 ≥ c for j = 1, 2, . . . , s. Note that for c ≤ x < 1 we
get 1 − Tfx ≥ Tf1 − Tfx = f(1) − f(x) ≥ β(1 − x) > 1 − x and therefore
Tfx < x. Hence Tf0 > Tf

20 > · · · > Tf
s+10. Moreover, using Tf0 < Tf1 and

induction we get Tf
j0 < Tf

j1 for j = 1, 2, . . . , s+1. Also using induction we
get 1−Tf

j0 ≥ βj−1(1−Tf0), and therefore 0 ≤ Tf
j0 ≤ 1−βj−1(1−Tf0) for

j = 1, 2, . . . , s + 1. Since 1 − Tf0 > 0 and βj−1 tends to infinity for j → ∞
there must be an r with Tf

r0 < c. This completes the proof.

Remark. If inf f ′ ≥ 3
√
2 then r(f) ≤ 6. To see this set β := inf f ′ and

r := r(f). As shown above |(Tf0, 1)| ≥ Tf1 − Tf0 ≥ β − 1. Moreover
1 ≥ |(Tf

r0, Tf
r−11)| ≥ βr−1(β−1) = βr−βr−1. Observe that x 7→ xr−xr−1−1

is strictly increasing for x > 1. Since 3
√
2 > 5

4
this implies that β7− β6 − 1 ≥

( 3
√
2)7 − ( 3

√
2)6 − 1 = 4 3

√
2 − 5 > 0, and therefore 1 ≥ β7 − β6 can not be

satisfied.

Now we show the following result.
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Lemma 4. Suppose that f(x) := 3
√
2x+ 2+ 3

√
4−2 3

√
2

2
. Then Tf is topologically

transitive.

Proof. Set α := 2+ 3
√
4−2 3

√
2

2
. Then Tf0 = α, Tf1 = 3

√
2 + α − 1 = 1

3
√
2

and

f(c) = 1 for c := 1−α
3
√
2
= 1 − 1

3
√
4
. Obviously Tf1 > α > c. Therefore follows

Tf
21 = α = Tf0, Tf

20 = 1− 1
3
√
2
< c and Tf

30 = 1
3
√
2
= Tf1. This implies that

Tf (Tf
20, c) = (Tf1, 1), Tf(c, Tf0) = (0, Tf

20), Tf(Tf1, 1) = Tf (0, Tf
20) =

(Tf0, Tf1) and Tf(Tf0, Tf1) = (Tf
20, Tf0). Hence

C := {(0, Tf
20), (Tf

20, c), (c, Tf0), (Tf0, Tf1), (Tf1, 1)}

is an irreducible and closed subset of the Markov diagram of Tf and
⋃

C∈C C =
[0, 1]. Now Lemma 1 implies that Tf is topologically transitive.

Lemma 5. Assume that f : [0, 1] → [0, 2] is continuous, strictly increasing

and piecewise differentiable. Further assume that β > 0, inf f ′ ≥ β and

f(0) ≥ 1
β+1

. Set α := f(0). Then α ≥ 1
β+1

≥ c.

Proof. Because of α ≥ 1
β+1

we get that 1−α
β

≤ 1
β+1

. Since 1 = f(c) ≥ α + βc

we obtain c ≤ 1−α
β

≤ 1
β+1

≤ α.

Remark. In particular Lemma 5 states that r(f) ≥ 2 under the assumptions
of Lemma 5.

Lemma 6. Suppose that f : [0, 1] → [0, 2] is continuous, strictly increasing

and piecewise differentiable. Further assume that β ≥ 3
√
2, inf f ′ ≥ β and

f(0) ≥ 1
β+1

. Moreover assume that d1 < c < d2, C0 := (d1, c), D0 := (c, d2),

|C0| = |D0|, Tfd2 ≤ c, Tf
2d1 ≥ c and Tf

3(d1, c) = Tf
3(c, d2) = (d1, d2). Then

f(x) = 3
√
2x+ 2+ 3

√
4−2 3

√
2

2
for all x ∈ [0, 1].

Proof. From Lemma 5 it follows that Tfd1 ≥ Tf0 ≥ c, hence C1 := TfC0 =
(Tfd1, 1) ⊆ (c, 1). As Tf

2d1 ≥ c we get that C2 := TfC1 = (Tf
2d1, Tf1) ⊆

(c, 1). Furthermore TfC2 = (d1, d2) by our assumptions. Since Tfd2 ≤ c we
obtain that D1 := TfD0 = (0, Tfd2) ⊆ (0, c) and therefore D2 := TfD1 =
(Tf0, Tf

2d2) ⊆ (c, 1). Again our assumptions give TfD2 = (d1, d2). In par-
ticular we have Tfd2 ∈ [0, c] and Tf0, Tf1, Tfd1, Tf

2d1, Tf
2d2 ∈ [c, 1]. As

inf f ′ ≥ β ≥ 3
√
2 we get |TfC2| ≥ 2|C0| and |TfD2| ≥ 2|D0|. Now |C0| = |D0|

and Tf
3C0 = Tf

3D0 = (d1, d2) imply that there are α0, α1, α2, α̂0, α̂1, α̂2 with
f(x) = 3

√
2x+αj for x ∈ Cj and f(x) = 3

√
2x+ α̂j for x ∈ Dj if j ∈ {0, 1, 2}.

Assume that Tfd2 < d1. Because of Tf
3d1 = d1 and Tf

4d2 = TfTf
3d2 =

Tfd2 we get

|d1 − Tfd2| = |Tf
3d1 − Tf

4d2| ≥ 2|d1 − Tfd2|
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which is a contradiction. Hence Tfd2 ≥ d1 and therefore Tf
2d2 ≥ Tfd1 and

d2 = Tf
3d2 ≥ Tf

2d1. This implies that C0 ∪ C1 ∪ C2 ∪D0 ∪D1 ∪D2 = [0, 1].
Therefore f(x) = 3

√
2x + α for some α. Now the conditions on d1 and d2

imply that α = 2+ 3
√
4−2 3

√
2

2
completing the proof.

Lemma 7. Suppose that f : [0, 1] → [0, 2] is continuous, strictly increasing

and piecewise differentiable. Further assume that β ≥ 3
√
2, inf f ′ ≥ β and

f(0) ≥ 1
β+1

. Moreover assume that f(x) 6= 3
√
2x + 2+ 3

√
4−2 3

√
2

2
for some x.

Let C ∈ D with c being an endpoint of C. Then there exists a finite path

C0 := C → C1 → · · · → Ck such that one endpoint of Ck is c and either

Ck ∈ {(0, c), (c, Tf
r(f)−1

1)} or |C0| ≤ β|Ck|.

Proof. Set r := r(f). We have either C0 = (d, c) or C0 = (c, d).
In the first case Tfd ≥ Tf0 ≥ c by Lemma 5. Setting Cj := (Tf

j
d, Tf

j−11)
for j = 1, 2, . . . , r − 1 we get that Cj is the only successor of Cj−1 for j =
1, 2, . . . , r − 1. Then TfCr−1 = (Tf

rd, Tf
r−11) and |TfCr−1| ≥ βr|C0|. If

Tf
rd ≤ c then Cr−1 → (c, Tf

r−11) and we are done. Otherwise Cr := TfCr−1

is the only successor of Cr−1. By Lemma 1 of [10] there is a minimal s ≥ r

such that Cj = TfCj−1 is the only successor of Cj−1 for j = 1, 2, . . . , s and
Cs has two different successors. As |TfCs| ≥ βs+1|C0| we get that Cs has a

successor Cs+1 with |Cs+1| ≥ βs+1

2
|C0| and c is an endpoint of Cs+1. If s ≥ 3

then βs+1

2
≥ β since β ≥ 3

√
2 and we are done.

Otherwise s = r = 2 and C2 has the successors (Tf
3d, c) and (c, Tf

21)
and |TfC2| ≥ β3|C0| ≥ 2|C0|. In the case |(Tf

3d, c)| > |C0| Lemma 2 with
n = 3 implies the desired result. Otherwise set C3 := (c, Tf

21). Note that
|C3| ≥ |C0|. If Tf

31 ≥ c then C3 → (0, c) and we are done. Now consider the
case Tf

31 < c. Then C4 := (0, Tf
31) is the only successor of C3, and C5 :=

(Tf0, Tf
41) is the only successor of C4. Moreover |TfC5| ≥ β3|C3| ≥ 2|C3|. If

C5 has only one successor then by Lemma 1 of [10] there is a minimal s ≥ 3
such that C3+j = TfC3+j−1 is the only successor of C3+j−1 and C3+s has two
different successors. Because of |TfC3+s| ≥ βs+1|C3| we get that C3+s has

a successor C3+s+1 with |C3+s+1| ≥ βs+1

2
|C3| ≥ β|C3| ≥ β|C0| and c is an

endpoint of C3+s+1. We are done in this case. Otherwise C5 has the two
successors (Tf

20, c) and (c, Tf
51). If |(c, Tf

51)| > |C3| the desired result is
implied by Lemma 2 with n = 3. Otherwise set C6 := (Tf

20, c). Observe that
|C6| ≥ |C3| ≥ |C0|, which implies C0 ⊆ C6. Hence C7 := (Tf

30, 1) ⊇ C1 is the
only successor of C6 and TfC7 = (Tf

40, Tf1) ⊇ C2. In the case Tf
40 ≤ c we

get C7 → (c, Tf1) and we are done as r = 2. Otherwise C8 := TfC7 is the only
successor of C7 and C3 ⊆ TfC8 = (Tf

50, Tf
21). Hence C8 has the successors

C9 := (Tf
50, c) and (c, Tf

21) = C3. As |TfC8| ≥ β3|C6| ≥ 2|C6| and |C6| ≥
|C3| we get that |C9| = |TfC8| − |C3| ≥ 2|C6| − |C3| ≥ |C6|. If |C9| = |C6|
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we get C9 = C6 and we have the situation described in Lemma 6. Then

Lemma 6 implies that f(x) = 3
√
2x+ 2+ 3

√
4−2 3

√
2

2
for all x ∈ [0, 1] contradicting

our assumption. Hence |C9| > |C6|. Applying Lemma 2 with n = 3 we
obtain the desired result.

Now we consider the case C0 = (c, d). If Tfd ≥ c we have C0 → (0, c) and
we are done. It remains to consider the case Tfd < c. Then C1 := (0, Tfd)
is the only successor of C0. Setting Cj := (Tf

j−10, Tf
j
d) for j = 2, 3, . . . , r

we get that Cj is the only successor of Cj−1 for j = 1, 2, . . . , r. Moreover
TfCr = (Tf

r0, Tf
r+1d) and |TfCr| ≥ βr+1|C0|. By Lemma 1 of [10] there is

a minimal s ≥ r such that Cj = TfCj−1 is the only successor of Cj−1 for
j = 1, 2, . . . , s and Cs has two different successors. As |TfCs| ≥ βs+1|C0| we

get that Cs has a successor Cs+1 with |Cs+1| ≥ βs+1

2
|C0| and c is an endpoint

of Cs+1. If s ≥ 3 then βs+1

2
≥ β since β ≥ 3

√
2 and we are done.

It remains to assume that s = r = 2. Then C2 has the successors
(Tf

20, c) and (c, Tf
3d), and |TfC2| ≥ β3|C0| ≥ 2|C0|. If |(c, Tf

3d)| > |C0| then
Lemma 2 with n = 3 implies the desired result. Otherwise set C3 := (Tf

20, c).
Hence C3 = (d, c) for d = Tf

20 and |C3| ≥ |C0|. In this case we have shown
above that there exists a finite path C3 → C4 → · · · → Ck such that one end-
point of Ck is c and either Ck ∈ {(0, c), (c, Tf

r(f)−1
1)} or |C0| ≤ |C3| ≤ β|Ck|.

This completes the proof.

Lemma 8. Suppose that f : [0, 1] → [0, 2] is continuous, strictly increasing

and piecewise differentiable. Further assume that β ≥ 3
√
2, inf f ′ ≥ β and

f(0) ≥ 1
β+1

. Moreover assume that f(x) 6= 3
√
2x+ 2+ 3

√
4−2 3

√
2

2
for some x. Let

C ∈ D.

(1) If r(f) ≥ 3, then there exists a finite path C0 := C → C1 → · · · → Cn

with Cn = (0, c). Moreover Tf
r(f)

1 > c.

(2) If r(f) = 2, then there exists a finite path C0 := C → C1 → · · · → Cn

with Cn ∈ {(0, c), (c, Tf1)}.
Proof. Set r := r(f). By Lemma 1 of [10] there exists a path C0 → C1 →
· · · → Cl in D with c is an endpoint of Cl. Now we prove by induction
that for every t ∈ N there is a path Cl → Cl+1 → · · · → Cnt

such that c

is an endpoint of Cnt
and either Cnt

∈ {(0, c), (c, Tf
r−11)} or |Cnt

| ≥ βt|Cl|.
For t = 1 this follows immediately from Lemma 7. Now let t > 1. If
Cnt−1

∈ {(0, c), (c, Tf
r−11)} we are done. Otherwise by Lemma 7 there exists

a path Cnt−1
→ Cnt−1+1 → · · · → Cnt

such that c is an endpoint of Cnt
and

either Cnt
∈ {(0, c), (c, Tf

r−11)} or |Cnt
| ≥ β|Cnt−1

| ≥ βt|Cl|.
As βt tends to infinity for t → ∞ there exists a path C0 := C → C1 →

· · · → Cn with Cn ∈ {(0, c), (c, Tf
r−11)}. In the case r = 2 we obtain (2).
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Finally, assume that r > 2. In order to show (1) it suffices to show
that (c, Tf

r−11) → (0, c). Setting D0 := (0, c), Dj := (Tf
j0, Tf

j−11) for j =
1, 2, . . . , r−1 we have that Dj is the only successor of Dj−1 for j = 1, 2, . . . , r−
1. Moreover TfDr−1 = (Tf

r0, Tf
r−11) satisfies |TfDr−1| ≥ βr|D0| ≥ 2c. Since

Tf
r0 ≥ 0 this implies that |(c, Tf

r−11)| ≥ |TfDr−1| − |(0, c)| ≥ c. Hence
|(0, Tf

r1)| = |Tf(c, Tf
r−11)| ≥ βc. Therefore Tf

r1 > c and this implies that
(c, Tf

r−11) → (0, c).

Theorem 1. Let f : [0, 1] → [0, 2] be a continuous, strictly increasing and

piecewise differentiable function. Moreover assume that β ≥ 3
√
2, inf f ′ ≥ β

and f(0) ≥ 1
β+1

. Then Tf is topologically transitive.

Proof. If f(x) := 3
√
2x+ 2+ 3

√
4−2 3

√
2

2
then topological transitivity follows from

Lemma 4. Otherwise denote by (D,→) the Markov diagram of Tf . Let
C ∈ D and set r := r(f).

Assume at first that Tf
21 < c. Using Lemma 3 and Lemma 5 this implies

Tf
20 < Tf

21 < c, c ≤ Tf
30 < Tf

31 and r = 2. Define C as the set of all D ∈ D
such that there is a path D0 := (c, Tf1) → D1 → · · · → Dn = D which is
obviously closed. Set C0 := (c, Tf1), C1 := (0, Tf

21), C2 := (Tf0, Tf
31),

C3 := (Tf
20, c) and C4 := (Tf

30, 1). Because of Tf
20 < c we have (0, c) →

(Tf0, 1) → C0. By (2) of Lemma 8 for any C ∈ D there exists a path
D0 := C → D1 → · · · → Dp with Dp ∈ {(0, c), (c, Tf1)}. Therefore the set
C is closed and irreducible. Since 1 ≥ |Tf(c, 1)| ≥ β|(c, 1)| = β(1− c) we get
1−c ≤ 1

β
. Moreover |C0| ≥ β−1 as Tf1 ≥ Tf0+β−1 ≥ c+β−1 by Lemma 5.

By our assumptions C1 is the only successor of C0 and C2 is the only successor
of C1. Therefore |C2| ≥ β2(β − 1) and |TfC2| = |(Tf

20, Tf
41)| ≥ β3(β − 1) >

1
β+1

as x5 − x3 − 1 > 0 for x ≥ 3
√
2. Hence Tf

41 > 1
β+1

≥ c by Lemma 5

and C2 has the two different successors C3 and (c, Tf
41). Moreover C3 → C4.

Since C0, C1, C2, C3, C4 ∈ C and
⋃4

k=0Ck = [0, 1] the topological transitivity
is implied by Lemma 1.

Now assume that Tf
20 > c. Then r ≥ 3 and c ≤ Tf

k0 < Tf
k1 for

k = 1, 2, . . . , r − 1 by Lemma 3. Set C0 := (0, c), Ck := (Tf
k0, Tf

k−11)
for k = 1, 2, . . . , r − 1, and Cr := (c, Tf

r−11). Define C as the set of all
D ∈ D such that there is a path D0 := (0, c) → D1 → · · · → Dn = D.
Obviously C is closed. By (1) of Lemma 8 for any C ∈ D there exists a
path D0 := C → D1 → · · · → Dp with Dp = (0, c). Hence the set C is
closed and irreducible. Observe that C0 → C1 → · · · → Cr−1 → Cr. Since
C0, C1, . . . , Cr ∈ C and

⋃r

k=0Ck = [0, 1] the map Tf is topologically transitive
by Lemma 1.

Finally it remains to consider the case Tf
20 ≤ c and Tf

21 ≥ c. Set
C0 := (0, c), C1 := (Tf0, 1) and C2 := (c, Tf1). Define C as the set of all
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D ∈ D such that there is a path D0 := (0, c) → D1 → · · · → Dn = D.
Observe that C0 → C1 → C2 → C0. By Lemma 8 for any C ∈ D there
exists a path D0 := C → D1 → · · · → Dp with Dp ∈ {(0, c), (c, Tf1)}.
This implies that C is closed and irreducible. Moreover C0, C1, C2 ∈ C and⋃2

k=0Ck = [0, 1]. Therefore Tf is topologically transitive by Lemma 1.

Corollary 1.1. Let f : [0, 1] → [0, 2] be a continuous, strictly increasing

and piecewise differentiable function. Moreover assume that inf f ′ ≥ 3
√
2 and

f(0) ≥ 1+ 3
√
4− 3

√
2

3
. Then Tf is topologically transitive.

Proof. Observe that 1
3
√
2+1

= 1+ 3
√
4− 3

√
2

3
. Setting β = 3

√
2 in Theorem 1 gives

the desired result.

Remark. Using the conjugation h(x) := 1−x we see that Tf is conjugated to

T
f̂
, where f̂(x) := 2− f(1− x). Obviously f(0) ≥ α is equivalent to f̂(1) ≤

2−α. Hence Theorem 1 implies that for every continuous, strictly increasing
and piecewise differentiable function f : [0, 1] → [0, 2] with inf f ′ ≥ β and
f(1) ≤ 2− 1

β+1
the map Tf is topologically transitive.

3. Counterexamples

Let 1 < β <
3
√
2. Define

(2) f(x) := βx+
β2 + 1

β3 + β2 + β
.

Setting c := β3+β−1
β4+β3+β2 we obtain f(c) = 1. Such a map Tf is shown in Figure 1.

Now define A := [0, Tf
31] ∪ [Tf

20, Tf
21] ∪ [Tf0, Tf1] ∪ [Tf

30, 1]. Note that

Tf0 = β2+1
β3+β2+β

> c, Tf
20 = 1

β3+β2+β
< c, Tf

30 = 1
β
> c, Tf

40 = β2+1
β3+β2+β

=

Tf0, Tf1 = β4+β2−β+1
β3+β2+β

> c, Tf
21 = β5−β2+1

β3+β2+β
> c, Tf

31 = β6−2β3+1
β3+β2+β

< c and

Tf
41 = β7−2β4+β2+β+1

β3+β2+β
≤ Tf1. Moreover, Tf

31 < Tf
20 which implies that

[0, 1] \ A 6= ∅. Since Tf
41 ≤ Tf1 and Tf

40 = Tf0 we get that TfA ⊆ A.
Therefore Tf is not topologically transitive.

Observe that f(0) = Tf0 = β2+1
β3+β2+β

. The function g : {x ∈ R : x >

0} → R, g(x) := x2+1
x3+x2+x

is strictly decreasing as g′(x) = −x4−2x2−2x−1
(x3+x2+x)2

< 0.

Hence f(0) = β2+1
β3+β2+β

= g(β) > g( 3
√
2) = 2+ 3

√
4−2 3

√
2

2
because β <

3
√
2. Note

that 2+ 3
√
4−2 3

√
2

2
> 1+ 3

√
4− 3

√
2

3
(2+

3
√
4−2 3

√
2

2
≈ 0.533779, 1+ 3

√
4− 3

√
2

3
≈ 0.442493).

Moreover f(0) = β2+1
β3+β2+β

> 1
β+1

. This shows the following result.
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0 1c
0

1

Figure 1: This is Tf for f from (2).

Theorem 2. For 1 < β <
3
√
2 there exists a continuous strictly increasing

piecewise differentiable function f : [0, 1] → [0, 2] with f(0) > 2+ 3
√
4−2 3

√
2

2
,

f(0) > 1
β+1

and inf f ′ ≥ β such that Tf is not topologically transitive.

Remark. The proof above shows that the function f in Theorem 2 can be
chosen as f(x) = βx+ α for suitable α and β.

Now let β0 be the largest zero of the polynomial x3−x− 1. Assume that
3
√
2 ≤ β ≤ β0 and α < 1

β+1
. We will define a continuous strictly increasing

function f : [0, 1] → [0, 2] in the following way. Choose δ > 0 such that

δ <min

{
1

β + 1
− α,

1

(β + 1)(β2 + 1)
,

1

3 + β3 + β2
,

β2 − 1

β4 + β3 + β2 − 1

}
.

We define f as the join the dots map with the dots

(0, 1
1+β

− δ), (β2δ, 1
1+β

− δ + β3δ), (c− δ, 1− βδ), (c+ βδ, 1 + β2δ),

( 1
β
(1− 3δ

1+β
), 1 + 1−2δ

1+β
), ( 1

β
(1 + β4−1

1+β
δ), 1 + 1+β4δ

1+β
),

(1− βδ, 1
β
(β + 1− 3δ

1+β
)) and (1, 1

β
(β + 1 + (β4−1)δ

1+β
)).

Such a map Tf is shown in Figure 2. Note that inf f ′ ≥ β. Furthermore

A := [0, β2δ] ∪ [c − δ, c + βδ] ∪ [ 1
β
(1 − 3δ

1+β
), 1

β
(1 + β4−1

1+β
δ)] ∪ [1 − βδ, 1] is

Tf -invariant, and β2δ < c − δ. Moreover note that f(0) = 1
1+β

− δ ≥ α by
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0 1c
0

1

Figure 2: This is Tf for f from Theorem 3.

the choice of δ. Therefore Tf is not topologically transitive. Hence we have
shown the following result.

Theorem 3. For
3
√
2 ≤ β ≤ β0 and α < 1

β+1
there exists a continuous strictly

increasing piecewise differentiable function f : [0, 1] → [0, 2] with f(0) ≥ α

and inf f ′ ≥ β such that Tf is not topologically transitive.

Corollary 3.1. For α < 1+ 3
√
4− 3

√
2

3
there exists a continuous strictly increa-

sing piecewise differentiable function f : [0, 1] → [0, 2] with f(0) ≥ α and

inf f ′ ≥ 3
√
2 such that Tf is not topologically transitive.

4. The special case βx+ α (mod 1)

Finally we investigate the special case βx+ α (mod 1). In this case the
situation is slightly different. For any β ≥ 3

√
2 we will determine the set of

all α such that βx + α (mod 1) is topologically transitive. Note that for
every β > 0 the map f(x) := βx + α satisfies f([0, 1]) ⊆ [0, 2] if and only if
0 ≤ α ≤ 2− β. Furthermore observe that c = 1−α

β
in this case.

Lemma 9. Assume that 1 < β <
√
2 and 1

β2+β
≤ α < 1

β+1
, and set f(x) :=

βx + α. Then Tf0 < c < Tf1 < Tf
20 and Tf

30 ≥ Tf0. Moreover, Tf
21 < c
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if and only if α < 1 − β3

β2+β+1
. If α ≤ 2 − β − 1

β2+β
then Tf

21 < c and

Tf
31 ≤ Tf1.

Proof. Because of α < 1
β+1

we get Tf0 = α < 1−α
β

= c, and therefore

Tf
20 = (β+1)α. Using (β− 1)2(β+1) > 0 one obtains −β2+β+1

β+1
< 1

β2+β
≤ α

and hence Tf1 = α + β − 1 > 1−α
β

= c and Tf
21 = (β + 1)α + β2 − β − 1.

Since β <
√
2 we obtain (β − 1)(β + 1) < 1 which implies β−1

β
< 1

β2+β
≤ α

and therefore Tf1 = α + β − 1 < (β + 1)α = Tf
20. In particular Tf

20 > c

which implies Tf
30 = (β2 + β + 1)α − 1. As α ≥ 1

β2+β
we get Tf

30 =

(β2 + β + 1)α− 1 ≥ α = Tf0.

The property α < 1− β3

β2+β+1
is equivalent to Tf

21 = (β+1)α+β2−β−1 <
1−α
β

= c. In this case one obtains that Tf
31 = (β2 + β + 1)α + β3 − β2 − β.

Observe that 2 − β − 1
β2+β

= −β3+β2+2β−1
β2+β

< −β3+β2+β+1
β2+β+1

= 1 − β3

β2+β+1
.

Hence Tf
21 < c if α ≤ 2 − β − 1

β2+β
. Moreover in this case we get Tf

31 =

(β2 + β + 1)α + β3 − β2 − β ≤ α + β − 1 = Tf1.

Remark. Observe that 1
β+1

≤ 1 − β3

β2+β+1
for 1 < β ≤ β0 where β0 be the

largest zero of the polynomial x3 − x − 1 as β(β3 − β − 1) ≤ 0. Hence

α < 1− β3

β2+β+1
is satisfied automatically in this case if α < 1

β+1
.

Suppose that 3
√
2 ≤ β <

√
2 and 1

β2+β
≤ α ≤ 2 − β − 1

β2+β
, and define

f(x) := βx + α. Such a map is shown in Figure 3. By Lemma 9 the set
A := [0, Tf

21] ∪ [Tf0, Tf1] ∪ [Tf
20, 1] satisfies TfA ⊆ A and [0, 1] \ A 6= ∅.

Hence Tf is not topologically transitive.

Note that (β− 1)2(β +1) > 0 implies 2− β− 1
β2+β

= −β3+β2+2β−1
β2+β

< 1
β+1

.

Moreover, for β <
√
2 we obtain (β − 1)(β2 − 2) < 0 which implies that

1
β2+β

< −β3+β2+2β−1
β2+β

= 2− β − 1
β2+β

< 1− β3

β2+β+1
.

Lemma 10. Suppose that
3
√
2 ≤ β <

√
2, 2 − β − 1

β2+β
< α < 1

β+1

and α < 1 − β3

β2+β+1
, and set f(x) := βx + α. Then (0, c) → (c, 1),

(c, 1) → (0, c), (0, c) → (Tf0, c), (Tf
20, 1) is the unique successor of (Tf0, c),

(c, 1) → (c, Tf1), (0, Tf
21) is the unique successor of (c, Tf1) and Tf

31 > Tf1.
Furthermore for every C ∈ D there exists a finite path C0 → C1 → · · · → Ck

with C0 = C and Ck ∈ {(0, c), (Tf0, c), (c, Tf1)}.

Proof. By Lemma 9 we get (0, c) → (c, 1), (c, 1) → (0, c), (0, c) → (Tf0, c),
(Tf

20, 1) is the unique successor of (Tf0, c), (c, 1) → (c, Tf1) and (0, Tf
21) is

the unique successor of (c, Tf1). Moreover, using that 2 − β − 1
β2+β

< α we

obtain that Tf
31 = (β2 + β + 1)α + β3 − β2 − β > α + β − 1 = Tf1.
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0 1c
0

1

Figure 3: This is βx+ α (mod 1) with 3
√
2 ≤ β <

√
2 and 1

β2+β
≤ α ≤ 2− β − 1

β2+β
.

Now we claim that for every C ∈ D having c as an endpoint there exists
a finite path C0 := C → C1 → · · · → Cn with c is an endpoint of Cn

and Cn ∈ {(0, c), (Tf0, c), (c, Tf1)} or |Cn| ≥ β|C|. Assume at first that
C = (d, c) for some d. If Tfd ≤ c we are done as C → (c, 1) → (0, c).
Otherwise C1 := (Tfd, 1) = TfC is the unique successor of C0 := C. In
the case Tf

2d ≤ c we are done because of C1 → (c, Tf1). If Tf
2d > c

then C2 := Tf
2C = (Tf

20, Tf1) ⊆ (c, Tf1) is the unique successor of C1 and
therefore C3 := Tf

3C is the unique successor of C2. By Lemma 1 of [10] there
is a minimal s ≥ 3 such that Cj := Tf

j
C is the unique successor of Cj−1 for

j = 1, 2, . . . , s and Cs has two different successors. Each of these successors
has c as an endpoint. Because of TfCs = Tf

s+1C we get |TfCs| = βs+1|C|
and therefore Cs has a successor Cs+1 with |Cs+1| ≥ βs+1

2
|C|. As s ≥ 3 and

β ≥ 3
√
2 we get βs+1

2
≥ β and hence |Cs+1| ≥ β|C|.

Similarly for C = (c, d) for some d we have either C → (0, c) and are done
or C1 := TfC = (0, Tfd) is the unique successor of C0 := C. If Tf

2d ≥ c in
the second case then C1 → (Tf0, c) and we are done. It remains to consider
the case Tfd < c and Tf

2d < c. Then C2 := Tf
2C = (Tf0, Tf

2d) ⊆ (Tf0, c)
is the unique successor of C1 and C3 := Tf

3C is the unique successor of
C2. By the same argument as above there exists an s ≥ 3 and a finite
path C0 := C → C1 → · · · → Cs+1 such that c is an endpoint of Cs+1 and
|Cs+1| ≥ β|C|.



14 PETER RAITH AND ANGELA STACHELBERGER

Next we prove by induction that for every C ∈ D having c as an endpoint
and for any t ∈ N there exists a finite path C0 := C → C1 → · · · → Cnt

with c is an endpoint of Cnt
and Cnt

∈ {(0, c), (Tf0, c), (c, Tf1)} or |Cnt
| ≥

βt|C|. For t = 1 this is exactly the property proved above. Let t > 1. If
Cnt−1

∈ {(0, c), (Tf0, c), (c, Tf1)} set nt := nt−1 and we are done. Otherwise
by the property proved above there exists a finite path Cnt−1

→ Cnt−1+1 →
· · · → Cnt

with c is an endpoint of Cnt
and Cnt

∈ {(0, c), (Tf0, c), (c, Tf1)} or
|Cnt

| ≥ β|Cnt−1
| ≥ βt|C|.

Finally let C ∈ D. By Lemma 1 of [10] there exists a finite path C0 :=
C → C1 → · · · → Cl such that Cl−1 has two different successors. Therefore
c is an endpoint of Cl. Choose t ∈ N with βt|Cl| > 1. Then there exists
a finite path Cl → Cl+1 → · · · → Ck with Ck ∈ {(0, c), (Tf0, c), (c, Tf1)} or
|Ck| ≥ βt|Cl|. As βt|Cl| > 1 the second case cannot occur. This completes
the proof.

Lemma 11. Assume that
3
√
2 ≤ β <

√
2 and 1 − β3

β2+β+1
≤ α < 1

β+1
, and

set f(x) := βx + α. Then (0, c) → (c, 1), (c, 1) → (0, c), (0, c) → (Tf0, c),
(Tf

20, 1) is the unique successor of (Tf0, c), (c, 1) → (c, Tf1) and (c, Tf1) →
(0, c). The interval (0, c) is the unique successor of (c, Tf1) if α = 1− β3

β2+β+1

and (c, Tf1) → (c, Tf
21) otherwise. Moreover for every C ∈ D there exists a

finite path C0 := C → C1 → · · · → Ck with Ck ∈ {(0, c), (Tf0, c), (c, Tf
21)}.

Proof. The properties (0, c) → (c, 1), (c, 1) → (0, c), (0, c) → (Tf0, c),
(Tf

20, 1) is the unique successor of (Tf0, c), (c, 1) → (c, Tf1), (c, Tf1) →
(0, c), (0, c) is the unique successor of (c, Tf1) if α = 1− β3

β2+β+1
and (c, Tf1) →

(c, Tf
21) otherwise follow immediately from Lemma 9.

We claim that for every C ∈ D having c as an endpoint there exists a
finite path C0 := C → C1 → · · · → Cn with c is an endpoint of Cn and
Cn ∈ {(0, c), (Tf0, c), (c, Tf

21)} or |Cn| ≥ β|C|. To this end we assume at
first that C = (d, c) for some d. In the case Tfd ≤ c we are done as C →
(c, 1) → (0, c). Otherwise C1 := TfC = (Tfd, 1) is the unique successor of
C0 := C. If Tf

2d ≤ c we are done since C1 → (c, Tf1) → (0, c). Now suppose
that Tf

2d > c. Then C2 := Tf
2C = (Tf

20, Tf1) is the unique successor of C1.
Moreover, either C2 → (c, Tf

21) and we are done or C3 := Tf
3C is the unique

successor of C2. The same argument as in the proof of Lemma 10 gives the
existence of an s ≥ 3 and of a finite path C0 := C → C1 → · · · → Cs+1 such
that c is an endpoint of Cs+1 and |Cs+1| ≥ β|C|.

For C = (c, d) for some d exactly the same proof as in the proof of
Lemma 10 shows that either C → (0, c) or C → TfC → (Tf0, c) or there
is an s ≥ 3 and a finite path C0 := C → C1 → · · · → Cs+1 such that c

is an endpoint of Cs+1 and |Cs+1| ≥ β|C|. Now the same arguments as in
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the proof of Lemma 10 show that for every C ∈ D there exists a finite path
C0 := C → C1 → · · · → Ck with Ck ∈ {(0, c), (Tf0, c), (c, Tf

21)}.

1 2
�!!!
2

3 �!!!
2

0

1

Α

Β

Figure 4: For (β, α) in the white region of this triangle the map βx + α (mod 1) is
topologically transitive and in the gray region it is not topologically transitive. The black
region is not completely classified.

Our next result classify those (β, α) with 3
√
2 ≤ β <

√
2 and 0 ≤ α ≤ 2−β

such that βx+ α (mod 1) is topologically transitive. In Figure 4 the white
region inside the triangle shows those (β, α) with 3

√
2 ≤ β ≤ 2 for which

βx + α (mod 1) is topologically transitive. Recall that for β ≥
√
2 the

map βx + α (mod 1) is topologically transitive by Theorem 1 of [10]. The
gray region shows those (β, α) with 3

√
2 ≤ β ≤ 2 where βx + α (mod 1)

is not topologically transitive. For 1 ≤ β <
3
√
2 the set of all (β, α) where

βx+α (mod 1) is topologically transitive has not been described completely.

Theorem 4. Let
3
√
2 ≤ β <

√
2 and let 0 ≤ α ≤ 2−β. Then βx+α (mod 1)

is topologically transitive if and only if 0 ≤ α < 1
β2+β

or 2− β − 1
β2+β

< α ≤
2− β.

Proof. From Lemma 9 we obtain that βx + α (mod 1) is not topologically
transitive for 1

β2+β
≤ α ≤ 2− β − 1

β2+β
(see the paragraph below the remark

following Lemma 9).
At first we consider the case α > 2 − β − 1

β2+β
. We start the proof

investigating the case α < 1
β+1

. Suppose at first that α < 1 − β3

β2+β+1
. Set
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C0 := (c, Tf1). By Lemma 10 we get that C1 := (0, Tf
21) is the unique

successor of C0, C1 → (Tf0, c) and C1 → C2 := (c, Tf
31), and |C2| > |C0|.

In particular this implies C0 ⊆ C2. Note that |C2| = β2|C0| − |(Tf , c)|. Now
we prove by induction that for every n ∈ N there exists a k ≤ 2n and a
path C0 → C1 → · · · → Ck with Ck = (0, c) or C0 ⊆ Ck and |Ck| ≥ |C0| +
βn−1(|C2| − |C0|). For n = 1 we have obviously |Ck| = |C0|+ β0(|C2| − |C0|).
Let n > 1 and assume that l ≤ 2n− 2, C0 → C1 → · · · → Cl is a path with
Cl = (0, c) or C0 ⊆ Cl and |Cl| ≥ |C0| + βn−2(|C2| − |C0|). If Cl = (0, c)
set k := l ≤ 2n and we are done. Otherwise either Cl → (0, c) or Cl+1 :=
TfCl ⊇ C1 is the unique successor of Cl. In the first case we are done setting
k := l + 1 ≤ 2n and Ck := (0, c). Consider the second case. Then Cl+1 has
the two successors (Tf0, c) and Cl+2 := TfCl ∩ (c, 1) ⊇ C2 ⊇ C0. Set k :=
l+2 ≤ 2n. We have that |Ck|+ |(Tf0, c)| = β2|Cl| ≥ β2|C0|+βn(|C2|−|C0|).
Since β2|C0| − |(Tf0, c)| = |C2| ≥ |C0| and β > 1 this implies |Ck| ≥ |C0| +
βn−1(|C2|− |C0|) finishing the induction. As |C0|+βn−1(|C2|− |C0|) tends to
infinity for n → ∞ there exists a finite path C0 := (c, Tf1) → C1 → · · · → Ck

with Ck = (0, c).
Next assume that d ≤ Tf0 and set C0 := (d, c). If Tfd ≤ c then C0 →

C1 := (c, 1) → C2 := (0, c). Otherwise C1 := TfC0 = (Tfd) ⊆ (c, 1) is the
unique successor of C0. In the case Tf

2d ≤ c we have C1 → (c, Tf1). Then set
C2 := (c, Tf1) and as shown above there exists a finite path C0 → C1 → C2 =
(c, Tf1) → · · · → Ck with Ck = (0, c). Now we consider the case Tf

2d > c.
In this case C2 := TfC1 = (Tf

2d, Tf1) ⊆ (c, Tf1) is the unique successor of
C1 and by Lemma 10 C3 := TfC2 = (Tf

3d, Tf
21) ⊆ (0, Tf

21) is the unique
successor of C2. Hence by Lemma 1 of [10] there is a minimal s ≥ 4 such
that Cj := Tf

j
C0 is the unique successor of Cj−1 for j = 1, 2, . . . , s − 1

and Cs−1 has two different successors. Then either Cs−1 has a successor
Cs with C0 ⊆ Cs and |Cs| > |C0| or Cs−1 has a successor Cs = (c, d̃) with
|Cs| ≥ (βs−1)|C0|. Consider the latter case. If s = 4 then C4 = (c, Tf

31) and
we have shown above that there exists a finite path C4 → C5 → · · · → Ck

with Ck = (0, c). Otherwise s ≥ 5 and therefore βs ≥ 2β2 > 2. In the case

Tf d̃ ≥ c we get Cs → Cs+1 := (0, c). Now suppose that Tf d̃ < c. Then

Cs+1 := (0, Tf d̃) ⊆ (0, c) is the unique successor of Cs. As β2(βs − 1) >

1(2 − 1) = 1 we get that |TfCs+1| ≥ β2(βs − 1)|C0| > |C0| ≥ |(Tf0, c)|.
Hence Cs+1 has two successors, (Tf0, c) and Cs+2 := (c, Tf

2d̃). Because of
β2 ≥ 3

√
4 > 3

2
we obtain 2β2 − 3 > 0 which implies (β2 − 1)(2β2 − 1) > 1.

Hence (β2 − 1)|Cs| ≥ (β2 − 1)(βs − 1)|C0| ≥ (β2 − 1)(2β2 − 1)|C0| > |C0|.
Therefore |Cs+2| ≥ β2|Cs|−|C0| > |Cs|. In particular this implies Cs ⊆ Cs+2.
Now an analogous proof as above in the case starting with (c, Tf1) shows that
there exists a finite path Cs → Cs+1 → · · · → Ck with Ck = (0, c).
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This means that we have shown for d ≤ Tf0 that there exists a finite
path starting in (d, c) and ending in (0, c) or there is a path C0 = (d, c) →
C1 → · · · → Cs with Cj is the unique successor of Cj−1 for j = 1, 2, . . . , s−1,
Cs−1 has two different successors, s ≥ 4, C0 ⊆ Cs and |Cs| > |C0|. Now
we set C0 := (Tf0, c). Using induction we get that either there exists a
finite path C0 → C1 → · · · → Ck with Ck = (0, c) or there is an infinite
path C0 → C1 → C2 → · · · and a sequence (sn)n∈N of natural numbers
with sn ≥ 4 for all n such that Cj is the unique successor of Cj−1 for j =
Sn−1, Sn−1 + 1, . . . , Sn−1 + sn − 1, CSn−1+sn−1 has two different successors,
CSn−1

⊆ CSn
and |CSn

| > |CSn−1
|, where S0 := 0 and Sn :=

∑n

j=1 sj for n ≥ 1.
Consider the second case. Because of CSn−1

⊆ CSn
we get that sn+1 ≤ sn for

all n. Hence there exists an n0 and an s ≥ 4 with sn = s for all n ≥ n0. For
n ≥ n0 and j = 0, 1, . . . , s−1 the intervals CSn−1+j and CSn+j have the same
right endpoint. Analogous to the proof for the starting interval (c, Tf1) one
proves by induction that |CSn

| ≥ |CSn0−1
|+ βn−n0(|CSn0

| − |CSn0−1
|). As the

right hand side of this inequality tends to infinity for n → ∞ this contradicts
|CSn

| ≤ 1 for all n.
Hence we have proved that there exists a finite path starting in (Tf0, c)

and ending in (0, c) and there exists a finite path starting in (c, Tf1) and
ending in (0, c). Using Lemma 10 one obtains that for every C ∈ D there
exists a finite path C0 → C1 → · · · → Ck with C0 = C and Ck = (0, c). Now
the topological transitivity of Tf follows from Lemma 2 of [10].

Next we investigate the case 1− β3

β2+β+1
≤ α < 1

β+1
. By the remark after

Lemma 9 this implies β > β0 where β0 is the largest zero of the polynomial
x3 − x − 1. This implies β3 − β − 1 > 0 and therefore β3 − 1 > β. Set
C0 := (Tf0, c). From Lemma 11 we get that C1 := (Tf

20, 1) is the unique
successor of C0. In the case Tf

30 ≤ c using Lemma 11 one obtains that
C0 → C1 → C2 := (c, Tf1) → C3 := (0, c). Otherwise C2 := TfC1 is the
unique successor of C1. By Lemma 1 of [10] there is a minimal s ≥ 3 such
that Cj := Tf

j
C0 is the unique successor of Cj−1 for j = 1, 2, . . . , s− 1 and

Cs−1 has two different successors. We obtain that either Cs−1 has a successor
Cs with C0 ⊆ Cs and |Cs| > |C0| or Cs−1 has a successor Cs = (c, d̃) with
|Cs| ≥ (βs−1)|C0|. In the second case |Cs| > β|C0| since s ≥ 3 and β3−1 > β.

If Tf d̃ ≥ c we get Cs → Cs+1 := (0, c). Otherwise Cs+1 := (0, Tf d̃) is the

unique successor of Cs, TfCs+1 = (Tf0, Tf
2d̃) and |TfCs+1| = β2|Cs| > |C0|.

Therefore Cs+1 has two successors, (Tf0, c) and Cs+2 := (c, Tf
2d̃). Since

β3 − β > 1 we obtain (β2 − 1)|Cs| > (β3 − β)|C0| > |C0|. This implies
|Cs+2| = β2|Cs|−|C0| > |Cs| and in particular Cs ⊆ Cs+2. A proof analogous

as in the case α < 1 − β3

β2+β+1
shows the existence of a finite path Cs →

Cs+1 → · · · → Ck with Ck = (0, c). Now assume that Cs−1 has a successor
Cs with C0 ⊆ Cs and |Cs| > |C0|. We can repeat the argument and obtain
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analogous to the proof in the case α < 1 − β3

β2+β+1
the existence of a finite

path C0 → C1 → · · · → Ck with Ck = (0, c).

Suppose that α > 1 − β3

β2+β+1
and set C0 := (c, Tf

21). If Tf
31 ≥ c we

get C0 → C1 := (0, c). Now assume that Tf
31 < c. Then C1 := (0, Tf

31)
is the unique successor of C0. If Tf

41 ≥ c then C2 := (Tf0, c) is a successor
of C1 and as shown above there is a finite path C2 → C3 → · · · → Ck with
Ck = (0, c). Otherwise C2 := TfC1 ⊆ (Tf0, c) is the unique successor of
C1 and by Lemma 11 C3 := TfC2 is the unique successor of C2. It follows
from Lemma 1 of [10] that there is a minimal s ≥ 4 such that Cj := Tf

j
C0

is the unique successor of Cj−1 for j = 1, 2, . . . , s − 1 and Cs−1 has two
different successors. Then either Cs−1 has a successor Cs with C0 ⊆ Cs and
|Cs| > |C0| or Cs−1 has a successor Cs = (d̃, c) with |Cs| ≥ (βs − 1)|C0|. At

first we consider the second case. As s ≥ 4 we get |Cs| > |C0|. If Tf d̃ ≤ c

Lemma 11 implies that Cs → Cs+1 := (c, 1) → Cs+2 := (0, c). In the case

Tf d̃ > c the interval Cs+1 := (Tf d̃, 1) is the unique successor of Cs. By
Lemma 11 we obtain Cs → Cs+1 → Cs+2 := (c, Tf1) → Cs+3 := (0, c) if

Tf
2d̃ ≤ c. Otherwise Cs+2 := (Tf

2d̃, Tf1) is the unique successor of Cs+1.

Moreover, TfCs+2 = (Tf
3d̃, Tf

21) and |TfCs+2| = β3|Cs| > |C0| imply that

Cs+2 has the two successors C0 and Cs+3 := (Tf
3d̃, c). As β ≥ β0 >

3
√
2 we

get that |Cs+3| = β3|Cs| − |C0| > 2|Cs| − |C0| > |Cs|. Now we get analogous

to the proof in the case α < 1 − β3

β2+β+1
that there is a finite path Cs →

Cs+1 → · · · → Ck with Ck = (0, c). Next assume that Cs−1 has a successor
Cs with C0 ⊆ Cs and |Cs| > |C0|. Then one obtains analogous to the proof in

the case α < 1− β3

β2+β+1
that there exits a finite path Cs → Cs+1 → · · · → Ck

with Ck = (0, c).
We have proved that there exists a finite path starting in (Tf0, c) and

ending in (0, c) and in the case α > 1 − β3

β2+β+1
there exists a finite path

starting in (c, Tf
21) and ending in (0, c) (note that (c, Tf

21) = ∅ for α =

1 − β3

β2+β+1
). Therefore Lemma 11 implies that for every C ∈ D there exists

a finite path C0 := C → C1 → · · · → Ck with Ck = (0, c). By Lemma 2 of
[10] the map Tf is topologically transitive.

In the case α ≥ 1
β+1

it follows from Theorem 1 that Tf is topolologically
transitive. Hence we have proved the topological transitivity of Tf for all

α ∈
(
2− β − 1

β2+β
, 2− β

]
.

Finally let α ∈
(
0, 1

β2+β

]
. The conjugation h(x) := 1 − x conjugates

βx + α (mod 1) to βx + 2 − β − α (mod 1). By the assumptions for α we
obtain 2 − β − 1

β2+β
< 2 − β − α ≤ 2 − β. Hence βx + 2 − β − α (mod 1)

is topologically transitive and therefore βx + α (mod 1) is topologically
transitive.
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