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Mixing properties in expanding Lorenz maps

Piotr Oprocha, Paweª Potorski and Peter Raith

Abstract. Let Tf : [0, 1] → [0, 1] be an expanding Lorenz map, this means
Tfx := f(x) (mod 1) where f : [0, 1] → [0, 2] is a strictly increasing map
satisfying inf f ′ > 1. Then Tf has two pieces of monotonicity. In this
paper, su�cient conditions when Tf is topologically mixing are provided.
For the special case f(x) = βx + α with β ≥ 3

√
2 a full characterization of

parameters (β, α) leading to mixing is given. Furthermore relations between
renormalizability and Tf being locally eventually onto are considered, and
some gaps in classical results on the dynamics of Lorenz maps are corrected.

Introduction

Lorenz attractor is one of the most recognized mathematical models which
had very strong in�uence on mathematical understanding of idea of chaos and
unpredictability in dynamics. It was obtained as a solution to a system of
di�erential equations in R3 and later was extended to a plethora of Lorenz-
like attractors and models (e. g. see [28], [10] or [19]; it is worth mentioning
that it turned out to be extremely di�cult to prove that set detected in
numerical simulations is an attractor [27]).

Very quickly it was realized that some interval maps may serve as models
for Poincaré map in Lorenz-like systems (see e. g. [10], [11] and [1]). A class
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of such models is formed by so-called expanding Lorenz maps, that is maps
T : [0, 1]→ [0, 1] satisfying the following three conditions:

1. there is a critical point c ∈ (0, 1) such that T is continuous and strictly
increasing on [0, c) and (c, 1];

2. limx→c− T (x) = 1 and limx→c+ T (x) = 0;

3. T is di�erentiable for all points not belonging to a �nite set F ⊆ [0, 1]
and infx 6∈F T

′(x) > 1.

There is a continuous interest in dynamics of these maps for more than last
20 years. It was discovered long time ago that kneading sequences of these
maps can easily be characterized [16] and so ideas of Milnor and Thurston
[18] work very well in this context. In particular, many authors were inter-
ested in fully characterizing these maps in terms of kneading sequences and
renormalization (e.g. see [8], [9] and [2]). An important related question
was asking when Lorenz map can be presented (in terms of conjugacy) as
a map with constant slope. One of the most recent advances can be found
in [6] together with historical comments. Kneading theory was also used as
a tool in characterization of transitivity in Lorenz maps. One of the �rst
classes of Lorenz maps studied in the literature, were the maps which are
locally eventually onto (as de�ned in [9]). This includes works by Williams
[28, 29], Guckenheimer and Williams [11] or Rand [26]. Characterization of
locally eventually onto maps in terms of properties of the kneading sequence
of critical point are stated in [8] and [9].

In some sense complementary approach for description of transitivity of
piecewise monotone, piecewise continuous maps was developed by Hofbauer
[12, 13, 14, 15] who developed and popularized approach using Markov dia-
grams. While the approach using kneading theory concentrates mainly on the
(one-sided) trajectories of the critical point c, Hofbauer's controls evolution
of the intervals (0, c) and (c, 1).

We show in the present paper (see Theorem 4.1) that every locally even-
tually onto Lorenz map is mixing, however converse is not true (see Ex-
ample 4.1), so the standard relation between these two properties known
from topological dynamics of continuous interval maps holds also here (see
[3]). Among other things, it shows that there may be no natural condition
on kneading sequence (or renormalization) distinguishing between transitiv-
ity but not mixing, and mixing but not locally eventually onto ([8] proposes
some conditions on kneading invariant which can help distinguishing trans-
itivity from locally eventually onto; as we will see these conditions do not
always work). To deal with this di�culty we extend Hofbauer's ideas and
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apply them to detect topological mixing in some expanding Lorenz maps.
A useful tool in our considerations is provided by a partial description of
Markov diagrams of some of these maps in [22, 24, 25], which saves us some
hard work.

As a by-product of our study we make a surprising observation. The
cases when Lorenz map is transitive but not mixing or mixing but not locally
eventually onto trace borders where general results of kneading theory fail.
We provide an example of a renormalizable expanding Lorenz map which
is locally eventually onto (see Example 5.1). Hence for expanding Lorenz
maps being prime is not equivalent to locally eventually onto. Motivated by
this example, we introduce another property, called strongly eventually onto,
which is equivalent to being prime (Corollary 6.3). Moreover, in Example 6.1
there is a transitive but not mixing map having primary 2(1)-cycle as de�ned
in [8], showing a slight mistake in [8, Proposition 1]. Fortunately, this is a
kind of border case and so in most cases the approach from [8] works properly
(see Theorem 6.5). In Section 6 we also show that connections between strong
transitivity and locally eventually onto condition may not be that tide as was
claimed in [7, Proposition 1].

Except some particular (negative) examples, we develop in the paper
numerous techniques helping to detect if an expanding Lorenz map is topo-
logically mixing. As a particular application of our approach we provide a
full characterization of topological mixing in linear Lorenz maps Tf induced
by f(x) = βx+ α with β ≥ 3

√
2 (see Theorem 7.1).

1. Preliminaries

1.1. Topological dynamics

We say that a continuous map T : X → X acting on a compact metric
space is (topologically) transitive if for every two nonempty open sets U, V ⊆
X there is an integer n > 0 such that T nU∩V 6= ∅. It is called (topologically)
mixing if for every two nonempty open sets U, V ⊆ X there is an N > 0 such
that for every n > N we have T nU ∩V 6= ∅. The above de�nitions are among
the most fundamental properties studied in dynamics (see [17, 4]).

Note that the expanding Lorenz map is positively expanding, this means
there is ε > 0 such that for any distinct x, y ∈ [0, 1] there is n ≥ 0 such
that |T n(x) − T n(y)| > ε. To each Lorenz map we can associate a strictly
increasing continuous function such that

Tx := f(x) (mod 1) = f(x)− bf(x)c
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for x ∈ [0, 1] where byc = max{k ∈ Z : k ≤ y}. To emphasize connection
between these two functions we write Tf instead of T . Maps of this form are
also called monotonic mod one transformations (see e. g. [14], [23], [24] and
[25]).

Since Tf has discontinuities it is not a topological dynamical system,
this means a continuous map on a compact metric space. However, using a
standard doubling points construction (see e. g. [22] for details) one can create
a topological dynamical system from Tf . In this construction all elements in(⋃∞

n=0 Tf
−nE

)
\{0, 1} are doubled, where E is the set of discontinuities of Tf

(we perform a kind of Denjoy extension). We easily see that this new space
di�ers from the original interval [0, 1] by at most countably many points.
Since it is always possible to perform the above identi�cation, we will apply
the standard de�nitions from topological dynamics to Tf without any further
reference.

Following [9] (see also in [8]), we present a standard de�nition of a locally
eventually onto Lorenz map Tf .

De�nition 1.1. Suppose that Tf is an expanding Lorenz map. Then Tf is
said to be locally eventually onto if for every nonempty open subset U ⊆ [0, 1]
there exist open intervals J1, J2 ⊆ U and n1, n2 ∈ N such that Tf

n1 maps J1
homeomorphically to (0, c) and Tf

n2 maps J2 homeomorphically to (c, 1).

Below in Section 1.2 we will de�ne renormalizable Lorenz maps. It was
believed that essentially an expanding Lorenz map is locally eventually onto
if and only if it is not renormalizable. However, we will show in Example 5.1
that this is not true if one uses the de�nition above. Therefore we give the
following de�nition of strongly locally eventually onto Lorenz maps.

De�nition 1.2. An expanding Lorenz map Tf is said to be strongly locally
eventually onto if for every nonempty open subset U ⊆ [0, 1] there exist open
intervals J1, J2 ⊆ U and n1, n2 ∈ N such that:

1. Tf
n1 maps J1 homeomorphically to (0, c),

2. the restriction of Tf
k to J1 is continuous for all k ∈ {0, 1, . . . , n1},

3. Tf
n2 maps J2 homeomorphically to (c, 1),

4. the restriction of Tf
k to J2 is continuous for all k ∈ {0, 1, . . . , n2}.

Obviously every strongly locally eventually onto Lorenz map is locally
eventually onto. The converse is not true, as we will see in Example 5.1,
which is a locally eventually onto Lorenz map which is not strongly eventually
onto.
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1.2. Kneading theory

Let Tf be an expanding Lorenz map. For each x ∈ [0, 1] we can de�ne
the kneading sequence k(x) ∈ {0, ∗, 1}N putting

k(x)0 =


0, if x < c

∗, if x = c

1, if x > c

and then recursively k(x)j = k(Tf
jx)0 for j ∈ N. The kneading invariant

kf is the pair (k+, k−) where k+ = limx→c+ k(x) and k− = limx→c− k(x),
where the limits are calculated through points which are not preimages of
c. Note that both k+, k− are sequences consisting only of symbols 0 and 1.
A kneading invariant kf = (k+, k−) is renormalizable if there exist a pair of
�nite words (w+, w−) 6= (1, 0) such that we can write

k+ = w+w
p1
− w

p2
+ . . .

k− = w−w
m1
+ wm2

− . . .

where lengths of these words satisfy |w+| + |w−| ≥ 3. We allow that one
or both m1 and p1 can be in�nite. The kneading invariant kf is minimally
renormalizable with words (w+, w−) if they are the shortest possible such
words. If the kneading invariant is not renormalizable, then we say it is
prime. One calls the kneading invariant kf trivially renormalizable if the
sum of the lengths of the words w+, w− is exactly three, i. e. (w+, w−) =
(1, 01) or (w+, w−) = (10, 0). The kneading invariant is called special trivial
renormalizable (STR) if it is trivially renormalizable with p1 = +∞ or m1 =
+∞. In [9] it is related to the case when Tf1 = 1 or Tf0 = c, however it
seems necessary to include also the symmetric case. Hence, for our further
investigations we will use the following de�nition.

De�nition 1.3. If Tf is an expanding Lorenz map such that at least one of
the following conditions hold:

Tf0 = 0 or Tf1 = 1 or Tf0 = c or Tf1 = c

then we say that Tf is special trivial renormalizable (STR for short).

We will also need the following de�nition, which we repeat after [6] (see
also [9]).
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De�nition 1.4. An expanding Lorenz map Tf is called renormalizable if
there are 0 ≤ u < c < v ≤ 1 and l, r ≥ 1 with l + r ≥ 3 such that

G(x) =


Tf

lx, if x ∈ [u, c),

Tf
r−10, if x = c,

Tf
rx, if x ∈ (c, v],

is itself an expanding Lorenz map (after linear change of domain from [u, v]
to [0, 1]). Note that this de�nition implies that u = Tf

r−10. If Tf is not
renormalizable, then we say it is prime.

De�nition 1.5. We say that expanding Lorenz map is trivially renormaliz-
able if it is renormalizable with constants l + r = 3 in the de�nition.

Remark 1.1. Note that some special trivial renormalizable maps are prime.
For example it is the case when f(x) = 2x.

Remark 1.2. Observe that De�nition 1.4 is slightly di�erent form the de�n-
ition of renormalizability given in [6] and [7], where both l ≥ 2 and r ≥ 2 are
required instead of l + r ≥ 3. Therefore the results in this paper cannot be
compared directly with those in [6] and [7].

2. Markov diagrams of expanding Lorenz maps Tf

Let f : [0, 1]→ [0, 2] be a piecewise di�erentiable function, this means that
there exists a �nite set F ⊆ [0, 1] such that f is di�erentiable on (0, 1) \ F .
Put inf f ′ := inf{f ′(x) : x ∈ (0, 1) \ F}.

Moreover, suppose that inf f ′ > 1. Then there exists a unique c ∈ (0, 1)
such that f(c) = 1 (note that f(0) < 1 < f(1)). This point c is the crit-
ical point of the associated Lorenz map Tf . De�ne Z := {(0, c), (c, 1)} and
observe that on each Z ∈ Z the restriction Tf |Z is continuous and strictly
increasing. Obviously the image TfZ is always an interval which may or may
not contain the critical point. If I is an interval denote by |I| its length.

It will be important in our considerations to know where are the endpoints
of iterates of Z ∈ Z. For that purpose for n ∈ N we set Tf

n0 := limx→0+ Tf
nx

and Tf
n1 := limx→1− Tf

nx.
Let Z ∈ Z and let D ⊆ Z be an open interval. An open interval C

is a successor of D, denoted D → C, if there exists a Y ∈ Z such that
C = TfD ∩ Y . Now let D be the smallest set consisting of open intervals
such that Z ⊆ D and if D ∈ D has a successor C then also C ∈ D. We can
view D as a possibly in�nite, directed graph with arrows given by successor
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relation. Then D is called the Markov diagram of Tf . Any element of D is
called vertex and C1 → C2 → · · · → Cn is called a path from C1 to Cn in D
if Cj ∈ D for all j ∈ {1, 2, . . . , n} and Cj → Cj+1 for all j ∈ {1, 2, . . . , n− 1}.
One calls this path C1 → C2 → · · · → Cn a path of length n− 1.

We say that C ⊆ D is irreducible if for any C,D ∈ C there is a path from
C to D in C, this means there are C1, C2, . . . , Cn ∈ C such that

C → C1 → · · · → Cn → D

is a path. A subset C ⊆ D is called closed if it has the property that if C ∈ C,
D ∈ D and there is a path from C to D (in D) then D ∈ C.

Lemma 2.1 ([24, Lemma 1]). Assume that Tf is an expanding Lorenz map.
Then for every D ∈ D there exists a �nite path C0 → C1 → · · · → Cn in D
such that C0 = D and Cn has two di�erent successors in D.

The following simple fact will be used in several places of this paper.

Lemma 2.2. If C,D ∈ D, C ⊆ D, D ∈ Z and there is a path of length q
from C to D then there is also a path of length q from D to D.

Proof. Let C0 → C1 → C2 → · · · → Cq be the path with C0 = C and
Cq = D, and for j ∈ {0, 1, . . . , q} let Zj ∈ Z be so that Cj ⊆ Zj. As Cq = D
and D ∈ Z we get that Zq = D. De�ne D0 := D and Dj := TfDj−1 ∩ Zj.
Then D0 → D1 → D2 → · · · → Dq is a path with D0 = D and Cj ⊆ Dj

for all j ∈ {0, 1, . . . , q}. Hence D = Cq ⊆ Dq ⊆ Zq = D which implies
Dq = D.

Lemma 2.3 ([25, Lemma 2]). Assume that Tf is an expanding Lorenz map
and suppose that there is an integer n ≥ 2 such that c ≤ Tf

n−20 < · · · <
Tf

20 < Tf0. Let C ∈ D be such that c is an endpoint of C.

(1) if C ⊆ (c, 1), denote C0 := C, C1 := TfC ∩ (0, c) and Cj := TfCj−1 ∩
(c, 1) for j ∈ {2, 3, . . . , n}.

(2) if C ⊆ (0, c), denote C0 := C, Cj := TfCj−1∩(c, 1) for j ∈ {1, 2, . . . , n−
1} and Cn := TfCn−1 ∩ (0, c).

Suppose that C0 ⊆ Cn and |C0| < |Cn|. Then there exists a path C → C1 →
· · · → Ck in D such that Ck ∈ {(0, c), (c, Tfn−21)}.

Remark 2.1. Observe that in the case Tf1 < 1 we get

Tf
n1 < Tf

n−11 < · · · < Tf
21 < Tf1 < 1

for any n such that Tf
k1 ≥ c for all k ∈ {1, 2, . . . , n− 1}, since Tf is strictly

increasing on (c, 1). Otherwise one has Tf
n1 = 1 for all n.
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Combining [25, Lemma 3] with Remark 2.1 we obtain the following.

Lemma 2.4. Assume that Tf is an expanding Lorenz map.

(1) there exists an r ∈ N such that Tf
r0 < c.

(2) denote by r(f) the smallest r ∈ N with Tf
r0 < c. Then

Tf
r(f)0 < c ≤ Tf

r(f)−10 < · · · < Tf
20 < Tf0 ,

Tf
r(f)1 ≤ Tf

r(f)−11 ≤ · · · ≤ Tf
21 ≤ Tf1 ,

and Tf
j0 < Tf

j1 for j ∈ {1, 2, . . . , r(f)}.

From now on let r(f) be always as in Lemma 2.4. Next set A(0, 0) := (0, c)
and A(1, 0) := (c, 1). For n ∈ N let A(0, n) be the successor of A(0, n − 1)
with inf A(0, n) = Tf

n0 and let A(1, n) be the successor of A(1, n − 1) with
supA(1, n) = Tf

n1. Then D = {A(j, n) : j ∈ {0, 1}, n ∈ N0}, and we have
A(j, n− 1)→ A(j, n) for all j ∈ {0, 1} and all n ∈ N. If A(j, n− 1) has two
successors then the other one is of the form A(1− j, k) for some k < n− 1.

Lemma 2.5. Suppose that Tf is an expanding Lorenz map and r(f) ≥ 2.
Put

E :=
{
(0, c), (Tf0, 1), (Tf

20, Tf1), . . . , (Tf
r(f)−10, Tf

r(f)−21), (c, Tf
r(f)−11)

}
.

Then for every C ∈ D\
{
(c, Tf

j1) : j ∈ {0, 1, . . . , r(f)− 2}
}
there is a D ∈ E

with C ⊆ D. Moreover, if D ∈ E and infD = c then D = (c, Tf
r(f)−11) or

Tf
r(f)−10 = c.

Proof. By Lemma 2.4 we get that Tf
k0 > c for all k ∈ {1, 2, . . . , r(f) − 1},

provided that Tf
r(f)−10 6= c. Hence (c, Tf

r(f)−11) is the only element in E
having c as a left endpoint.

Note that by Lemma 2.4 we have{
(c, Tf

j1) : j ∈ {0, 1, . . . , r(f)− 2}
}
= {A(1, j) : j ∈ {0, 1, . . . , r(f)− 2}} .

We are going to prove by induction that for every n ≥ 0 there is a D ∈ E
with A(0, n) ⊆ D, and for every n ≥ r(f) − 1 there is a D ∈ E with
A(1, n) ⊆ D. By de�nition A(0, 0) = (0, c) ∈ E , and by Lemma 2.4 we
get that A(1, r(f) − 1) = (c, Tf

r(f)−11) ∈ E . Now assume that j = 0 and
n > 0, or j = 1 and n > r(f) − 1. Then by induction hypothesis there is
an E ∈ E with A(j, n − 1) ⊆ E. If E = (0, c) then TfE = (Tf0, 1) ⊆ (c, 1),
hence A(j, n) ⊆ (Tf0, 1) ∈ E is the unique successor of A(j, n − 1). Next
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we consider the case E = (Tf
k0, Tf

k−11) for some k ∈ {1, 2, . . . , r(f) − 2}.
Then Lemma 2.4 implies that TfE = (Tf

k+10, Tf
k1) ⊆ (c, 1), and therefore

A(j, n) ⊆ (Tf
k+10, Tf

k1) ∈ E is the unique successor of A(j, n − 1). In the
case E = (Tf

r(f)−10, Tf
r(f)−21) we have TfE = (Tf

r(f)0, Tf
r(f)−11). Hence

A(j, n−1)may have two successors, where (Tf
r(f)0, c) ⊆ (0, c) ∈ E is always a

successor, and the second one is (c, Tf
r(f)−11) ∈ E , provided that Tf

r(f)−11 >
c. Again A(j, n) is contained in an element of E . Finally, it remains to
consider the case E = (c, Tf

r(f)−11). Here TfE = (0, Tf
r(f)1) and Tf

r(f)1 ≤
Tf

r(f)−11 by Lemma 2.4. If A(j, n) ⊆ (0, c) ∈ E we are done, so it remains
to consider the case A(j, n) ⊆ (c, Tf

r(f)1). Observe that Tf
r(f)1 ≤ Tf

r(f)−11,
hence we obtain (c, Tf

r(f)1) ⊆ (c, Tf
r(f)−11) ∈ E , completing the proof.

Remark 2.2. Let r(f) ≥ 2. Note that if C ∈ D is contained in an element of
E , then also every successor D of C is contained in an element of E . In partic-
ular this implies that if Tf1 6= 1 then D\

{
(c, Tf

j1) : j ∈ {0, 1, . . . , r(f)− 2}
}

is closed (see Remark 2.1).

Lemma 2.6. Assume that Tf is an expanding Lorenz map, that r(f) ≥ 2 and
that Tf

r(f)−10 = c. Then for every C ∈ D there exists C → C1 → · · · → Ck
in D such that Ck = (0, c).

Proof. Put β := inf f ′ > 1 and note that |TfA| ≥ β|A| for every interval A
which is a subset of an interval of monotonicity.

First, we claim that for C0 := (c, Tf
r(f)−11) there is a path C0 → C1 →

· · · → Ck in D with Ck := (0, c). Put Z0 := (c, 1), C1 := TfC0 ∩ (0, c)
and Z1 := (0, c). If C1 = (0, c) we are done. Otherwise C1 = (0, Tf

r(f)1) is
the unique successor of C0, and |C1| ≥ β|C0|. For j ∈ {2, 3, . . . , r(f)} put
Cj := TfCj−1 ∩ (c, 1) and Zj := (c, 1). By Lemma 2.4, Cj is the unique
successor of Cj−1, hence |Cj| ≥ β|Cj−1|. Moreover, the left endpoint of
Cj is Tf

j−10. Therefore Cr(f) has c = T r(f)−10 as the left endpoint and
|Cr(f)| ≥ βr(f)|C0|.

Now de�ne Ctr(f)+j := TfCtr(f)+j−1∩Zj for t ∈ N and j ∈ {1, 2, . . . , r(f)}.
We prove by induction that either C(t−1)r(f)+1 = (0, c) or Ctr(f) has c as
the left endpoint and |Ctr(f)| ≥ βtr(f)|C0|. If C(t−1)r(f)+1 6= (0, c) then
C(t−1)r(f)+j is the unique successor of C(t−1)r(f)+j−1, Tf

j−10 is its left end-
point and |C(t−1)r(f)+j| ≥ β|C(t−1)r(f)+j−1| for j ∈ {1, . . . , r(f)}. Therefore c
is the left endpoint of Ctr(f) and |Ctr(f)| ≥ βtr(f)|C0|.

As limt→∞ β
tr(f) = +∞ there must exist t ∈ N such that C(t−1)r(f)+1 =

(0, c) and therefore there exists a path C0 → C1 → · · · → Ck in D with
Ck := (0, c). The claim is proved.

Now take any C ∈ D. By Lemma 2.1 there exists a path C → C1 →
· · · → Cs−1 in D such that Cs−1 has two successors. Denote by Cs = (c, a)
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one of these successors, where c < a ≤ 1. If Cs has two successors then
C → C1 → · · · → Cs → (0, c) is a path in D and we are done. In the other
case Cs+1 = (0, Tfa) is the unique successor of Cs and this extends to the
path

Cs → (0, Tfa)→ (Tf0, Tf
2a)→

→ . . .→ (Tf
r(f)−20, Tf

r(f)−1a)→ (c, Tf
r(f)a) = Cs+r(f).

Since each successor on this path is unique, we clearly have |Cs| < |Cs+r(f)|
and Cs ⊆ Cs+r(f). Therefore, by (1) of Lemma 2.3 there exists a path C →
C1 → · · · → Cu in D with Cu := (0, c) or Cu := (c, Tf

r(f)−11). If Cu = (0, c)
then we are done, so assume that Cu = (c, Tf

r(f)−11). We have already proved
that in such a case, there exists in D a path Cu → Cu+1 → · · · → Cp with
Cp := (0, c), hence there always exists a path C → C1 → · · · → Cp in D with
Cp := (0, c), which completes the proof.

Lemma 2.7. Let Tf be an expanding Lorenz map and r(f) ≥ 2. Moreover,
assume that Tf

r(f)−10 6= c. Suppose that C,D ∈ D, C ⊆ D, and there
is a path C0 := C → C1 → · · · → Cn of length n in D with Cn ∈{
(0, c), (c, Tf

r(f)−11)
}
. Then there exists a path D0 := D → D1 → · · · → Dn

of length n in D with Dn = Cn or Dn ∈
{
(c, Tf

j1) : j ∈ {0, 1, . . . , r(f)− 2}
}
.

Proof. For j ∈ {0, 1, . . . , n} let Zj ∈ Z be so that Cj ⊆ Zj. Then Cj =
TfCj−1∩Zj for j ∈ {1, 2, . . . , n}. Now de�ne D0 := D and Dj = TfDj−1∩Zj
for j ∈ {1, 2, . . . , n}. Then we obviously obtain that Cj ⊆ Dj for j ∈
{0, 1, . . . , n}. In particular Cn ⊆ Dn and so Dn = Cn = Zn, provided
that Cn ∈ Z. Otherwise Tf1 6= 1 and (c, Tf

r(f)−11) = Cn ⊆ Dn. If
Dn ∈

{
(c, Tf

j1) : j ∈ {0, 1, . . . , r(f)− 2}
}
then we are done, and if Dn ∈

D \
{
(c, Tf

j1) : j ∈ {0, 1, . . . , r(f)− 2}
}
then, since infDn = c, Lemma 2.5

implies that Dn = (c, Tf
r(f)−11) completing the proof.

Lemma 2.8 ([25, Lemma 8]). Suppose that Tf is an expanding Lorenz map
with inf f ′ = β ≥ 3

√
2 and f(0) ≥ 1

β+1
. Moreover, assume that f(x) 6=

3
√
2x+ 2+ 3√4−2 3√2

2
for some x and �x any C ∈ D.

(1) If r(f) = 2, then there exists a �nite path C0 := C → C1 → · · · → Cn,
where Cn ∈ {(0, c), (c, Tf1)}.

(2) In the case r(f) ≥ 3 there exists a �nite path C0 := C → C1 → · · · →
Cn, where Cn = (0, c). Moreover Tf

r(f)1 > c.

Lemma 2.9 ([25, Lemma 5]). Let Tf be an expanding Lorenz map and denote
inf f ′ = β and α = f(0). If α ≥ 1

β+1
then c ≤ 1

β+1
≤ α.

10



Remark 2.3. From Lemma 2.9 we obtain immediately that Tf0 ≥ c, hence
r(f) ≥ 2, if the assumptions of Lemma 2.9 are satis�ed.

Lemma 2.10 ([24, Lemma 4]). Assume that Tf is an expanding Lorenz map

with inf f ′ ≥
√
2 such that f(x) 6=

√
2x + 2−

√
2

2
for an x ∈ [0, 1]. Let C ∈ D

having c as an endpoint. Then there exists a �nite path C0 := C → C1 →
· · · → Cn in D with c ∈ Cn, such that Cn ∈ Z or |Cn| ≥

√
2|C|.

Two Lorenz maps Tf , Tg are conjugate if there is a homeomorphism h : [0, 1]→
[0, 1] such that h ◦ Tf ◦ h−1 = Tg on [0, 1] \ g−1(Z). Note that one obtains
that (h ◦ Tfn ◦ h−1)(x) = Tg

nx for all but �nitely many x ∈ [0, 1].

Proposition 2.11. Let f : [0, 1] → [0, 2] be continuous and strictly increas-
ing. De�ne g : [0, 1]→ [0, 2] by g(x) := 2− f(1− x). Then Tg is conjugated
to Tf by the conjugacy h(x) := 1 − x. Moreover, Tfx < y if and only if
Tg(1− x) > 1− y, Tfx > y if and only if Tg(1− x) < 1− y, and Tfx < Tfy
if and only if Tg(1 − x) > Tg(1 − y). In particular, Tf1 < Tf

21 < · · · <
Tf

r−11 ≤ c < Tf
r1 is equivalent to Tg0 > Tg

20 > · · · > Tg
r−10 ≥ c̃ > Tg

r0,
where c̃ := 1− c.

Proof. Obviously h−1(x) = 1−x. If x < c̃ then 1−x > c and (h◦Tf◦h−1)(x) =
1 − Tf (1 − x) = 1 − (f(1 − x) − 1) = 2 − f(1 − x) = g(x) = Tgx. In the
case x > c̃ we obtain 1 − x < c and (h ◦ Tf ◦ h−1)(x) = 1 − Tf (1 − x) =
1− f(1− x) = 2− f(1− x)− 1 = g(x)− 1 = Tgx.

We have that Tfx < y is equivalent to 1 − y < 1 − Tfx = (h ◦ Tf ◦
h−1)(1 − x) = Tg(1 − x). Analogously we get that Tfx > y is equivalent
to Tg(1 − x) < 1 − y. Furthermore, this implies Tfx < Tfy if and only if
Tg(1 − x) > 1 − Tfy = (h ◦ Tf ◦ h−1)(1 − y) = Tg(1 − y). As (h ◦ Tfn ◦
h−1)(x) = Tg

nx for any n ∈ N and all but �nitely many x, one obtains that
Tf1 < Tf

21 < · · · < Tf
r−11 ≤ c < Tf

r1 is equivalent to Tg0 > Tg
20 > · · · >

Tg
r−10 ≥ c̃ > Tg

r0.

3. Properties of locally eventually onto Lorenz maps

Note that in the de�nition of locally eventually onto Lorenz maps the
intervals J1 and J2 need not be disjoint, and it may be that n1 6= n2. Next
we show that in practice we may assume that n1 = n2 and J1 ∩ J2 = ∅.

Proposition 3.1. Assume that Tf is an expanding Lorenz map which is loc-
ally eventually onto. Then for every nonempty open set U ⊆ [0, 1] there exist
disjoint open intervals J1 ⊆ U and J2 ⊆ U and there exists an n ∈ N such
that Tf

n maps J1 homeomorphically to (0, c) and Tf
n maps J2 homeomorph-

ically to (c, 1).

11



Proof. Without loss of generality we may assume that U is an open interval,
as any nonempty open set contains a nontrivial open interval. As Tf is
locally eventually onto there exist open intervals V1, V2 ⊆ U and n1, n2 ∈
N such that Tf

n1 maps V1 homeomorphically to (0, c) and Tf
n2 maps V2

homeomorphically to (c, 1). First we assume that Tf0 < c. In this case Tf
n1+1

maps V1 homeomorphically to (Tf0, 1) and both (Tf0, 1)∩(0, c) and (Tf0, 1)∩
(c, 1) are nonempty. Hence there are disjoint open intervals K1, K2 ⊆ V1 such
that Tf

n1+1 maps K1 homeomorphically to L1 := (Tf0, c) ⊆ (0, c) and K2

homeomorphically to L2 := (c, 1) ⊆ (c, 1). Set V := V1 and m := n1 + 1 in
this case.

Otherwise c ≤ Tf0 < Tf1. In this case Tf
n2+1 maps V2 homeomorphically

to (0, Tf1) and both (0, Tf1)∩(0, c) and (0, Tf1)∩(c, 1) are nonempty. There-
fore there exist disjoint open intervals K1, K2 ⊆ V2 such that Tf

n2+1 maps
K1 homeomorphically to L1 := (0, c) ⊆ (0, c) and K2 homeomorphically to
L2 := (c, Tf1) ⊆ (c, 1). Set V := V2 and m := n2 + 1 in this case.

In any case we have an open interval V ⊆ U , disjoint open intervals
K1, K2 ⊆ V , open intervals L1 ⊆ (0, c) and L2 ⊆ (c, 1), and an m ∈ N such
that Tf

m maps K1 homeomorphically to L1 and K2 homeomorphically to L2.
Since Tf is locally eventually onto there is an open interval W1 ⊆ L1 and
a k1 ∈ N such that Tf

k1 maps W1 homeomorphically to (0, c). Analogously
there exists an open interval W2 ⊆ L2 and a k2 ∈ N such that Tf

k2 maps
W2 homeomorphically to (c, 1). Because of W2 ⊆ L2 ⊆ (c, 1) there exists
an open interval I2 ⊆ W2 ⊆ L2 such that Tf

k1k2 maps I2 homeomorphically
to (c, 1). Using W1 ⊆ L1 ⊆ (0, c) we obtain also the existence of an open
interval I1 ⊆ W1 ⊆ L1 such that Tf

k1k2 maps I1 homeomorphically to (0, c).
As Tf

m maps K1 homeomorphically to L1 and K2 homeomorphically to L2

there are open intervals J1 ⊆ K1 and J2 ⊆ K2 such that Tf
m maps J1

homeomorphically to I1 and J2 homeomorphically to I2. Since K1 and K2

are disjoint also J1 and J2 are disjoint. Setting n := m + k1k2 we get that
Tf

n maps J1 homeomorphically to (0, c) and J2 homeomorphically to (c, 1)
which completes the proof.

More or less the same proof works also for strongly locally eventually
onto Lorenz maps. One has only to observe that the restriction of Tf

j to Vk
is continuous for any k ∈ {1, 2} and any j ∈ {0, 1, . . . , nk}, hence both re-
strictions of Tf

j to K1 and K2 are continuous for every j ∈ {0, 1, . . . ,m}.
Again one obtains that the restriction of Tf

j to W1 is continuous for all
j ∈ {0, 1, . . . , k1} and the restriction of Tf

j to W2 is continuous for all
j ∈ {0, 1, . . . , k2}, implying that both restrictions of Tf

j to I1 and I2 are
continuous for any j ∈ {0, 1, . . . , k1k2}. This implies that both restrictions
of Tf

j to J1 and J2, respectively, are continuous for all j ∈ {0, 1, . . . , n}.

12



Therefore we have proved the following result.

Proposition 3.2. Suppose that Tf is an expanding Lorenz map which is
strongly locally eventually onto. Then for every nonempty open set U ⊆
[0, 1] there exist disjoint open intervals J1 ⊆ U and J2 ⊆ U and there exists
an n ∈ N such that

(1) Tf
n maps J1 homeomorphically to (0, c),

(2) the restriction of Tf
k to J1 is continuous for every k ∈ {0, 1, . . . , n},

(3) Tf
n maps J2 homeomorphically to (c, 1), and

(4) the restriction of Tf
k to J2 is continuous for every k ∈ {0, 1, . . . , n}.

Our next result shows that for a strongly locally eventually onto Lorenz
map every interval of monotonicity must be contained in the image of an
interval of monotonicity.

Proposition 3.3. Let Tf be an expanding Lorenz map. If Tf is strongly
locally eventually onto then for every Z ∈ Z := {(0, c), (c, 1)} there exists
Y ∈ Z with Z ⊆ TfY .

Proof. Assume that Z ∈ Z. Since Tf is strongly locally eventually onto there
exists an open interval J and an n such that Tf

n maps J homeomorphically
to Z and Tf

k restricted to J is continuous for all k ∈ {0, 1, . . . , n}. Hence
Tf

n−1J must be an interval. As Tf
n is continuous on J the map Tf must

be continuous on Tf
n−1J . Therefore there is a Y ∈ Z with Tf

n−1J ⊆ Y
implying Z = Tf

nJ = Tf (Tf
n−1J) ⊆ TfY .

4. Mixing in expanding Lorenz maps

Now we show that every locally eventually onto Lorenz map is mixing.

Theorem 4.1. Let Tf be an expanding Lorenz map which is locally eventually
onto. Then Tf is topologically mixing.

Proof. Fix any two nonempty open sets U, V . By Proposition 3.1 there exists
anN ∈ N and open intervals J1, J2 ⊆ U such that Tf

N maps J1 homeomorph-
ically to (0, c) and J2 homeomorphically to (c, 1). Hence Tf

NU ⊇ (0, 1)\{c}.
Since Tf (0, c) ∪ Tf (c, 1) ⊇ (0, 1) we obtain that Tf

nU ⊇ (0, 1) \ {c} for any
n ≥ N . Therefore for every n ≥ N we have that Tf

nU ∩ V 6= ∅ which shows
that Tf is topologically mixing.

13



As every strongly locally eventually onto Lorenz map is locally eventually
onto Theorem 4.1 immediately implies the following result.

Corollary 4.2. If Tf is a strongly locally eventually onto expanding Lorenz
then Tf is topologically mixing.

The next example shows that topologically mixing Lorenz maps need not
be locally eventually onto. To prove mixing of this example we will need some
tools developed later in this paper. Nevertheless, we decided to present this
example here to highlight di�erences between considered notions of (strong)
mixing.

Example 4.1. De�ne f(x) := 3
2
x + 1

16
, and let Tf be the corresponding

Lorenz map. Then c = 5
8
. In Figure 1 the graph of Tf is shown. We

claim that for any n ∈ N there are odd natural numbers an, bn such that
Tf

n0 = an
2n+3 and Tf

n1 = bn
2n+3 . Obviously Tf0 = 1

16
= 1

21+3 and Tf1 = 9
16

=
9

21+3 . Now let n > 1, x ∈ {0, 1} and suppose that Tf
n−1x = k

2(n−1)+3 = k
2n+2

for some odd k. Note that this implies that Tf
n−1x 6= c. If Tf

n−1x < c

then Tf
nx = 3

2
Tf

n−1x + 1
16

= 3k+2n−1

2n+3 and 3k + 2n−1 is odd. Otherwise

Tf
nx = 3

2
Tf

n−1x− 15
16

= 3k−15×2n−1

2n+3 and 3k− 15× 2n−1 is odd, completing the
proof of our claim.

x

Tfx

1

10 c

c

Figure 1: The graph of Tf for f from Example 4.1.

Next we claim that for x1, x2 ∈ {0, 1} and n1, n2 ∈ N we have Tf
n1x1 6=

Tf
n2x2 if x1 6= x2 or n1 6= n2. For n1 6= n2 this is obvious, because then

14



k1
2n1+3 = k2

2n2+3 cannot hold for odd k1, k2. Hence it remains to prove that
Tf

nx1 6= Tf
nx2 for x1 6= x2. Suppose that x1 6= x2 and Tf

nx1 = Tf
nx2

for some n ∈ N. Let n be the smallest positive integer with this property.
Because of Tf0 6= Tf1 we must have n ≥ 2. Then there are di�erent odd
numbers k1, k2 such that Tf

n−1x1 = k1
2n+2 and Tf

n−1x2 = k2
2n+2 . Without loss

of generality we may assume k1 < k2. This implies Tf
n−1x1 < c < Tf

n−1x2.

Therefore Tf
nx1 = 3k1+2n−1

2n+3 and Tf
nx2 = 3k2−15×2n−1

2n+3 . Since Tf
nx1 = Tf

nx2
we obtain 3k1 + 2n−1 = 3k2 − 15 × 2n−1, which implies 3(k2 − k1) = 2n+3.
Obviously this is a contradiction (3 does not divide 2n+3), hence our claim is
proved.

In order to show that Tf is not locally eventually onto, we assume on
the contrary that Tf has this property. Then there exists an open interval J
and an n ≥ 1 such that Tf

n maps J homeomorphically to (0, c). Since
both (0, c) \ Tf (0, c) 6= ∅ and (0, c) \ Tf (c, 1) 6= ∅ (the �rst set contains(
0, 1

16

)
, the second one contains

(
9
16
, 5
8

)
) we have that Tf

n−1J ∩ (0, c) 6= ∅
and Tf

n−1J ∩ (c, 1) 6= ∅. Note that c 6∈ Tfn−1J because 0 6∈ TfnJ . Therefore
there must be a p ∈ J and a k ∈ {0, 1, . . . , n − 2} with Tf

kp = c. Setting
r := n − k − 1 we see that r ≥ 1. Moreover, limx→p− Tf

nx = Tf
r1 and

limx→p+ Tf
nx = Tf

r0. As we have shown above that Tf
r0 6= Tf

r1 we see that
Tf

n is not continuous at p ∈ J which contradicts the fact that Tf
n maps J

homeomorphically to (0, c). Hence Tf is not locally eventually onto.
Observe that f ′ = 3

2
, hence inf f ′ = 3

2
>
√
2. By Theorem 4.6 below (or

by Theorem 7.1) this implies that Tf is topologically mixing.

Before we can prove mixing in some Lorenz maps, let us start by recalling
a classical result by Hofbauer [15]. We will need only its simpli�ed version
as presented in [25].

Lemma 4.3 ([25, Lemma 1]). Assume that Tf is an expanding Lorenz map
and let D be the Markov diagram of Tf . Suppose that C ⊆ D is an irreducible
and closed graph and that there are C1, . . . , Cn ∈ C such that

⋃n
i=1Ci = [0, 1].

Then ([0, 1], Tf ) is topologically transitive.

Now we are ready to prove the following.

Theorem 4.4. Assume that f : [0, 1] → [0, 2] is continuous and strictly in-
creasing, suppose that inf f ′ > 1, and let D be the Markov diagram of Tf .
Suppose that C ⊆ D is an irreducible and closed graph and that there are
C1, C2, . . . , Cn ∈ C such that

⋃n
j=1Cj = [0, 1]. Furthermore, assume that

there are C ∈ C, k ≥ 2 and coprime integers p1, p2, . . . , pk ≥ 1 such that
for every j ∈ {1, 2, . . . , k} there is a path of length pj from C to C. Then
([0, 1], Tf ) is topologically mixing.
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Proof. By Lemma 4.3 the dynamical system ([0, 1], Tf ) is topologically trans-
itive. Let (X, g) be a continuous map on a Cantor set X obtained from
([0, 1], Tf ) by the standard doubling points procedure. Clearly (X, g) is trans-
itive so it contains a residual set R of points with dense orbit. Since at most
countably many points are doubled, by a natural identi�cation we may as-
sume that R ⊆ [0, 1], for each x ∈ R we have Tf

r(x) 6= c for every r ≥ 0 and
the orbit of x under Tf is dense.

As ([0, 1], Tf ) is transitive, to prove mixing, it su�ces to show that for
every nonempty open set U there is N such that Tf

r(U) ∩ U 6= ∅ for every
r > N . Fix any open set U . Without loss of generality, we may assume that
U is a subset of some element of {C1, C2, . . . , Cn}, say U ⊆ C1.

Take any integer K such that there is a path D0 → D1 → · · · → DK in
D with D0 ∈ Z and DK = C1. Set A :=

⋂K
j=0 Tf

−j(Dj), which is obviously
open, and �x any z ∈ A ∩R.

De�ne Zr =
{⋂r

j=0 Tf
−j(Zj) : Zj ∈ Z

}
and observe that Tf

r is one-to-one

and expanding on each element of Zr. Let Vr(z) denote the element Z of Zr
with z ∈ Z. For r ∈ N0 let Zr ∈ Z be the element satisfying Tf

rz ∈ Zr.
As z ∈ A we have Dj ⊆ Zj for j = 0, 1, . . . , K. If r > K then de�ne
Dr := TfDr−1 ∩ Zr. Then D0 → D1 → D2 → · · · is an in�nite path in D,
and for every r ≥ 0 we have Tf

rz ∈ Dr ⊆ Zr and Vr(z) =
⋂r
j=0 Tf

−j(Zj). By
[15, Lemma 1] we obtain that Tf

r(Vr(z)) = Dr. Since Tf is expanding we see
that

⋂∞
j=0 Vj(z) = {z}.

As the orbit of z is dense in [0, 1], there is m > K such that Tf
m(z) ∈ U .

But then, there is M > m such that VM(z) has su�ciently small dia-
meter to imply Tf

m(VM(z)) ⊆ U . Note that by the de�nition of A we
have Tf

K(VK(z)) = C1. But since C is closed and irreducible, and because
of the fact that Tf

M(VM(z)) ∈ D we obtain that Tf
M(VM(z)) ∈ C, say

Tf
M(VM(z)) = D.
There exists an L ∈ N such that for every r ≥ L there exists a path of

length r from C to C, as there exist paths of coprime length from C to C.
Because of the irreducibility of C there is a path of length q1 from D to C
and a path of length q2 from C to C1. Set N := q1 + q2 + L+M −m. Now
let r ≥ N . Then r −M + m ≥ q1 + q2 + L, hence there exists a path of
length r −M +m from D to C1, which implies C1 ⊆ Tf

r−M+mD. From this
we obtain

Tf
r(U) ⊇ Tf

r (Tf
m (VM(z))) = Tf

r−M+m
(
Tf

M (VM(z))
)
=

= Tf
r−M+m(D) ⊇ C1 ⊇ U

and therefore Tf
r(U) ∩ U 6= ∅ completing the proof.
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Theorem 4.5. If f : [0, 1] 3 x 7→
√
2x + 2−

√
2

2
then ([0, 1], Tf ) is transitive

but not mixing.

Proof. Notice that Tf0 = f(0) = 2−
√
2

2
= 1 − 1√

2
= 1 + 1√

2
−
√
2 and Tf1 =

√
2
2

= 1√
2
. From Theorem 1 in [24] we get directly that Tf is topological

transitive. We set J := (Tf0, Tf1), J1 := (Tf0, c), J2 := (c, Tf1). In this
setting we have (see Figure 2):

Tf
2 (J1) = Tf

2 (J2) = J,

which implies Tf
2(J) = J . For that reason Tf cannot be mixing.

x

Tf
2x

1

10 c

c

Tf0 = Tf
21

Tf
21 = Tf0

Tf1 = Tf
20

Tf
20 = Tf1

Figure 2: Graph of Tf
2x in the case f(x) =

√
2x+ 2−

√
2

2 .

Theorem 4.6. Let Tf be an expanding Lorenz map and assume that
√
2 ≤

β ≤ 2, inf f ′ ≥ β and f(x) 6=
√
2x + 2−

√
2

2
for an x ∈ [0, 1]. Then Tf is

topologically mixing.
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Proof. First we claim that for every C ∈ D there is a �nite path C0 → C1 →
· · · → Cn with C0 = C and Cn ∈ Z. Denote C0 = C. By Lemma 2.1 there
is a path C0 = C → C1 → · · · → Cl0−1 → Cl0 in D such that Cl0−1 has two
successors, and therefore c ∈ Cl0 . Now Lemma 2.10 implies that there is a
path Cl0 → Cl0+1 → · · · → Cl1 in D such that c ∈ Cl1 and either Cl1 ∈ Z or
|Cl1| ≥

√
2|C0|. In the latter case, we can apply Lemma 2.10 again obtaining

a path Cl1 → Cl1+1 → · · · → Cl2 such that c ∈ Cl2 and either Cl2 ∈ Z
or |Cl2| ≥

√
2|Cl1 | ≥ (

√
2)2|C0|. Since the diameter of any element of D is

bounded from the above by 1, applying Lemma 2.10 a �nite number of times
we eventually construct a path from C to an element of Z. The claim is
proved.

Let r = r(f) be provided by Lemma 2.4. We will consider a few cases.
Case 1. Tf0 ≥ c. Directly by the de�nition we see that r ≥ 2. By

Lemma 2.4 we have c ≤ Tf0 < Tf1 and

c ≤ Tf
r−10 < · · · < Tf

20 < Tf0

and Tf
j0 < Tf

j1 for j ∈ {1, . . . , r}. Therefore (0, c) is a successor of (c, 1),
(0, c) has the unique successor (Tf0, 1), and (Tf

j0, Tf
j−11) has the unique

successor (Tf
j+10, Tf

j1) for j ∈ {1, 2, . . . , r − 2}. Moreover, (c, Tf
j1) has

the successors (0, c) and (c, Tf
j+11) for j ∈ {0, 1, . . . , r − 2}. De�ne A :=

(0, Tf
r1)∩ (0, c). Then (c, Tf

r−11) has A as a successor, and (Tf
r−10, Tf

r−21)
has (c, Tf

r−11) as a successor. Furthermore, because there is a path (c, 1)→
(0, c), by previous considerations for every C ∈ D there is a �nite path
C0 → C1 → · · · → Cn with C0 = C and Cn = (0, c).

We will consider two cases depending on the value of r.

(0, c) (Tf0, 1)
(
Tf

20, c
)
⊆ (0, c)

(c, 1) (c, Tf1) A ⊆ (0, c)

p steps

q steps

Figure 3: Part of the graph D in the case 1(a) in Theorem 4.6

(a) r = 2. In this case Tf
20 < c < Tf0. Then either A = (0, c) is a successor

of (c, Tf1) or Tf
21 ≤ c and A = (0, Tf

21) is the unique successor of
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(c, Tf1). By the above observations and Lemma 2.2 there are path in D
from (0, c) to itself of lengths (see Figure 3):

p, p+ 2, q, q + 3 .

Clearly these numbers are coprime. Furthermore

[0, 1] = [0, c] ∪ [c, Tf1] ∪ [Tf0, 1]

which by Theorem 4.4 implies that ([0, 1], Tf ) is mixing, completing proof
of this case.

(0, c) (Tf0, 1)
(
Tf

r−10, Tf
r−21

)

(
c, Tf

r−11
)

(Tf
r0, c) ⊆ (0, c)

(c, 1) (c, Tf1) A ⊆ (0, c)

r − 2 steps

r − 2 steps

p steps

q steps

Figure 4: Part of the graph D in the case 1(b) in Theorem 4.6

(b) r > 2. Similarly to the previous case, A = (0, c) is a successor of
(c, Tf

r−11) or Tf
r−11 ≤ c and A = (0, Tf

r1) is the unique successor of
(c, Tf

r−11). This shows that graph presented on Figure 4 is a subgraph
of Markov diagram for Tf . Then using Lemma 2.2 we obtain paths from
(0, c) to itself of lengths:

p, p+ r, q, q + r + 1 ,

which again are coprime numbers and we also have that

[0, 1] = [0, c] ∪
[
c, Tf

r−11
]
∪ [Tf0, 1] ∪

r⋃
j=3

[
Tf

j−10, Tf
j−21

]
.

This completes the proof of case 1(b).

Case 2. Tf0 < c < Tf1. It is not hard to see that in this case Markov
diagram of Tf contains the paths (0, c) → (c, 1) and (c, 1) → (0, c). Using
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(0, c) (c, 1) (c, Tf1) ⊆ (c, 1)

p steps

Figure 5: Part of the graph D in the case 2 in Theorem 4.6

Lemma 2.10 we obtain that there is p > 0 and a path of length p from
(c, Tf1) to (c, 1). But (c, Tf1) ⊆ (c, 1), hence by Lemma 2.2 there is also
a path of length p from (c, 1) to itself, as depicted on Figure 5. Clearly
[0, 1] = [0, c] ∪ [c, 1] and by the above arguments we see that there are paths
from (c, 1) to itself of lengths:

2, p, p+ 1 ,

which ends the proof of this case by Theorem 4.4.
Case 3. Tf1 ≤ c. By Proposition 2.11 in this case Tf is conjugate to a

map Tg satisfying the assumptions of Case 1. Therefore we obtain that Tf is
topologically mixing from Case 1.

Theorem 4.7. If f : [0, 1] 3 x 7→ 3
√
2x+ 2+ 3√4−2 3√2

2
then ([0, 1], Tf ) is topolo-

gically transitive but not topologically mixing.

Proof. The transitivity of Tf has been shown in [25, Lemma 4]. Denote
J :=

(
Tf

20, Tf0
)
and observe that Tf0 > c and there is a unique point

ĉ ∈ (c, 1) such that Tf ĉ = c. Denote J1 :=
(
Tf

20, c
)
, J2 := (c, Tf0) and K :=

(Tf0, Tf1), K1 := (Tf0, ĉ), K2 := (ĉ, Tf1). Then we obtain (see Figure 6):

Tf
3 (J1) = Tf

3 (J2) = J ⊆ J1 ∪ J2,
Tf

3 (K1) = Tf
3 (K2) = K ⊆ K1 ∪K2.

Moreover, Tf
3(K) = K and Tf

3(J) = J . Hence Tf is not mixing.

Theorem 4.8. Let Tf be an expanding Lorenz map such that inf f ′ ≥ β

and f(0) ≥ 1
β+1

, where 3
√
2 ≤ β <

√
2, and f(x) 6= 3

√
2x + 2+ 3√4−2 3√2

2
for

an x ∈ [0, 1]. Then Tf is topologically mixing.

Proof. Let r = r(f) be provided by Lemma 2.4. We will consider three cases
depending on values of Tf

2 at endpoints 0 and 1. Since f(c) = 1 ≥ f(0)+βc,
it is not hard to verify that c ≤ 1

1+β
. Observe that r ≥ 2 (see Remark 2.3)

and Tf
20 < Tf

21 (see Lemma 2.4).
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x

Tf
3x

1

10 c

c

T 21 = T0

T 21 = T0

T 30 = T1

T 30 = T1

T 20

T 20

Figure 6: Graph of Tf
3x in the case f(x) = 3

√
2x+ 2+ 3√4−2 3√2

2 .

Case 1. Tf
21 < c. Our assumptions imply that Tf

20 < Tf
21 < c ≤

Tf0 < Tf1 and r = 2. Note that f(x) = Tf (x) for each x ∈ (0, c), thus:

(4.1)
Tf

31 = Tf
(
Tf

21
)
= f

(
Tf

21
)
> f(0) = Tf0 ≥ c,

Tf
30 = Tf

(
Tf

20
)
= f

(
Tf

20
)
≥ f(0) = Tf0 ≥ c.

As Tf
20 < Tf

21 and Tf is strictly increasing on (0, c) we get Tf
30 < Tf

31.
Moreover, from (4.1) we have c ≤ Tf

30 < Tf
31. Note that f(0) = Tf0

and f(1) = Tf1 + 1, hence Tf1 + 1 − Tf0 = f(1) − f(0) ≥ β which gives
|(c, Tf1)| ≥ |(Tf0, Tf1)| ≥ β − 1. Since (c, Tf1) and (0, Tf

21) have uniques
successors, we obtain that∣∣(Tf0, Tf 31)∣∣ = ∣∣Tf 2 (c, Tf1)∣∣ ≥ β2(β − 1),

Tf
41 =

∣∣(0, Tf 41)∣∣ ≥ ∣∣Tf (Tf0, Tf 31)∣∣ ≥ β3(β − 1) >
1

β + 1
≥ c

because x5 − x3 − 1 > 0 for x ≥ 3
√
2. Furthermore, since c < Tf

31 < 1 and
Tf is monotone on (c, 1) we obtain c < Tf

41 < Tf1.
To �nish the proof of this case, let us consider two possible values of Tf

40.
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(0, c) (Tf0, 1)
(
Tf

20, c
)

(c, Tf1)
(
0, Tf

21
)

(c, 1)
(
Tf0, Tf

31
)

(
c, Tf

41
)
⊆ (c, Tf1)

(
Tf

30, 1
)

(
Tf

40, Tf1
)
⊆ (c, Tf1)

q steps

p steps

Figure 7: Part of the graph D in the case 1(a) in Theorem 4.8

(a) Tf
40 ≥ c. In this case

(
Tf

40, Tf1
)
is the unique successor of (Tf

30, 1)
and

(
Tf

40, Tf1
)
⊆ (c, Tf1). By Lemma 2.8 there exists a �nite path

from any C ∈ D to a vertex Cn ∈ {(0, c), (c, Tf1)}. In particular there
are integers p, q > 0 such that there is a path from (c, Tf

41) to (c, Tf1) of
length p, and a path of length q form (Tf

40, Tf1) to (c, Tf1). Then the
graph presented on Figure 7 is a subgraph of D. In particular starting
from vertex (c, Tf1) we can return to it following paths of length:

p+ 3, q + 5.

Observe that (c, Tf
41) ⊆ (c, Tf1) hence either there is a path of length p

from (c, Tf1) to (c, Tf1) or there is an a with Tf1 ≤ a ≤ 1 and a path
of length p from (c, Tf1) to (c, a). This vertex has as a successor (0, c)
or (0, Tfa) depending whether Tfa > c or not. In any case we see that
there is a path of length p + 3 from (c, Tf1) to (Tf

20, c) and so we have
a path of length p + q + 5 from (c, Tf1) to (c, Tf1). By an analogous
argument we see that either we have a path of length q from (c, Tf1) to
itself, or there is a path of length q + 3 from (c, Tf1) to (Tf

20, c) and as
a consequence, there is a path from (c, Tf1) to itself of length 2q + 5.

Then we have the following four possible combinations of lengths of paths
from (c, Tf1) to itself:

(p, q, p+ 3, q + 5), (p+ 3, q, p+ q + 5, q + 5),

(p, q + 5, p+ 3, 2q + 5), (p+ 3, q + 5, p+ q + 5, 2q + 5).
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Clearly in any of the above four cases these lengths are coprime numbers
and furthermore

[0, 1] =
[
0, Tf

21
]
∪
[
Tf

20, c
]
∪ [c, Tf1] ∪ [Tf0, 1] .

The proof of this case is �nished by Theorem 4.4.

(0, c) (Tf0, 1)
(
Tf

20, c
)

(c, Tf1)
(
0, Tf

21
)

(c, 1)
(
Tf0, Tf

31
)

(
c, Tf

41
)
⊆ (c, Tf1)

(
Tf

30, 1
)

p steps

Figure 8: Part of the graph D in the case 1(b) in Theorem 4.8

(b) Tf
40 < c. In this case (Tf

30, 1) has the two successors (c, Tf1) and(
Tf

40, c
)
. By Lemma 2.8 there is an integer p > 0 and path from (c, Tf

41)
to (c, Tf1) of length p. The graph obtained in this case is presented in
Figure 8. Note that in this case we have paths from (c, Tf1) to itself of
lengths:

5, p+ 3.

Furthermore, since (c, Tf
41) ⊆ (c, Tf1), repeating the arguments used in

the previous case, we see that either there is a path from (c, Tf1) to itself
of length p or there is a path from (c, Tf1) to (Tf

20, c) of length p + 3
which easily extends to a path from (c, Tf1) to itself of length p+5. Then
we have two possible sets of lengths of paths from (c, Tf1) to itself:

(5, p+ 3, p) or (5, p+ 3, p+ 5).

In both cases these three lengths are coprime numbers and therefore the
proof of this case follows by Theorem 4.4, because

[0, 1] =
[
0, Tf

21
]
∪
[
Tf

20, c
]
∪ [c, Tf1] ∪ [Tf0, 1] .

Case 2. Tf
20 ≥ c. In this case we clearly have r ≥ 3, which by

Lemma 2.4 implies that Tf
r0 < c ≤ Tf

r−10 < · · · < Tf
20 < Tf0 and

Tf
j0 < Tf

j1 for j ∈ {1, 2, . . . , r}. Observe that Tf0 < Tf1 ≤ 1, Tf is strictly
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(0, c) (Tf0, 1)
(
Tf

20, Tf1
) (

Tf
r−10, Tf

r−21
)

(
c, Tf

r−11
)

(Tf
r0, c) ⊆ (0, c)

r − 3 steps

p steps

Figure 9: Part of the graph D in the case 2 in Theorem 4.8

increasing on (c, 1) and c ≤ Tf
20, which gives c ≤ Tf

20 < Tf1. Repeating
these arguments we obtain that c ≤ Tf

j0 < Tf
j−11 for j = 2, . . . , r−1 and we

also have Tf
r0 < c < Tf

r−11. Applying Lemma 2.8 to the interval (Tf
r0, c)

we obtain a path from (Tf
r0, c) to (0, c) of length p > 0. By Lemma 2.2

there is also a path from (0, c) to (0, c) of length p. Moreover, Lemma 2.8
gives that Tf

r1 > c. Hence (0, c) is a successor of (c, Tf
r−11) and the Markov

diagram of Tf contains the graph presented on Figure 9. Therefore we have
paths from (0, c) to itself of lengths:

p, p+ r, r + 1

which are clearly coprime numbers. To complete the proof in this case 2 it
is enough to note that we have

[0, 1] = [0, c] ∪
[
c, Tf

r−11
]
∪ [Tf0, 1] ∪

r−2⋃
j=1

[
Tf

j+10, Tf
j1
]

and Theorem 4.4 implies that Tf is mixing.
Case 3. Tf

20 < c ≤ Tf
21. We have r = 2 and by Lemma 2.4 we

additionally know that Tf
20 < c ≤ Tf0 < Tf1. Observe that (Tf0, 1) has two

successors: (Tf
20, c) and (c, Tf1). By our assumptions (0, c) is a successor

of (c, Tf1) (not necessarily unique), and by Lemma 2.8 there exists a �nite
path of length p > 0 from (Tf

20, c) to C ∈ {(0, c), (c, Tf1)}, so in fact to
(0, c) as easily seen on Figure 10 (we rename p+ 1 by p if necessary). Using
Lemma 2.2 we obtain also a path of length p from (0, c) to itself. Starting at
(0, c) we can return to this vertex along paths with length:

3, p, p+ 2
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(0, c) (Tf0, 1)
(
Tf

20, c
)
⊆ (0, c)

(c, Tf1)

p steps

Figure 10: Part of the graph D in the case 3 in Theorem 4.8

which are coprime numbers. Now it is enough to observe

[0, 1] = [0, c] ∪ [c, Tf1] ∪ [Tf0, 1]

and apply Theorem 4.4 to complete the proof also in this case.

All three cases considered above exhaust all possibilities. The proof of
Theorem 4.8 is completed.

5. A renormalizable locally eventually onto expanding Lorenz

map

The aim of this section is to show that there is an expanding Lorenz map
which is at the same time:

1. renormalizable,

2. locally eventually onto,

3. not strongly locally eventually onto.

As we will see, all these three properties are satis�ed by the map de�ned in
Example 5.1.

Example 5.1. Let Tf be the expanding Lorenz map induced by f(x) =
βx+ α satisfying:

1. f 4(0) = 1,

2. f(1)− 1 = f 2(0).
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This leads to the equations

α(β3 + β2 + β + 1) = 1 and β − 1 = βα

which can be reduced to

α = 1− 1

β
and β4 − β − 1 = 0.

Hence β is the largest zero of the polynomial x4 − x− 1, which means

β =
1

2

√√√√√√√−
3

√
1
2

(
9 +
√
849
)

32/3
+ 4 3

√
2

3
(
9 +
√
849
) + 2√

3
√

1
2(9+

√
849)

32/3
− 4 3

√
2

3(9+
√
849)

+
1

2

√√√√√ 3

√
1
2

(
9 +
√
849
)

32/3
− 4 3

√
2

3
(
9 +
√
849
)

≈ 1.2207440846 .

Moreover, we obtain that c = 1
β2 . In Figure 11 the graph of Tf and in

Figure 14 the Markov diagram of Tf are shown.
First we will show that Tf is locally eventually onto. For j ∈ {0, 1, . . . , 12}

set

(5.1)

Z(0, j) :=

{
(c, 1) , if j ≡ 2 (mod 3),

(0, c) , otherwise,

Z(1, j) :=

{
(c, 1) , if j ≡ 1 (mod 4),

(0, c) , otherwise.

Furthermore for p ∈ {0, 1} de�ne

(5.2)

C(p, 0) := Z(p, 0) = (0, c) ,

C(p, j) := TfC(p, j − 1) ∩ Z(p, j) for j ∈ {1, 2, . . . , 12}, and

V (p, j) :=

j⋂
k=0

Tf
−kZ(p, k) for j ∈ {0, 1, . . . , 12}.

In order to prove the above statement we need the following.

Lemma 5.1. The following properties are satis�ed.
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x

Tfx

1

10 Tf
21 = c

Tf
21 = c

Tf
20

Tf
20

Tf0

Tf0

Figure 11: Graph of Tfx in the case f(x) from Example 5.1.

(1) V (p, j) 6= ∅ for any p ∈ {0, 1} and j ∈ {0, 1, . . . , 12}.

(2) Tf
j maps V (p, j) homeomorphically to C(p, j) for any p ∈ {0, 1} and

j ∈ {0, 1, . . . , 12}.

(3) For j ∈ {1, 2, . . . , 12} we have C(0, j) =


(Tf0, c) , if j ≡ 1 (mod 3),

(c, 1) , if j ≡ 2 (mod 3),

(0, Tf
20) , if j ≡ 0 (mod 3).

(4) For j ∈ {1, 2, . . . , 12} we have C(1, j) =


(c, 1) , if j ≡ 1 (mod 4),

(0, Tf
20) , if j ≡ 2 (mod 4),

(Tf0, c) , if j ≡ 3 (mod 4),

(Tf
20, c) , if j ≡ 0 (mod 4).

(5) If j ∈ {1, 2, . . . , 12} then supV (0, j) = inf V (1, j) = Tf
20.

Proof. First we deal with the case j = 0. It is obviously true that V (p, 0) =
Z(p, 0) = C(p, 0) = (0, c) 6= ∅ for p ∈ {0, 1}.
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x

Tf
3x

1

10 Tf
21 = c

c

Tf
20

Tf
20

Tf0

Tf0C(0, 3)

C(0, 1)

C(0, 2)

Figure 12: Graph of Tf
3x in the case f(x) from Example 5.1.

Now let j ∈ {1, 2, . . . , 12}. This part of the lemma we prove by induction.
First we consider the case j = 1. In this case TfC(p, 0) = Tf (0, c) = (Tf0, 1)
and Tf maps V (p, 0) homeomorphically to (Tf0, 1). As Z(0, 1) = (0, c) we
get C(0, 1) = (Tf0, c), V (0, 1) = (0, Tf

20) 6= ∅, supV (0, 1) = Tf
20 and the

restriction of Tf to V (0, 1) is continuous and strictly increasing. Because of

Tf (V (0, 1)) = Tf
(
C(0, 0) ∩ Tf−1Z(0, 1)

)
= TfC(0, 0) ∩ Z(0, 1) = C(0, 1)

we get that Tf maps V (0, 1) homeomorphically to C(0, 1). Similarly Z(1, 1) =
(c, 1) implies that C(1, 1) = (c, 1), V (1, 1) = (Tf

20, c) 6= ∅, inf V (1, 1) = Tf
20

and Tf restricted to V (1, 1) is continuous and strictly increasing. Now

Tf (V (1, 1)) = Tf
(
C(1, 0) ∩ Tf−1Z(1, 1)

)
= TfC(1, 0) ∩ Z(1, 1) = C(1, 1)

implies that Tf maps V (1, 1) homeomorphically to C(1, 1).
Assume that j > 1. By induction hypothesis V (p, j − 1) 6= ∅ and Tf j−1

maps V (p, j − 1) homeomorphically to C(p, j − 1) for p ∈ {0, 1}. We have
to consider di�erent cases depending on values of p and j. To start assume
that p = 0.

If j ≡ 2 (mod 3) then Tf maps C(0, j − 1) = (Tf0, c) homeomorph-
ically to (Tf

20, 1) which has nonempty intersection with Z(0, j) = (c, 1).
Hence V (0, j) = V (0, j − 1) ∩ Tf−jZ(0, j) 6= ∅ and the restriction of Tf

j

to V (0, j) is continuous and strictly increasing. As limx→Tf 20− Tf
j−1x = c we

28



x

Tf
4x

1

10 Tf
21 = c

c

Tf
20

Tf
20

Tf0

Tf0

C(1, 4)

C(1, 1)

C(1, 2)

C(1, 3)

Figure 13: Graph of Tf
4x in the case f(x) from Example 5.1.

(0, c) (Tf0, c)
(
Tf

20, c
)

(c, 1)
(
0, Tf

20
)

Figure 14: The Markov diagram D of Tf where f(x) is from Example 5.1.

get limx→Tf 20− Tf
jx = 1 which implies that the right endpoint of V (0, j) is

Tf
20. Observing that

Tf
jV (0, j) = Tf

j
(
V (0, j − 1) ∩ Tf−jZ(0, j)

)
= Tf

(
Tf

j−1V (0, j − 1)
)
∩ Z(0, j)

= TfC(0, j − 1) ∩ Z(0, j) = C(0, j) = (c, 1)

this completes the proof in this case. Next suppose that j ≡ 0 (mod 3) then
Tf maps C(0, j−1) = (c, 1) homeomorphically to (0, Tf

20) which is contained
in Z(0, j) = (0, c). Therefore V (0, j) = V (0, j − 1) 6= ∅, supV (0, j) = Tf

20
and Tf

j restricted to V (0, j) is continuous and strictly increasing. Further-
more

Tf
jV (0, j) = Tf

j
(
V (0, j − 1) ∩ Tf−jZ(0, j)

)
= Tf

(
Tf

j−1V (0, j − 1)
)
∩ Z(0, j)

= TfC(0, j − 1) ∩ Z(0, j) = C(0, j) = (0, Tf
20)
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proving the lemma in this case. In order to �nish the case p = 0 it remains
to assume that j ≡ 1 (mod 3). Then Tf maps C(0, j − 1) = (0, Tf

20)
homeomorphically to (Tf0, c) which is contained in Z(0, j) = (0, c). We
obtain that V (0, j) = V (0, j − 1) 6= ∅, supV (0, j) = Tf

20 and Tf
j restricted

to V (0, j) is continuous and strictly increasing. Since

Tf
jV (0, j) = Tf

j
(
V (0, j − 1) ∩ Tf−jZ(0, j)

)
= Tf

(
Tf

j−1V (0, j − 1)
)
∩ Z(0, j)

= TfC(0, j − 1) ∩ Z(0, j) = C(0, j) = (Tf0, c)

the lemma is proved also in this case.
Finally, we have to consider the case p = 1. Assume at �rst that j ≡

2 (mod 4). Then Tf maps C(1, j− 1) = (c, 1) homeomorphically to (0, Tf
20)

which is contained in Z(1, j) = (0, c). Hence V (1, j) = V (1, j − 1) 6= ∅,
inf V (1, j) = Tf

20 and Tf
j restricted to V (1, j) is continuous and strictly

increasing. Observing that

Tf
jV (1, j) = Tf

j
(
V (1, j − 1) ∩ Tf−jZ(1, j)

)
= Tf

(
Tf

j−1V (1, j − 1)
)
∩ Z(1, j)

= TfC(1, j − 1) ∩ Z(1, j) = C(1, j) = (0, Tf
20)

this �nishes the proof in this case. Next suppose that j ≡ 3 (mod 4). Then Tf
maps C(1, j−1) = (0, Tf

20) homeomorphically to (Tf0, c) which is contained
in Z(1, j) = (0, c). We get that V (1, j) = V (1, j − 1) 6= ∅, inf V (1, j) = Tf

20
and Tf

j restricted to V (1, j) is continuous and strictly increasing. As

Tf
jV (1, j) = Tf

j
(
V (1, j − 1) ∩ Tf−jZ(1, j)

)
= Tf

(
Tf

j−1V (1, j − 1)
)
∩ Z(1, j)

= TfC(1, j − 1) ∩ Z(1, j) = C(1, j) = (Tf0, c)

the lemma is shown in this case. Assume that j ≡ 0 (mod 4). In this case
Tf maps C(1, j − 1) = (Tf0, c) homeomorphically to (Tf

20, 1) which has
nonempty intersection with Z(1, j) = (0, c). Therefore V (1, j) = V (1, j −
1) ∩ Tf−jZ(1, j) 6= ∅ and Tf j restricted to V (1, j) is continuous and strictly
increasing. As limx→Tf 20+ Tf

j−1x = Tf0 we get limx→Tf 20+ Tf
jx = Tf

20 im-

plying that the left endpoint of V (1, j) is Tf
20. Moreover

Tf
jV (1, j) = Tf

j
(
V (1, j − 1) ∩ Tf−jZ(1, j)

)
= Tf

(
Tf

j−1V (1, j − 1)
)
∩ Z(1, j)

= TfC(1, j − 1) ∩ Z(1, j) = C(1, j) = (Tf
20, c)

proving the lemma in this case. It remains to consider the case j ≡ 1 (mod 4).
Then Tf maps C(1, j − 1) = (Tf

20, c) homeomorphically to (c, 1) which
is contained in Z(1, j) = (c, 1). Therefore V (1, j) = V (1, j − 1) 6= ∅,
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inf V (1, j) = Tf
20 and the restriction of Tf

j to V (1, j) is continuous and
strictly increasing. Since

Tf
jV (1, j) = Tf

j
(
V (1, j − 1) ∩ Tf−jZ(1, j)

)
= Tf

(
Tf

j−1V (1, j − 1)
)
∩ Z(1, j)

= TfC(1, j − 1) ∩ Z(1, j) = C(1, j) = (c, 1)

this completes the proof.

Setting a := inf V (0, 12) and b := supV (1, 12) we get that V (0, 12) =
(a, Tf

20) 6= ∅, V (1, 12) = (Tf
20, b) 6= ∅, Tf 12 maps V (0, 12) homeomorph-

ically to (0, Tf
20) and Tf

12 maps V (1, 12) homeomorphically to (Tf
20, c).

As Tf
12(Tf

20) = Tf
20 this implies that Tf

12 maps (a, b) homeomorphically
to (0, c). Furthermore (a, b) = V (0, 12) ∪ V (1, 12) ∪

{
Tf

20
}
. Assume that

a < Tf0. Then Tfa < Tf
20 and Tf

2a < c which implies Tf
2V (0, 12)∩ (0, c) 6=

∅ contradicting Tf 2V (0, 12) ⊆ (c, 1), moreover, we have

V (1, 12) = Z(1, 0) ∩
12⋂
k=1

Tf
−kZ(1, k) = (0, c) ∩

12⋂
k=1

Tf
−kZ(1, k) ⊆ (0, c).

Hence a ≥ Tf0 and b ≤ c, so (a, b) ⊆ (Tf0, c).
Let U be a nonempty open set. Then there exists an x ∈ U\

(⋃∞
k=0 Tf

−k{c}
)
.

For k ∈ N0 let Zk(x) ∈ Z := {(0, c), (c, 1)} be so that Tf
kx ∈ Zk(x) and

set Vk(x) :=
⋂k
j=0 Tf

−jZj(x) (We have already used this notation in proof
of Theorem 4.4). Note that Vk(x) is an interval for all k ∈ N0. De�n-
ing D0(x) := Z0(x) and Dk(x) := TfDk−1(x) ∩ Zk(x) for k ∈ N we see
that D0(x) → D1(x) → · · · is a path in the Markov diagram of Tf . By
Lemma 1 of [15] we get that Tf

k maps Vk(x) homeomorphically to Dk(x)
for every k ∈ N0 (observe that Tf

k is continuous and strictly increasing
on Vk(x) as Tf

jVk(x) ⊆ Dj(x) ⊆ Zj(x) for all j ∈ {0, 1, . . . , k}). Since
inf |f ′| > 1 one obtains that

⋂∞
k=0 Vk(x) = {x}, and therefore there ex-

ists a k1 such that Vk1(x) ⊆ U . Then Vk1(x) is an interval, and Tf
k1

maps it homeomorphically to Dk1(x). As Dk1(x) ∈ D there exists a path
D0 = Dk1(x)→ D1 → · · · → Dk2 in the Markov diagram with Dk2 = (Tf0, c)
(see Figure 14). Hence there exists a y ∈ Vk1(x) \

(⋃∞
k=0 Tf

−k{c}
)
with

Tf
kVk(y) = Dk−k1 for k ∈ {k1, k1 + 1, . . . , k1 + k2} (obviously Tf

kVk(y) =
Dk(x) for k ∈ {0, 1, . . . , k1}). Then Vk1+k2(y) ⊆ Vk1(x) ⊆ U is an interval
which is mapped homeomorphically to Dk2 = (Tf0, c) by Tf

k1+k2 . From this
we obtain that there exists an open interval J1 ⊆ Vk1+k2(y) ⊆ U such that
Tf

k1+k2 maps J1 homeomorphically to (a, b). Setting n1 := k1 + k2 + 12 we
get that Tf

n1 maps J1 homeomorphically to (0, c). As Tf (0, c) ⊇ (c, 1) there
exists an open interval J2 ⊆ J1 ⊆ U such that Tf

n1+1 maps J2 homeomorph-
ically to (c, 1) completing the proof that Tf is locally eventually onto.

31



Since Tf is locally eventually onto it is also topologically mixing by The-
orem 4.1. Therefore it is also topologically transitive.

Note that (0, c) is neither contained in Tf (0, c) nor in Tf (c, 1). By Pro-
position 3.3 this implies that Tf is not strongly locally eventually onto.

Finally, we show that Tf is renormalizable. To this end set u := Tf
20,

v := 1, l := 1 and r := 3. One can see that

G(x) =


Tfx, if x ∈

(
Tf

20, c
)
,

Tf
20, if x = c,

Tf
3x, if x ∈ (c, 1),

is itself an expanding Lorenz map. Hence Tf is renormalizable. Nonethe-
less Tf is neither trivially renormalizable nor special trivially renormalizable
(STR).

x

G(x)

v = 1

v = 10 c

Tf
21 = c

u = Tf
20

u = Tf
20

Figure 15: Graph of G(x) in the case f(x) from Example 5.1.

Remark 5.1. Consider the map Tf from Example 5.1. Setting u := Tf
20,

v := 1, l := 4 and r := 3 one obtains that

G̃(x) =


Tf

4x, if x ∈
(
Tf

20, c
)
,

Tf
20, if x = c,

Tf
3x, if x ∈ (c, 1),

is itself an expanding Lorenz map. Therefore Tf is also renormalizable in the
sense de�ned in [6] and [7] (see Remark 1.2).

32



6. Locally eventually onto, mixing and n(k)-cycles

Following [8], we say that a periodic orbit of minimal period n of an
expanding Lorenz map Tf is an n(k)-cycle if the points of the orbit {zj : j ∈
{0, . . . , n− 1}} can be ordered so that

z0 < z1 < · · · < zn−k−1 < c < zn−k < · · · < zn−1

An n(k)-cycle is called a primary n(k)-cycle if it satis�es the following con-
ditions

1. Tf (zj) = zj+k(mod n) for all j ≥ 0;

2. the integers k and n are coprime;

3. zk−1 ≤ Tf0 and Tf1 ≤ zk.

Note that the order of the points of the n(k)-cycle is the same as that of the
periodic orbits of a rotation R(x) = x+ k/n(mod 1).

Example 6.1. Consider the expanding Lorenz map induced by the function
x 7→

√
2x+ 2−

√
2

2
. In Theorem 4.5 we have seen that it is transitive but not

mixing. Notice that Tf0 = 2−
√
2

2
and Tf1 =

√
2
2
, hence the orbit of Tf0 can be

written as z0 = Tf0 and z1 = Tf1. Therefore it forms a primary 2(1)-cycle
for Tf .

In [8, Proposition 1] it is claimed that an expanding Lorenz map with
primary n(k)-cycle cannot be transitive. Example 6.1 shows that this state-
ment is wrong. One should mention that the notion of n(k)-cycles was �rst
introduced by Palmer in [20] as a notion characterizing the weak Bernoulli
property of invariant measures in Lorenz maps.

Note that if we take u := z0, v := z1 and l = r = 2 in Example 6.1
then Tf satis�es De�nition 1.4, hence it is renormalizable. One could think
that for Lorenz maps being renormalizable will prevent the map to be locally
eventually onto. It was �rst observed in [9] that expanding Lorenz maps Tf
satisfying STR may be locally eventually onto.

Example 6.2. Let Tf be the expanding Lorenz map induced by f(x) =
1+
√
5

2
x. We have c = 1

β
=
√
5−1
2

= 1+
√
5

2
− 1, Tf1 = c and Tf0 = 0. This

implies that

G(x) =


Tfx, if x ∈ [0, c),

0, if x = c,

Tf
2x, if x ∈ (c, 1],
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is an expanding Lorenz map. Therefore Tf is renormalizable and STR. Since
for every nonempty open set U there is n > 0 such that 0 ∈ TfnU , it is also
clear that Tf is locally eventually onto.

x

G(x)

v = 1

v = 1u = 0 Tf1 = c

Tf1 = c

Figure 16: Graph of G(x) in the case f(x) from Example 6.2.

Remark 6.1. Consider the map Tf be from Example 6.2. Note that because
of Tf0 = 0 in order to obtain a renormalized map one must have u = 0 and
l = 1. Hence Tf cannot be renormalizable in the sense de�ned in [6] and [7]
(see Remark 1.2).

It is then a little bit surprising that a Lorenz map can be renormalizable
with Tf0 6= 0, Tf1 6= 1 and mixing (in fact locally eventually onto) at the
same time, as shown by the next example.

Example 6.3. Set f(x) :=
√
2x+ 1

1+
√
2
, and let Tf be the associated expand-

ing Lorenz map. By Theorem 4.6 we obtain that Tf is topologically mixing.
Observe that c = 1

1+
√
2
, Tf0 = c and Tf1 = 2

1+
√
2
. Setting v := Tf1 we see

that the map

G(x) =


Tf

2x = 2x, if x ∈ [0, c),

0, if x = c,

Tfx, if x ∈ (c, v],

is an expanding Lorenz map, hence Tf is renormalizable. Since Tf0 = c this
map is STR (by Theorem 6.1 below Tf is locally eventually onto).

Remark 6.2. For the map Tf from Example 6.3 the points 0 and c form
a periodic orbit of period 2. Hence one must have u = 0 if one wants
to construct a renormalization. Moreover l ∈ {1, 2} must hold, since Tf

3
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x

G(x)

1

1u = 0 Tf0 = c

Tf0 = c

v = Tf1

v = Tf1

Figure 17: Graph of G(x) in the case f(x) from Example 6.3.

is not continuous on [0, c], and therefore v ≥ Tf1. As Tf
2 is not continuous

on [c, Tf1] one must have r = 1. This shows that Tf cannot be renormalizable
in the sense de�ned in [6] and [7] (see Remark 1.2).

Suppose that Tf is transitive in the following stronger sense: for every
open set U there exists m such that

⋃m
j=1 Tf

jU = [0, 1]. Some authors call
this property strong transitivity (e.g. see [5] and [21]) and it is clear that
some piecewise monotone (and continuous) interval maps can satisfy this
condition without being mixing.

Remark 6.3. In [7, Proposition 1] the author claims that strong transitivity
is equivalent to locally eventually onto in the context of expanding Lorenz
maps, when there exists a periodic orbit of period κ ≤ 2. Unfortunately,
this statement is incorrect, which is clear by simple analysis of the map in
Theorem 4.5 (see also Example 6.1). Additionally, note that this map satis�es
both the de�nition of l.e.o. and renormalization from [7] (see Remark 1.2),
showing some gap in arguments of [7, Corollary 2].

To justify the above statement about the map from Theorem 4.5, observe
that for any open set U there is n > 0 such that c ∈ TfnU . But then (see the
graph of Tf

2 in Figure 2) there is k > 0 such that Tf
n+2kU ⊇ [Tf0, Tf1] and

then Tf
n+2k+1U ⊇ [0, Tf

21]∪ [Tf 20, 1] = [0, Tf0]∪ [Tf1, 1]. Indeed Tf induced
by f(x) =

√
2x+ 2−

√
2

2
is strongly transitive and has a unique periodic orbit of

period κ = 2, while it is not even mixing (hence cannot be locally eventually
onto by Theorem 4.1; in our particular case it is not hard to see it directly
from the graph).

The following theorem is a combination of statements in [7, Corollary 2]
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and [9, Theorem 1], correcting slight gaps in reasoning of proofs contained
in these papers.

Theorem 6.1. Let Tf be an expanding Lorenz map and assume that one of
the following conditions holds:

(1) Tf is prime, or

(2) Tf is special trivial renormalizable (STR).

Then Tf is strongly locally eventually onto.

Proof. We start with the easier case of STR. Let U ⊆ [0, 1] be a nonempty
open set. Observe that there exists an n ∈ N such that c ∈ Tfn−1U . We may
assume that n is minimal with this property. First assume that Tf0 = 0.
As c ∈ Tf

n−1U there is an open interval L ⊆ U such that Tf
nL = (0, a)

for some a ∈ (0, c), Tf
n|L is a homeomorphism and Tf

j|L is continuous for
all j ∈ {0, 1, . . . , n}. Then c ∈ Tf k(0, a) for some k ≥ 1, and again we suppose
that k is minimal with this property. We obtain that Tf

j|L is continuous for
all j ∈ {0, 1, . . . , n + k} and Tf

n+kL =
(
0, Tf

ka
)
) (0, c). Therefore there

exists an open interval J1 ⊆ L such that Tf
j|J1 is continuous for all j ∈

{0, 1, . . . , n+k} and Tfn+k|J1 is a homeomorphism from J1 to (0, c). Because
of Tf (0, c) = (0, 1) there is an open interval J2 ⊆ J1 such that Tf

j|J2 is
continuous for all j ∈ {0, 1, . . . , n+k+1} and Tfn+k+1|J2 is a homeomorphism
from J2 to (c, 1) showing that Tf is strongly locally eventually onto in this
case. An analogous proof shows that Tf is strongly locally eventually onto if
Tf1 = 1.

Next suppose that Tf0 = c which implies Tf1 > c. This shows that
Tf (0, c) = (c, 1) and Tf (c, 1) ⊇ (0, c). Again c ∈ Tfn−1(U) implies the exist-
ence of an open interval L ⊆ U such that Tf

nL = (0, a) for some a ∈ (0, c),
Tf

n|L is a homeomorphism and Tf
j|L is continuous for all j ∈ {0, 1, . . . , n}.

Because of Tf (0, c) = (c, 1) and Tf
20 = 0, and using that Tf is expanding, we

get that there exists a k ∈ N with c ∈ Tf 2k(0, a). We assume that k is min-
imal with this property. Then Tf

j|L is continuous for all j ∈ {0, 1, . . . , n+2k}
and Tf

n+2kL =
(
0, Tf

2ka
)
) (0, c), which implies that there exists an open

interval J ⊆ L such that Tf
j|J is continuous for all j ∈ {0, 1, . . . , n+2k} and

Tf
n+2k|J is a homeomorphism from J to (0, c). Since Tf (0, c) = (c, 1) also

Tf
n+2k+1|J is a homeomorphism from J to (c, 1), hence Tf is strongly locally

eventually onto. By an analogous proof one shows that Tf is strongly locally
eventually onto in the case Tf1 = c completing the proof of Tf is strongly
locally eventually onto if (2) is satis�ed.
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It remains to consider the case in that (1) is satis�ed and Tf is not STR.
Observing that Tf0 ≥ c implies that

G(x) =


Tf

2x , if x ∈ [0, c),

0 , if x = c,

Tfx , if x ∈ (c, Tf1],

is an expanding Lorenz map, which contradicts the fact that Tf is prime,
we see that Tf0 < c. As Tf is not STR we have 0 < Tf0. Using analogous
arguments we also get c < Tf1 < 1, hence

(6.1) 0 < Tf0 < c < Tf1 < 1 .

In particular we have Tf (0, c) ⊇ (c, 1) and Tf (c, 1) ⊇ (0, c).
Now assume that Tf is not strongly locally eventually onto. Then there

exists a nonempty open set U ⊆ [0, 1] which does not contain any two open
subintervals J1, J2 such that for some n1, n2 ∈ N one has that Tf

k|J1 is con-
tinuous for every k ∈ {0, 1, . . . , n1}, Tfn1|J1 is a homeomorphism from J1
to (0, c), Tf

k|J2 is continuous for every k ∈ {0, 1, . . . , n2} and Tf
n2|J2 is a

homeomorphism from J2 to (c, 1). Without loss of generality we may assume
that U is a nonempty open interval. If for some r ∈ N one has c /∈ U ,
c /∈ TfU , . . . , c /∈ Tf

r−1U , then Tf
rU is again an open interval having the

same property as described above. Since Tf is expanding there is an r ≥ 0
with c ∈ Tf rU . Hence there exist a1 < c < b1 such that (a1, b1) does not con-
tain any two open subintervals J1, J2 satisfying that for some n1, n2 ∈ N one
has that Tf

k|J1 is continuous for every k ∈ {0, 1, . . . , n1}, Tfn1|J1 is a homeo-
morphism from J1 to (0, c), Tf

k|J2 is continuous for every k ∈ {0, 1, . . . , n2}
and Tf

n2 |J2 is a homeomorphism from J2 to (c, 1). Note that (6.1) implies
that 0 < a1 < c < b1 < 1.

De�ne A as the set of all t ∈ (0, c) satisfying that (t, c) does not contain
any open subinterval J such that for some n ∈ N one has that Tf

k|J is
continuous for every k ∈ {0, 1, . . . , n} and Tfn|J is a homeomorphism from J
to (0, c), and set a := inf A. Obviously a1 ∈ A, and by (6.1) we get 0 < a ≤
a1 < c. Furthermore A is obviously an interval. Suppose that there exists
an open interval J ⊆ (a, c) and an n ∈ N such that Tf

k|J is continuous for
every k ∈ {0, 1, . . . , n} and Tfn|J is a homeomorphism from J to (0, c). As
Tf

n|J is a homeomorphism J contains an a2 > a with Tf
na2 = a. Hence

a2 ∈ A and there exists an open interval J1 ⊆ J ∩ (a2, c) with Tf
nJ1 = J .

But then Tf
k|J1 is continuous for every k ∈ {0, 1, . . . , 2n} and Tf

2n|J1 is a
homeomorphism from J1 to (0, c) contradicting a2 ∈ A. Therefore (a, c) does
not contain any open subinterval J such that for some n ∈ N one has that
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Tf
k|J is continuous for every k ∈ {0, 1, . . . , n} and Tfn|J is a homeomorphism

from J to (0, c).
Analogous let B be the set of all t ∈ (c, 1) satisfying that (c, t) does

not contain any open subinterval J such that for some n ∈ N one has that
Tf

k|J is continuous for every k ∈ {0, 1, . . . , n} and Tfn|J is a homeomorphism
from J to (c, 1), and de�ne b := supB. Using a proof analogous as above
we get that c < b1 ≤ b < 1, and that (c, b) does not contain any open
subinterval J such that for some n ∈ N one has that Tf

k|J is continuous for
every k ∈ {0, 1, . . . , n} and Tfn|J is a homeomorphism from J to (c, 1).

Since Tf is expanding there exists an l ∈ N with c ∈ Tf l(a, c). We may
assume that l is minimal with this property. Because of (6.1) l = 1 would
imply the existence of an open interval J ⊆ (a, c) such that Tf |J and Tf

2|J
are continuous and Tf

2|J maps J homeomorphically to (0, c), which is a
contradiction to the property proved above for (a, c). As c /∈ Tf

j(a, c) for
j ∈ {0, 1, . . . , l− 1} we get that Tf l(a, c) =

(
Tf

la, Tf
l−11

)
is an open interval,

and it does not contain any open subinterval J such that for some n ∈ N
one has that Tf

k|J is continuous for every k ∈ {0, 1, . . . , n} and Tf
n|J is

a homeomorphism from J to (0, c). Then also (Tf
la, c) has this property,

hence Tf
la ∈ A implying Tf

la ≥ a. If (c, Tf
l−11) would contain an open

subinterval J such that for some n ∈ N one has that Tf
k|J is continuous

for every k ∈ {0, 1, . . . , n} and Tfn|J is a homeomorphism from J to (c, 1),
then there would be an open interval J1 ⊆ J ⊆ Tf

l(a, c) such that Tf
k|J1 is

continuous for every k ∈ {0, 1, . . . , n+ 1} and Tfn+1|J1 is a homeomorphism
from J1 to (0, c). Since this contradicts the property of (a, c) proved above
we obtain Tf

l−11 ∈ B and therefore c < Tf
l−11 ≤ b.

Using an analogous proof we �nd a minimal r ∈ N with c ∈ Tf
r(c, b),

and we obtain that r ≥ 2, Tf
r(c, b) =

(
Tf

r−10, Tf
rb
)
is an open interval,

and a ≤ Tf
r−10 < c < Tf

rb ≤ b. Now Tf
j
(
Tf

r−10, c
)
is an open subin-

terval of Tf
j(a, c) for every j ∈ {0, 1, . . . , l} and Tf

j
(
c, Tf

l−11
)
is an open

subinterval of Tf
j(c, 1) for every j ∈ {0, 1, . . . , r}. As Tf is expanding also

Tf
l is expanding, and therefore Tf

l
(
Tf

r−10
)
− Tf

la ≥ Tf
r−10 − a. This

gives Tf
l
(
Tf

r−10
)
≥ Tf

r−10 + Tf
la − a, and because of Tf

la ≥ a we obtain

Tf
l
(
Tf

r−10
)
≥ Tf

r−10 and

Tf
l
(
Tf

r−10, c
)
=
(
Tf

l
(
Tf

r−10
)
, Tf

l−11
)
⊆
(
Tf

r−10, Tf
l−11

)
.

One proves analogously that Tf
r
(
Tf

l−11
)
≤ Tf

l−11 and

Tf
r
(
c, Tf

l−11
)
=
(
Tf

r−10, Tf
r
(
Tf

l−11
))
⊆
(
Tf

r−10, Tf
l−11

)
.
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Hence we obtain that l + r ≥ 4 > 3 and

G(x) =


Tf

lx , if x ∈
[
Tf

r−10, c
)
,

Tf
r−10 , if x = c,

Tf
rx , if x ∈

(
c, Tf

l−11
]
,

is an expanding Lorenz map. But then Tf would be renormalizable contra-
dicting (1). Therefore Tf is strongly locally eventually onto completing the
proof.

Theorem 6.2. Suppose that Tf is an expanding Lorenz map which is renor-
malizable but not special trivially renormalizable. Then Tf is not strongly
locally eventually onto.

Proof. By Proposition 3.3 and the fact that Tf is not special trivially renorm-
izable we get that 0 < Tf0 < c < Tf1 < 1. Moreover there are 0 ≤ u < c <
v ≤ 1 and l, r ≥ 1 with l + r ≥ 3 such that

G(x) =


Tf

lx , if x ∈ [u, c),

u , if x = c,

Tf
rx , if x ∈ (c, v],

is an expanding Lorenz map. Suppose that Tf
k(u, c) ⊇ Z for a Z ∈ Z :=

{(0, c), (c, 1)} and a k ∈ {0, 1, . . . , l − 2}. As Tf (0, c) ⊇ (c, 1) and Tf (c, 1) ⊇
(0, c) we get that Tf

l−2(u, c) ⊇ Y for some Y ∈ Z. This implies that there
is an x ∈ (u, c) with Tf

l−1x = c, and therefore Tf
l cannot be continuous

at x. Obviously this contradicts the fact that G is a Lorenz map. Hence
Tf

k(u, c) ⊇ Z for a Z ∈ Z implies that k ≥ l − 1. An analogous argument
shows that Tf

k(c, v) ⊇ Z for a Z ∈ Z implies that k ≥ r − 1.
Next assume that Tf

l−1(u, c) ⊇ Z for a Z ∈ Z. Then Tf
l(u, c) contains

an element of Z. If Tf l(u, c) contains an element of Z then u = 0 or v = 1.
However by the above u = 0 implies that l = 1 and v = 1 implies that r = 1.
In the case l = 1 we get v = 1 which implies r = 1 and contradicts l+ r ≥ 3.
Similarly, r = 1 implies u = 0 and therefore l = 1 which also contradicts
l + r ≥ 3. Analogously we get that Tf

r−1(c, v) and Tf
r(c, v) cannot contain

an element of Z.
In particular we have also shown that u > 0 and v < 1. Assume that

J ⊆ (u, c) is an nonempty open interval and that n ∈ N such that Tf
k

restricted to J is continuous for all k ∈ {0, 1, . . . , n}. By the above Tf
kJ

cannot contain an element of Z for k ∈ {0, 1, . . . ,min{l, n}}. As G is a
Lorenz map Tf

lJ ⊆ (u, v). If n > l then the continuity of Tf
l+1 on J implies
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that either Tf
lJ ⊆ (0, c) or Tf

lJ ⊆ (c, 1). Then Tf
kJ cannot contain any

element of Z for k ∈ {0, 1, . . . ,min{2l, n}} in the �rst case, and Tf
kJ cannot

contain any element of Z for k ∈ {0, 1, . . . ,min{l + r, n}}. Iterating this
argument we obtain that Tf

nJ cannot contain any element of Z. Therefore
Tf cannot be strongly locally eventually onto.

Remark 6.4. Recall that in Example 5.1 we have seen a renormalizable
expanding Lorenz map which is also locally eventually onto. Hence The-
orem 6.2 and Corollary 6.3 do not hold if �strongly locally eventually onto�
is replaced by �locally eventually onto�.

Combining Theorem 6.2 and Theorem 6.1 we immediately obtain the
following result.

Corollary 6.3. Let Tf be an expanding Lorenz map. Then the following
conditions are equivalent.

(1) The map Tf is prime or Tf is special trivial renormalizable.

(2) The map Tf is strongly locally eventually onto.

In a certain sense the above Corollary 6.3 is a kind of combination and
improvement of statements in [8] and [9]. However, as in these papers the
authors deal only with locally eventually onto Lorenz maps we see from Ex-
ample 5.1 that they could not obtain an equivalence result similar to Corol-
lary 6.3. It is also worth to mention that [8] and [9] do not contain complete
proofs of statements analogous to Corollary 6.3. Unfortunately, some ref-
erences in [9] have never been published (e. g. ref. 3 and 13 in [9]). Since
[20] has been defended at University of Warwick, it is hardly available, but
possible to obtain.1 Nonetheless, Corollary 6.3 is not a direct consequence of
any result contained in [20].

As we mentioned before, the notion of n(k)-cycle was used in [8, Pro-
position 1] to �nd range of parameters where the map x 7→ βx + α (mod 1)
is not transitive. Unfortunately, the formulas describing these regions are
not completely clear. Before, we have proven a special case of this fact in
Theorem 4.5 and Theorem 4.7.

Theorem 6.4. Suppose that Tf is an expanding Lorenz map with a primary
n(k)-cycle {zj : 0 ≤ j < n} and assume that Tf1 = zk and Tf0 = zk−1. Then
Tf is transitive but not mixing.

1We are much obliged to British Library and Library of University of Warwick for
providing us with an electronic copy of [20] free of charge.
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Proof. Before we start, note that throughout this proof the indices are always
meant modulo n. First, we exclude the case n = 2 and k = 1. Put Cr =
(zr, zr+1) for r 6= n− k− 1. Then Cr → Cr+k for r /∈ {n− 2k− 1, n− k− 1}
and Cn−2k−1 → (zn−k−1, c) and Cn−2k−1 → (c, zn−k). Moreover, (c, zn−k) →
(0, z0) → (zk−1, zk) = Ck−1 and (zn−k−1, c) → (zn−1, 1) → (zk−1, zk) = Ck−1.
De�ne

(6.2)
C := {(zr, zr+1) : r ∈ {0, 1, . . . , n− 2} \ {n− k − 1}}∪

∪ {(0, z0) , (zn−k−1, c) , (c, zn−k) , (zn−1, 1)} .

Observe that
⋃
C∈C C = [0, 1] and that the elements of C are pairwise disjoint.

As n and k are coprime we get that C is a subset of the Markov diagram
of Tf , and by the properties derived above it is closed. Furthermore Ck−1 →
C2k−1 → · · · → C(n−2)k−1 → (zn−k−1, c) → (zn−1, 1) → Ck−1 and Ck−1 →
C2k−1 → · · · → C(n−2)k−1 → (c, zn−k)→ (0, z0)→ Ck−1 are paths of length n
from Ck−1 to Ck−1. Again using that n and k are coprime one sees that every
element of C is at least in one of these two paths, hence C is irreducible. By
Lemma 4.3 we get that Tf is transitive. However, the calculations above
show also that Tf

nCk−1 = Ck−1, hence Tf is not mixing.
Finally, we consider the case n = 2 and k = 1. Here easy calculations

show that C := {(0, z0) , (z0, c) , (c, z1) , (z1, 1)} forms a closed and irreducible
subset of the Markov diagram of Tf . Obviously

⋃
C∈C C = [0, 1] and the

elements of C are pairwise disjoint. From Lemma 4.3 we get that Tf is
transitive, and as Tf

2 [z0, z1] = [z0, z1] we see that Tf is not mixing.

Theorem 6.5. Assume that Tf is an expanding Lorenz map with a primary
n(k)-cycle {zj : 0 ≤ j < n} and suppose that Tf1 < zk or Tf0 > zk−1. Then
Tf is not transitive.

Proof. Throughout this proof the indices are always meant modulo n. As
the proof for the case Tf1 < zk is analogous we may assume without loss of
generality that Tf0 > zk−1.

Note that for any j ∈ {0, 1, . . . , n− 3} there is a Zj ∈ Z with Tf
j+10 and

Tf
jzk−1 are in Zj. Consider at �rst the case that Tf

n−10 < c. Then both
Tf

n−10 and Tf
n−2zk−1 = zn−k−1 are in (0, c), and both Tf

n0 and Tf
nzk−1 =

zn−1 are in (c, 1). Since Tf
n is expanding this implies that Tf

n+10−Tfnzk−1 >
Tf0 − zk−1, and because of T nzk−1 = zk−1 this gives Tf

n+10 > Tf0. Hence
Tf (Tf

n0, 1) ⊆ (Tf0, zk). De�neA :=
⋃n−2
j=1

[
Tf

j0, zjk
]
∪
[
Tf

n−10, c
]
∪[Tfn0, 1]∪

[c, zn−k] ∪ [0, z0]. Then A is closed, TfA ⊆ A and A has nonempty interior.
Because of [0, 1]\A ⊇ (zk−1, Tf0) and Tf0 > zk−1 also [0, 1]\A has nonempty
interior, which proves that Tf is not transitive.

It remains to assume that Tf
n−10 ≥ c. We get in this case Tf

(
Tf

n−20, zn−2k
)
=(

Tf
n−10, zn−k

)
⊆ (c, 1) and Tf

(
Tf

n−10, zn−k
)

= (Tf
n0, z0), and therefore
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the restriction of Tf
n to (0, z0) is a homeomorphism satisfying Tf

n (0, z0) ⊆
(0, z0). As this contradicts the fact that Tf

n is expanding we see that this
case cannot occur, �nishing the proof.

With Theorem 6.5 at hand we can try to �nd regions of parameters α, β,
α + β ≤ 2 where the expanding Lorenz map Tf induced by f(x) = βx + α
is not transitive. Such an attempt was made in [8, Proposition 2] however
there are some problems with the formulas presented there. For example,
when n = 2 and k = 1 and β <

√
2 then [8, Proposition 2] claims that Tf is

not transitive for α in the range:

1− β
β(β + 1)

≤ α ≤ −β
3 + β2 + β − 1

β(β + 1)
< 0

which would lead to conclusion that there is no 2(1)-cycle for β <
√
2. The

example given in (2) of [24] (Tf induced by f(x) := βx+
(
1− β

2

)
) obviously

has z0 :=
β

2(1+β)
and z1 :=

2+β
2(1+β)

as a primary 2(1)-cycle for any β ∈
(
1,
√
2
]

which shows that 2(1)-cycles exist for β <
√
2. However despite these prob-

lems with calculations, the approach from [8] may lead to exact calculations
of regions with lack of transitivity as shown below.

Fix any integer n ≥ 1, assume that β ∈ (1, 21/n] and consider the ex-
panding Lorenz map Tf induced by f(x) := βx + α. We will try to �nd
parameters for which there is a primary n(1)-cycle. In this way we can de-
scribe regions which satis�es assumptions of Theorem 6.5. Set α0 = 0 and

αk = α
(∑k−1

j=0 β
j
)
.

Remark 6.5. Observe that if z0 < z1 < . . . < zn−2 < c < zn−1 is an
n(1)-cycle, then it satis�es the following conditions:

1. α = Tf0 ≥ z0 and α + β − 1 = Tf1 ≤ z1,

2. Tf (zj) = βzj + α for j ∈ {0, 1, . . . , n − 2}, hence zj = βjz0 + αj for
j ∈ {0, 1, . . . , n− 1}, and

3. Tf (zn−1) = βzn−1 + α− 1.

Furthermore f(zn−1) ≤ 2, so in particular β ≤ 21/n.

Using the above conditions and Tf
n(z0) = z0 it is not hard to calculate

that

(6.3) z0 =
1

βn − 1
− α

β − 1
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and then using z1 = βz0 + α = β
βn−1 −

α
β−1 and comparing it with the values

Tf0 and Tf1 we obtain that

(6.4)
1∑n
j=1 β

j
≤ α ≤ −β

n+1 + βn + 2β − 1∑n
j=1 β

j
.

Note that the assumptions of Theorem 6.5 can be satis�ed only when Tf
20 6=

Tf1, which means βα + α 6= α + β − 1, therefore β 6= 1
1−α or equivalently

α 6= β−1
β
. Hence for each β there is at most one �bad� value of α. In particular,

for β =
√
2 we obtain the case presented in Example 6.1. Observe that the

�rst inequality in (6.4) can be equivalently written as β−1
β(βn−1) ≤ α. Together

with β ≤ 21/n this implies that for β < 21/n region of parameters described
by (6.4) never intersects the curve α = β−1

β
which implies that Tf0 > z0 or

Tf1 < z1 in this case. On the other hand, for β = 21/n equation (6.4) reduces
to α = β−1

β
= 1− 1

n√2 .
Now we are ready to state theorem summarizing the above considerations.

It provides regions where there is lack of transitivity except exactly one �top�
point on the boundary of these regions (see Figure 18). Note that the condi-
tion for α in (1) of Theorem 6.6 below is exactly the condition described in
(6.4).

Theorem 6.6. Let n ≥ 2 be an integer, and let β ∈
(
1, n
√
2
]
. Assume that Tf

is the expanding Lorenz map induced by f(x) := βx+ α. Then the following
assertions hold.

(1) If β < n
√
2 and

1∑n
j=1 β

j
≤ α ≤ −β

n+1 + βn + 2β − 1∑n
j=1 β

j

then Tf is not transitive.

(2) For β = n
√
2 and α = 1− 1

n√2 the map Tf is transitive but not mixing.

Proof. First, let z0 be as in (6.3) and de�ne z1, z2, . . . , zn−1 as in (2) of Re-

mark 6.5. Then zn−1 = βn−1z0 + αβ
n−1−1
β−1 and using (6.3) we obtain

zn−1 =
βn−1

βn − 1
− αβn−1

β − 1
+ α

βn−1 − 1

β − 1
=

βn−1

βn − 1
− α

β − 1
.

As βn+1 − βn − β + 1 = (βn − 1)(β − 1) > 0 we get 1 > −βn+1 + βn + β.

Because of (6.4) this gives α ≥ 1∑n
j=1 β

j > −βn+1+βn+β∑n
j=1 β

j = (β − 1) β
n−1

βn−1 −
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√
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1− 1√
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Figure 18: The upper purple dotted curve shows 1+ 1
β−β, the lower one 1−

1
β . Moreover,

the blue areas represent the parameters described in (1) from Theorem 6.6 and Remark 6.6
(for n ∈ {2, 3, . . . , 12}), and the orange dots represent the parameters described in (2) from
Theorem 6.6 and Remark 6.6 (for n ∈ {2, 3, . . . , 12}). Furthermore, the pink dot is from
Example 5.1, the yellow one from Example 6.2, and the green dot is from Example 6.3.

β + 1 which implies zn−1 = βn−1

βn−1 −
α
β−1 < 1. From (6.4) one obtains that

α ≤ −βn+1+βn+2β−1∑n
j=1 β

j = β−(βn−1)(β−1)∑n
j=1 β

j < β∑n
j=1 β

j = β−1
βn−1 = (β − 1)β

n−(βn−1)
βn−1 =

βn(β−1)
βn−1 −β+1. Dividing by β(β−1) we get α

(
1

β−1 −
1
β

)
= α

β(β−1) <
βn−1

βn−1−
1
β

which implies c = 1−α
β

< βn−1

βn−1 −
α
β−1 = zn−1. Since zn−2 ≥ c would imply

zn−1 ≥ 1 we obtain 0 < z0 < z1 < · · · < zn−2 < c < zn−1 < 1. Obviously (2)
of Remark 6.5 gives Tfzj = zj+1 for j ∈ {0, 1, . . . , n− 2} and using also (6.3)
we see that Tfzn−1 = z0. As (6.4) implies that Tf0 ≥ z0 and Tf1 ≤ z1 one
obtains that Tf has a primary n(1)-cycle.

Suppose that β < n
√
2 and α satis�es (6.4). Now the arguments below

Remark 6.5 imply that Tf0 > z0 or Tf1 < z1. Therefore Theorem 6.5 gives
that Tf is not transitive.

It remains to consider the case β = n
√
2 and α = 1− 1

n√2 (in Figure 19 the

graph of Tf is shown for f(x) = 6
√
2x + 1 − 1

6√2). One easily calculates that
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Tf0 = z0 and Tf1 = z1 = Tf
20 in this case. By Theorem 6.4 we get that Tf

is transitive but not mixing completing the proof.

x

Tfx

1

10 c

c

Tf0

Tf0 = Tf
70 = z0

Tf
20

Tf
20 = Tf1 = z1

Tf
30 Tf

40 Tf
50 Tf

60
Tf

61 Tf1 Tf
21 Tf

31 Tf
41 Tf

51

Figure 19: The graph of Tf for f(x) = 6
√
2x+1− 1

6√2
. Here the pink interval is invariant

under Tf
6.

Let us also consider the symmetric case.

Remark 6.6. From Proposition 2.11 and Theorem 6.6 we obtain that, if
n ≥ 2 is an integer and β ∈

(
1, n
√
2
]
, then the expanding Lorenz map Tf

induced by f(x) := βx+ α satis�es the following properties.

(1) If β < n
√
2 and

2− β +
βn+1 − βn − 2β + 1∑n

j=1 β
j

≤ α ≤ 2− β − 1∑n
j=1 β

j

then Tf is not transitive.

(2) For β = n
√
2 and α = 1 + 1

n√2 −
n
√
2 the map Tf is transitive but not

mixing (in Figure 20 the graph of Tf is shown for f(x) = 6
√
2x + 1 +

1
6√2 −

6
√
2).
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Figure 20: The graph of Tf for f(x) = 6
√
2x + 1 + 1

6√2
− 6
√
2. Here the pink interval is

invariant under Tf
6.

7. Mixing in the case βx+ α

Theorem 7.1. Let 3
√
2 ≤ β ≤ 2 and let 0 ≤ α ≤ 2 − β. Let Tf be an

expanding Lorenz map induced by f(x) := βx + α. Then Tf is topologically
mixing if and only if one of the following conditions is satis�ed:

(1) we have β ≥
√
2 and f(x) 6=

√
2x+ 1− 1√

2
.

(2) we have 3
√
2 ≤ β <

√
2, 0 ≤ α < 1

β2+β
or 2 − β − 1

β2+β
< α ≤ 2 − β,

and f(x) 6= 3
√
2x+ 2+ 3√4−2 3√2

2
and f(x) 6= 3

√
2x+ 2− 3√4

2
.

Proof. Set Tfx := βx + α (mod 1). From Theorem 4.6 we obtain that Tf is
topologically mixing if β ≥

√
2 and f(x) 6=

√
2x+ 1− 1√

2
.

Now assume that 3
√
2 ≤ β <

√
2, and f(x) 6= 3

√
2x + 2+ 3√4−2 3√2

2
and

f(x) 6= 3
√
2x + 2− 3√4

2
. It follows from Theorem 4 in [25] that Tf is not

topologically transitive (and therefore also not topologically mixing) in the
case 1

β2+β
≤ α ≤ 2− β − 1

β2+β
(see also Theorem 6.6).
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We consider the case α > 2 − β − 1
β2+β

. If α ≥ 1
β+1

then Theorem 4.8
implies that Tf is topologically mixing. Hence it remains to consider the case
2− β − 1

β2+β
< α < 1

β+1
.

At �rst assume that 2 − β − 1
β2+β

< α < 1 − β3

β2+β+1
and α < 1

β+1
. In

this case Lemma 10 of [25] gives that we have the arrows (0, c) → (c, 1),
(c, 1) → (0, c) and (0, c) → (Tf0, c) in the Markov diagram of Tf . Now the
proof of [25, Theorem 4] shows that for any C ∈ D there is a path C0 = C →
C1 → · · · → Cn with Cn = (0, c). Therefore D ⊇ {(0, c), (c, 1)} is irreducible,
(0, c) ∪ (c, 1) = [0, 1], and there is a path C0 = (Tf0, c) → C1 → · · · → Cp
of length p with Cp = (0, c). Using Lemma 2.7 there is a path of length p
from (0, c) to itself, and because of (0, c) → (Tf0, c) there is also a path of
length p + 1 from (0, c) to itself. Obviously, p and p + 1 are coprime and
therefore Tf is topologically mixing by Theorem 4.4.

Next assume that 1 − β3

β2+β+1
≤ α < 1

β+1
. Applying Lemma 11 in [25]

we have (0, c) → (c, 1), (c, 1) → (0, c) and (0, c) → (Tf0, c). Again we
can repeat argument from the proof of [25, Theorem 4] to obtain that for
every C ∈ D there exists a path C0 = C → C1 → · · · → Cn with Cn = (0, c).
Then is enough to repeat arguments from the previous case to see that Tf is
topologically mixing.

Finally, let α < 1
β2+β

. Then h(x) := 1 − x conjugates Tf to Tg, where

g(x) = βx+ 2− β − α and 2− β − α > 2− β − 1
β2+β

. Above we have shown
that Tg is topologically mixing, and therefore also Tf is topologically mixing,
completing the proof of this case.

If f(x) = 3
√
2x + 2− 3√4

2
= 3
√
2x + 1 − 1

3√2 then Tf is not mixing by The-

orem 6.6 and the case f(x) = 3
√
2x + 2+ 3√4−2 3√2

2
= 3
√
2x + 1 + 1

3√2 −
3
√
2 is

covered by conjugacy argument presented above.

Using Theorem 7.1 we can draw the region of (β, α) in the triangle de�ned
by β ≥ 3

√
2, α ≥ 0 and β + α ≤ 2, where βx + α (mod 1) is topologically

mixing. This is done in Figure 21.
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