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Fractal dimensions of continuous
piecewise linear iterated function systems

R. Dániel Prokaj, Peter Raith and Károly Simon

Abstract. We consider iterated function systems on the real line that consist
of continuous, piecewise linear functions. Under a mild separation condition,
we show that the Hausdorff and box dimensions of the attractor are equal
to the minimum of 1 and the exponent which comes from the most natural
system of covers of the attractor.

1. Introduction

Iterated Function Systems (IFS) on the line consist of finitely many
strictly contracting self-mappings of R. It was proved by Hutchinson [7]
that for every IFS F = {fk}m

k=1 there is a unique non-empty compact set Λ
which is called the attractor of the IFS F and defined by

(1.1) Λ =
m⋃

k=1
fk(Λ).

For every IFS F there exists a unique “smallest” non-empty compact
interval I which is sent into itself by all the mappings of F :

(1.2) I :=
⋂ {

J
∣∣∣ J ⊂ R compact interval : fk(J) ⊂ J, ∀k ∈ [m]

}
,

where [m] := {1, . . . , m}. It is easy to see that

(1.3) Λ =
∞⋂

n=1

⋃
(i1,...,in)∈[m]n

Ii1...in ,
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where Ii1...in := fi1...in(I) are the cylinder intervals, and we use the common
shorthand notation fi1...in := fi1 ◦ · · · ◦ fin for an (i1, . . . , in) ∈ [m]n.

The IFSs we consider in this paper are consisting of piecewise linear
functions. Thus their derivatives might change at some points, but they
are linear over given intervals of R. We always assume that the functions are
continuous, piecewise linear, strongly contracting with non-zero slopes, and
that the slopes can only change at finitely many points.

Let F = {fk}m
k=1 be a CPLIFS and I ⊂ R be the compact interval defined

in (1.2). For any k ∈ [m] let l(k) be the number of breaking points {bk,i}l(k)
i=1

of fk. They determine the l(k) + 1 open intervals of linearity {Jk,i}l(k)+1
i=1 . We

write Sk,i for the contracting similarity on R that satisfies Sk,i|Jk,i
≡ fk|Jk,i

.
We define {ρk,i}k∈[m],i∈[l(k)+1] and {tk,i}k∈[m],i∈[l(k)+1] such that

(1.4) Sk,i(x) = ρk,ix + tk,i.

We say that SF := {Sk,i}k∈[m],i∈[l(k)+1] is the self-similar IFS generated by the
CPLIFS F .

We introduce the natural pressure function

(1.5) Φ(s) := lim sup
n→∞

1
n

log
∑

i1...in

|Ii1...in|s.

In [1], Barreira showed that Φ(s) : R+ → R is a strictly decreasing function
with Φ(0) > 0 and lims→∞ Φ(s) = −∞. Hence we can define the natural
dimension of F as

(1.6) sF := (Φ)−1(0).

We note that he called Φ(s) the non-additive upper capacity topological
pressure. He also proved that the upper box dimension is always bounded
from above by the natural dimension. Moreover, in the very special case
when there are no breaking points, that is F = {fk(x) = ρkx + tk}m

k=1 is
self-similar, sF is the so-called similarity dimension that is ∑m

k=1 ρsF
k = 1.

Corollary 1.1 (Barreira). For any IFS F on the line

(1.7) dimBΛ ≤ sF .

Here dimB Λ stands for the box dimension of the attractor. For the defin-
ition of fractal dimensions we refer the reader to [3]. The inequality (1.7)
also follows from [2, Theorem 8.8], but to the best of our knowledge, in this
explicit form it was first stated in [1]. It follows that the Hausdorff dimension
of the attractor dimH Λ is also bounded from above by the natural dimension
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sF . We will show that in a sense typically, these dimensions are actually
equal.

A continuous piecewise linear iterated function system F = {fk}m
k=1 is

uniquely determined by the slopes {ρk,1, . . . , ρk,l(k)+1}m
k=1, the breaking points

{bk,1, . . . , bk,l(k)}m
k=1 and the vertical translations {fk(0)}m

k=1 of its functions.
The latter two are called the translation parameters of F .

Terminology. Given a property which is meaningful for all CPLIFSs. We
say that this property is dimP-typical if the set of translation parameters for
which it does not hold has less than full packing dimension, for any fixed
vector of slopes.

Theorem 1.2. We write ΛF for the attractor of a CPLIFS F . Then the
following property is dimP-typical:

(1.8) dimH ΛF = dimB ΛF = min{1, sF}.

To prove our main result we need a separation condition that was intro-
duced by M. Hochman [4] for self-similar iterated function systems. Let
g1(x) = ρ1x + τ1 and g2(x) = ρ2x + τ2 be two similarities on R with
ρ1, ρ2 ∈ R \ {0} and τ1, τ2 ∈ R. We define the distance of these two functions
as

(1.9) dist(g1, g2) :=

|τ1 − τ2|, if ρ1 = ρ2;
∞, otherwise.

Definition 1.3. Let F = {fk(x)}m
k=1 be a self-similar IFS on R. We say

that F satisfies the Exponential Separation Condition (ESC) if there exists
a c > 0 and a strictly increasing sequence of natural numbers {nl}∞

l=1 such
that

(1.10) dist(fi, fj) ≥ cnl , for all l > 0 and for all i, j ∈ [m]nl , i ̸= j.

Hochman proved that the ESC is a dimP-typical property of self-similar
IFS [5, Theorem 1.10]. Prokaj and Simon extended this result by showing
that it is a dimP-typical property of a CPLIFS that the generated self-similar
system satisfies the ESC [9, Fact 4.1]. These two results together with the
next theorem yields Theorem 1.2.

Theorem 1.4. Let F be a CPLIFS with generated self-similar system S and
attractor Λ. If S satisfies the ESC, then

(1.11) dimH Λ = dimB Λ = min{1, sF}.

We are going to prove this theorem with the help of Markov diagrams.
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1.1. Self-similar IFSs on the line

The first breakthrough result of this field in the last decade was due to
Hochman [4]. He proved that ESC implies that the Hausdorff dimension of a
self-similar measure (see [3, p. 37]) is equal to the minimum of 1 and the ratio
obtained by dividing the entropy by the Lyapunov exponent of this measure
(for the definitions see [8, p. 3]). As an immediate application of this result,
we get that ESC implies (1.11) for self-similar IFS on the line.

Shmerkin [14] proved an analogous result for the Lq dimension of self-
similar measures in 2019. Using similar ideas, Jordan and Rapaport [8]
extended Hochman’s result mentioned above from self-similar measures to
the projections of ergodic measures. Using this result, Prokaj and Simon
[9, Corollary 7.2] proved that ESC also implies that formula (1.11) holds for
graph-directed self-similar attractors on the line. This was an essential tool
of the proof of Theorem 1.5 below.

1.2. Earlier results about CPLIFS

Let F = {fk(x)}m
k=1 be a CPLIFS on R with attractor Λ. If Λ does not

contain any breaking point, then we call F regular. Prokaj and Simon showed
in [9] that for any regular CPLIFS there is a self-similar graph-directed IFS
with the same attractor. This observation led to the following theorem [9,
Theorem 2.2]

Theorem 1.5. Let F be a regular CPLIFS for which the generated self-
similar IFS satisfies the ESC. Then

(1.12) dimH Λ = dimB Λ = min{1, sF}.

For a k ∈ [m], let ρk := maxj∈[l(k)+1] |ρk,j| be the biggest slope of fk in
absolute value. We say that F is small if the following two assertions hold:

(a) ∑m
k=1 ρk < 1.

(b) The second requirement depends on the injectivity of the functions of
the system:

(i) If fk is injective, then ρk < 1
2 ;

(ii) If fk is not injective, then ρk < 1−maxj ρj

2 .

Proposition 1.6 ([9, Proposition 2.3]). For small CPLIFS, regularity is a
dimP-typical property.
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The dimension theory of some atypical CPLIFS families is discussed in
[10]. By combining Proposition 1.6, Theorem 1.5 and the result of M. Hoch-
man [5, Theorem 1.10], Prokaj and Simon also showed that the equalities
(1.12) are dimP-typical properties of small CPLIFSs. In this paper, we will
extend this result by showing that the same holds without restrictions on the
slopes.

2. Markov Diagrams

P. Raith and F. Hofbauer proved results on the dimension of expanding
piecewise monotonic systems using the notion of Markov diagrams [11, 12, 6].
We will define the Markov diagram in a similar fashion for CPLIFSs, and
then use it to prove that sF equals the Hausdorff dimension of the attractor
for non-regular systems as well, under some weak assumptions.

2.1. Building Markov diagrams

Let F = {fk}m
k=1 be a CPLIFS, and let I be the interval defined by (1.2).

Writing Ik := fk(I) and I = ∪m
k=1Ik, we define the expanding multi-valued

mapping associated to F as

(2.1) T : I 7→ P(P(I)), T (y) :=
{
{x ∈ I : fk(x) = y}

}m

k=1
.

That is the image of any Borel subset A ⊂ I is

T (A) =
{
{x ∈ I : fk(x) ∈ A}

}m

k=1
.

For k ∈ [m], j ∈ [l(k) + 1], we define fk,j : Jk,j → Ik as the unique linear
function that satisfies ∀x ∈ Jk,j : fk(x) = fk,j(x). We call the expansive
linear functions

∀k ∈ [m], ∀j ∈[l(k) + 1] : f−1
k,j : fk(Jk,j) → Jk,j,(2.2)

∀x ∈ Jk,j : f−1
k,j (fk(x)) = x

the branches of the multi-valued mapping T . As the notation suggests, these
are the local inverses of the elements of F .

Definition 2.1. We define the set of critical points as

K := ∪m
k=1{fk(0), fk(1)}

⋃
∪m

k=1 ∪l(k)
j=1 fk(bk,j)

⋃
{
x ∈ I

∣∣∣∃k1, k2 ∈ [m], ∃j1 ∈ [l(k1)], ∃j2 ∈ [l(k2)] : f−1
k1,j1(x) = f−1

k2,j2(x)
}

.
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Figure 1: A CPLIFS F = {fk}m
k=1 is on the left with its associated expansive

multi-valued mapping T on the right. The critical points are colored with
blue.

Definition 2.2. We call the partition of I into closed intervals defined by
the set of critical points K the monotonicity partition Z0 of F . We call its
elements monotonicity intervals.

Definition 2.3. Let Z ∈ Z0. We say that D is a successor of Z and we
write Z → D if

(2.3) ∃Z0 ∈ Z0, Z ′ ∈ T (Z) : D = Z0 ∩ Z ′.

Further, we write Z →k,j D if

∃Z0 ∈ Z0 : D = Z0 ∩ f−1
k,j (Z).

The set of successors of Z is denoted by w(Z) := {D|Z → D}.

Similarly, we define w(Z0) as the set of the successors of all elements of
Z0. That is

(2.4) w(Z0) := ∪Z∈Z0w(Z).

Definition 2.4. We say that (D, →) is the Markov Diagram of F with
respect to Z0 if D is the smallest set containing Z0 such that D = w(D). For
short, we often call it the Markov diagram of F .

Remark 2.5. We can similarly define the Markov diagram of F with respect
to any finite partition Z ′

0 of I.
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We often use the notation

(2.5) Dn := ∪n
i=0w

i(Z0), where wi(Z0) = w ◦ · · · ◦ w︸ ︷︷ ︸
i times

(Z0).

Obviously,

(2.6) D = ∪i≥0w
i(Z0).

If the union in (2.6) is finite, we say that the Markov diagram is finite. We
define recursively the n-th level of the Markov diagram as

(2.7) Zn := ω(Zn−1) \ ∪n−1
i=0 Zi,

for n ≥ 1.
One can imagine the Markov diagram as a (potentially infinitely big)

directed graph, with vertex set D. Between C, D ∈ D, we have a directed
edge C → D if and only if D ∈ w(C). We call the Markov diagram irreducible
if there exists a directed path between any two intervals C, D ∈ D. In the
next lemma we prove that by choosing an appropriate refinement Y0 of Z0,
the Markov diagram (D′

, →) of F with respect to Y0 always has an irreducible
subdiagram. Further, the elements of D′ cover Λ. It implies that (D′

, →)
is sufficient to describe the orbits of the points of Λ. That is, Lemma 2.6
enables us to assume that the Markov diagram (D, →) of F is irreducible
without loss of generality.

Lemma 2.6. Let F be a CPLIFS with attractor Λ, and let (D(Y0), →) be its
Markov diagram with respect to some finite refinement Y0 of the monotonicity
partition Z0. For the right choice of Y0, there exists an irreducible subdiagram
(D′

, →) of (D(Y0), →), such that the elements of D′ cover Λ.

Proof. For k ∈ [m], let ϕk be the fixed point of fk. We assume without loss
of generality that ϕi ≤ ϕj if i < j for i, j ∈ [m]. Let Y0 be the refinement of
Z0 with ϕ1. There are at most two intervals in Y0 that ends in ϕ1, we write
Y1 and Y2 for them. Let D′ be the set that contains Y1, Y2 and all of their
successors which intersect Λ. In particular,
(2.8)

D′ := {Y1, Y2}
⋃

{C ⊂ I|∃n > 0, ∃j ∈ {1, 2} : C ∈ wn(Yi) & C ∩ Λ ̸= ∅}.

Obviously, (D′
, →) is a subdiagram of (D(Y0), →). Let C ∈ D′ be an arbit-

rary interval. The attractor Λ is the invariant set of F , thus some element
of w(C) also intersects Λ. It follows that there are no deadends in (D′, →),
every directed path can be continued within the subdiagram.
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Since C ∩ Λ ̸= ∅ and the elements of F are strict contractions, there exist
N > 0 and k = (k1, . . . , kN) ∈ {1, . . . , m}N such that fk(I) ∩ C ̸= ∅ and
ρ−N

min|C| > |I|, where ρmin < 1 is the smallest slope of the system F . Then,
the elements of the set

(2.9) {CN ∈ D′|∃j1, . . . , jN : C →k1,j1 · · · →kN ,jN
CN}

cover I and hence the attractor Λ. We just obtained that

(2.10) ∀C ∈ D′, ∀U ⊂ I : ∃n > 0, ∃C ′ ∈ wn(C) such that C ′ ∩ U ̸= ∅.

By applying (2.10) to a U neighbourhood of ϕ1, it follows that from every
C ∈ D′ there is a directed path in (D′

, →) to some C ′ ∈ D′ that ends in ϕ1.
Since ϕ1 is the fixed point of the strict contraction f1, if ϕ1 ∈ C ∈ D′,

then there must be a directed path in (D′
, →) from C to either Y1 or Y2. By

applying (2.10) again, there are directed paths in (D′
, →) between Y1 and

Y2, thus it is indeed an irreducible subdiagram.

2.2. Connection to the natural pressure

Similarly to graph-directed iterated function systems, we associate a mat-
rix to Markov diagrams, that will help us determine the Hausdorff dimension
of the corresponding CPLIFS (see [3]).

Definition 2.7. Let F = {fk}m
k=1 be a CPLIFS, and write (D, →) for its

Markov diagram. We define the matrix F(s) := FD(s) indexed by the ele-
ments of D as

(2.11) [F(s)]C,D :=


∑

(k,j):C→(k,j)D |f ′
k,j

∣∣∣s, if C → D

0, otherwise.

We call FD(s) the matrix associated to the Markov diagram (D, →).

We used in the definition, that for a D ∈ D with C →(k,j) D the derivative
of fk,j over D is a constant number. That is each element of F(s) is either
zero or a sum of the s-th power of some contraction ratios.

This matrix can be defined for any C ⊂ D as well, by choosing the indices
from C only. We write FC(s) for such a matrix. It follows that FC(s) is always
a submatrix of F(s) for C ⊂ D.

We write EC(n) for the set of n-length directed paths in the graph (C, →).

(2.12)
EC(n) :={((k1, j1), . . . , (kn, jn))

∣∣∣∃C1, . . . , Cn+1 ∈ C :
∀q ∈ [n]∃kq ∈ [m], jq ∈ [l(k)]) : Cq →(kq ,jq) Cq+1}.
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An n-length directed path here means n many consecutive directed edges,
and we identify each such path with the labels of the included edges in order.
Each path in (D, →) of infinite length represents a point in Λ, and each point
is represented by at least one path. Similarly, for C ⊂ D the points defined
by the natural projection of infinite paths in (C, →) form an invariant set
ΛC ⊂ Λ. We define the natural pressure of these sets as

(2.13) ΦC(s) := lim sup
n→∞

1
n

log
∑

k
|Ik|s,

where the sum is taken over all k = (k1, . . . kn) for which ∃j1, . . . jn : ((k1, j1),
. . . , (kn, jn)) ∈ EC(n), and I is the interval defined in (1.1). By the definition
of D it is easy to see that ΦD(s) = Φ(s).
Remark 2.8. Let Y0 be a finite refinement of the monotonicity partition Z0,
and let (D′, →) be the Markov diagram of F with respect to Y0. Obviously,

(2.14) ∀s ≥ 0 : ΦD(s) = ΦD′(s).

We will show, that the unique zero of the function ΦD(s) can be approx-
imated by the root of ΦC(s) for some C ⊂ D. To show this, we need to
connect the function ΦC(s) to the matrix FC(s).

As an operator, (FD(s))n is always bounded in the l∞-norm. Thus we
can define

ϱ(FC(s)) := lim
n→∞

∥(FC(s))n∥1/n
∞ .

Lemma 2.9. Let C ⊂ D. If (C, →) is irreducible, then

(2.15) ΦC(s) ≤ log ϱ(FC(s)).

If (C, →) is irreducible and finite, then

(2.16) ΦC(s) = log ϱ(FC(s)).

Proof. First only assume that (C, →) is irreducible. Since it is irreducible,
we can think about (C, →) as the Markov diagram of some IFS with level n
cylinder intervals {Ii}i∈EC(n).

Fix k = (k1, . . . , kn) ∈ [m]n. There are at least one, but possibly several
directed paths of length n in the graph with labels ((k1, j1), . . . , (kn, jn)) for
some j1, . . . jn. Each of these paths correspond to a unique entry in Fn

C(s).
The biggest one of these entries times |I| is an upper bound on |Ik|s. Since
every n length path starts at some element of Z0, we obtain that

(2.17)
∑

k
|Ik|s ≤ |Z0| · ∥Fn

C(s)∥∞ · |I|,
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where the sum is taken over all k = (k1, . . . kn) for which ∃j1, . . . jn : ((k1, j1),
. . . , (kn, jn)) ∈ EC(n). By taking logarithm on both sides, dividing them by
n, and then taking the limit as n → ∞, we obtain (2.15).

Now assume that C is finite, and write N for the highest level of the
Markov diagram. It means that for every |k| ≥ N , the cylinder interval Ik
is contained in an element of C. That is

(2.18) ∀n ≥ 0 : min
|l|=N

|Il|∥Fn
C(s)∥∞ ≤

∑
k

|Ik|s ≤ max
|l|=N

|Il||Z0|∥Fn
C(s)∥∞,

where the sum in the middle is taken over all k = (k1, . . . kN+n) for which

∃j1, . . . jN+n : ((k1, j1), . . . , (kN+n, jN+n)) ∈ EC(N + n).

It follows that (2.16) holds.

Let (C1, →), (C2, →), . . . be an increasing sequence of irreducible sub-
graphs of (D, →). It follows from Seneta’s results [13, Theorem 1] that the so
called R-values of the matrices FCn(s) converge to the R-value of F(s). For
an irreducible finite matrix A we always have R(A) = 1

ϱ(A) , then the con-
vergence of the spectral radius ϱ(FCn(s)) to ϱ(F(s)) follows. Altough F(s)
may not be finite, the relation R(F(s)) = 1

ϱ(F(s)) can still be guaranteed by
some assumptions. That is why the following property has a crucial role in
our proofs.

Definition 2.10. Let F be a CPLIFS and Y be a finite refinement of the
monotonicity partition Z0. Let (D(Y), →) be the Markov diagram of F with
respect to Y , and let F(Y , s) be its associated matrix.

We say that the CPLIFS F is limit-irreducible if there exists a Y such
that for all s ∈ (0, dimH Λ] the matrix F(Y , s) has right and left eigenvectors
with nonnegative entries for the eigenvalue ϱ(F(Y , s)).

We call this finite partition Y a limit-irreducible partition of F and
(D(Y), →) a limit-irreducible Markov diagram of F .

In the next section we show how being limit-irreducible implies that the
Hausdorff dimension of the attractor is equal to the minimum of the natural
dimension and 1. Later, in Section 3, we investigate what makes a CPLIFS
limit-irreducible.

2.3. Proof using the diagrams

We have already shown a connection between the Markov diagram and
the natural pressure of a given CPLIFS. Now using this connection, we show
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that the natural dimension of a limit-irreducible CPLIFS is always a lower
bound for the Hausdorff dimension of its attractor, by approximating the
spectral radius of the Markov diagram with its submatrices’ spectral radius.

As in [11], the following proposition holds.

Proposition 2.11. Let F be a limit-irreducible CPLIFS, and let (D, →) be
its limit-irreducible Markov diagram. For any ε > 0 there exists a C ⊂ D
finite subset such that

(2.19) ϱ(F(s)) − ε ≤ ϱ(FC(s)) ≤ ϱ(F(s)),

where F(s) is the matrix associated to (D, →).

The proof is essentially the same as the proof of [11, Lemma 6 (ii)]. We
obtain the following theorem as the combinations of [11, Theorem 2] and [9,
Corollary 7.2].

Theorem 2.12. Let F be a limit-irreducible CPLIFS with attractor Λ and
limit-irreducible Markov diagram (D, →). Assume that the generated self-
similar system of F satisfies the ESC. Then

(2.20) dimH Λ = min{1, sF},

where sF denotes the unique zero of the natural pressure function Φ(s).

The proof is similar to the proof of Theorem 2 in [11].

Proof. By Corollary 1.1, dimH Λ ≤ min{sF , 1} always holds. It is only left
to prove the lower bound.

Choose an arbitrary t ∈ (0, sF). The natural pressure function is strictly
decreasing and has a unique zero at sF , hence Φ(t) > 0. The same can be
told about the spectral radius of D, according to Remark 2.8. (D, →) is
irreducible, but not necessarily finite, thus Lemma 2.9 gives

(2.21) 0 < Φ(t) ≤ log ϱ (F(t)) .

According to Proposition 2.11,

(2.22) ∃ C ⊂ D finite : log ϱ(FC(t)) > 0.

Then applying Lemma 2.9 again gives

(2.23) 0 < log ϱ(FC(t)) = ΦC(t),

since C is finite.
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For a finite C the induced attractor ΛC is graph-directed with graph (C, →
). Since the generated self-similar system satisfies the ESC, we already know
from [9, Corollary 7.2] that

(2.24) dimH ΛC = min{sC, 1},

where sC is the unique root of ΦC(s).
Assume first that sF ≤ 1, which implies sC ≤ 1 for all C ⊂ D. Together

(2.24) and (2.23) yields

(2.25) 0 < ΦC(t) =⇒ t < sC = dimH ΛC ≤ dimH Λ,

and it holds for any t ∈ (0, sF). Thus sF ≤ dimH Λ.
When sF > 1, we can find a C ⊂ D for which dimH ΛC = 1. It is a simple

consequence of Lemma 2.9, Proposition 2.11 and (2.24). Therefore the lower
bound that covers both cases is

(2.26) min{sF , 1} ≤ dimH Λ.

3. What makes a CPLIFS limit-irreducible?

It is hard to check whether a CPLIFS F = {fk}m
k=1 is limit-irreducible,

that is if it satisfies definition 2.10. In this section, we show by a case analysis
that the following proposition holds.

Proposition 3.1. Let F be a CPLIFS with generated self-similar system S.
If S satisfies the ESC, then F is limit-irreducible.

Theorem 1.4 is a straightforward consequence of Proposition 3.1 and The-
orem 2.12.

According to [6, Corollary 1], if all functions in F are injective and the first
cylinders are not overlapping, then F is limit-irreducible. This observation
was utilized by Raith in the proof of [11, Lemma 6].

In this section we always assume that s ∈ (0, dimH Λ]. The overlapping
structures may induce multiple edges in the Markov diagram. In the associ-
ated matrix F(s) each multiple edge is represented as an entry of the form
ρs

k1,j1 + · · · + ρs
kn,jn

for some n > 1. Since these entries can be bigger than 1
in absolute value, the assumptions of [6, Corollary 1] do not hold. We need
to investigate under which conditions can [6, Corollary 1/ii] help us.
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Lemma 3.2 (F. Hofbauer [6, Corollary 1/ii]). Let F = {fk}m
k=1 be a CPLIFS

with Markov diagram (D, →) and associated matrix F(s). If F(s) can be
written in the form

F(s) =
[
P Q
R S

]
such that ϱ(F(s)) > ϱ(S), then F is limit-irreducible. Here P, Q, R, S are
appropriate dimensional block matrices.

For the convenience of the reader we also present Hofbauer’s proof here.

Proof. We follow the proof of Corollary 1/ii right after Theorem 9 in [6]. Let
λ := ϱ(F(s)) and Id be the d dimensional identity matrix. We write dP and
dF for the dimensions of the square matrices P and F(s) respectively. It
follows that dS = dF − dP . We remark that dF and dS may not be finite.

As λ > ϱ(S), (IdS
− xS)−1 = ∑∞

k=0 xkSk exists for |x| ≤ λ−1 and has
nonnegative entries for 0 ≤ x ≤ λ−1. For E(x) = P + xQ(I − xS)−1R we
have the following matrix equation

(3.1)
[
I − xE(x) −xQ(I − xS)−1

0 I

] [
I 0

−xR I − xS

]
= I − xF(s),

for all |x| ≤ λ−1. Since λ = ϱ(F(s)), we find an x with |x| = λ−1 such
that I − xF(s) is not invertible. Fix this x number. By (3.1), knowing that
both I and (I − xS)−1 are invertible, we get that I − xE(x) is not invertible,
i.e. ϱ(E(x)) ≥ λ. Since the entries of E(|x|) are greater than or equal to
the absolute values of the entries of E(x), we get ϱ(E(λ−1)) = ϱ(E(|x|)) ≥
ϱ(E(x)) ≥ λ. Note that E(x) is a finite matrix.

For t ∈ (0, λ−1] the map t → ϱ(E(t)) is continuous and increasing, since
the entries of E(t) are continuous and increasing in t. Since ϱ(E(λ−1)) ≥ λ,
we find a y ∈ (0, λ−1] with ϱ(E(y)) = y−1. Since E(y) has nonnegative
entries, this implies that I − yE(y) is not invertible. Hence I − yF(s) is
not invertible by (3.1). As λ = ϱ(F(s)), we get y = λ−1. Since E(y) is
a finite matrix, we find a nonnegative vector u1 with u1(I − yE(y)) = 0.
Set u2 = yu1Q(I − yS)−1, which is a nonnegative l1(dS) vector, as the rows
of Q are in l1(dS). Hence u = (u1, u2) is a nonnegative l1(dF ) vector and
u(I − yF(s)) = 0 by (3.1). That is u is a left eigenvector for λ = ϱ(F(s)).

Similar calculation for the transpose of F(s) yield a nonnegative l∞(dF )
vector v with (I − λ−1F(s))v = 0.

Lemma 2.9 implies that for s ∈ (0, dimH Λ) we have ϱ(F(s)) > 1, where Λ
is the attractor of the CPLIFS F . Therefore, in order to apply Lemma 3.2,
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it is enough to show that
(3.2) lim

N→∞
ϱ

(
FD\DN

(s)
)

= 1.

If (3.2) holds, then FD\DN
(s) can take the place of the submatrix S in The-

orem 3.2 for a big enough N .
In the special case of expansive piecewise monotonic mappings, (3.2) was

verified by F. Hofbauer [6, Corollary 1/i]. To extend his results to CPLIFS,
we need to show the same for our expansive multi-valued mappings T . The
only difference between our and his Markov diagrams is the occurence of
multiple edges, caused by the possible overlappings. We note that not all
of the overlappings induce multiple edges, as monotonicity intervals of the
same level might overlap.
Definition 3.3. Let Z ∈ Z be an element of the base partition, and let
f−1

k1,j1 , f−1
k2,j2 be two different branches of the expansive multivalued mapping

T . We say that f−1
k1,j1 and f−1

k2,j2 cause an overlap on Z if

int(f−1
k1,j1(Z)) ∩ int(f−1

k2,j2(Z)) ̸= ∅,

where int(A) denotes the inerior of the set A. If ∃z ∈ Z : f−1
k1,j1(z) = f−1

k2,j2(z),
then we call it a cross overlap, otherwise we call it a light overlap. See
Figure 2. We call the branches that cause an overlap over the same interval
cross overlapping branches or light overlapping branches, respectively.

Z Z

Light overlap Cross overlap

f−1
k1,j1

f−1
k2,j2

f−1
k1,j1

f−1
k2,j2

Figure 2: The two types of overlappings.

Note that the graphs of the branches of T can only intersect at the en-
dpoint of some base interval Z ∈ Z0 (see Definition 2.2). We say that the
order of overlapping is K if the maximal number of branches of T that have
intersecting domains is K.
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3.1. The case of light overlaps

Lemma 3.4. Let F be a CPLIFS with only light overlaps. Then, there exists
a finite partition Y such that the Markov diagram of F with respect to Y do
not contain any multiple edges.

Proof. Let K be the order of overlapping of F and T be the multi-valued
mapping associated to F . First assume that the branches of T overlap only
above Z ∈ Z0 and write f−1

k1,j1 , . . . , f−1
kK ,jK

for these branches. Since we only
have light overlaps, without loss of generality we may assume that ∀x ∈ Z :
f−1

kβ ,jβ
(x) < f−1

kγ ,jγ
(x) if β < γ.

Let us define

ε := max
{
ε′ > 0

∣∣∣ ∀β ∈ [K − 1], ∀A ⊂ R, |A| = ε′ :(3.3)

f−1
kβ+1,jβ+1

(A) ∩ f−1
kβ ,jβ

(A) = ∅
}
.

Since we only have light overlaps, ε is a well-defined positive number. The
images of any interval A ⊂ Z with length at most ε by the branches f−1

k1,j1 , . . . ,

f−1
kK ,jK

must be disjoint. It is illustrated on Figure 3.

Z

A

f−1
k1,j1

(A)

f−1
k2,j2

(A)

f−1
k3,j3

(A)

Figure 3: If the interval A ⊂ Z is small enough, then its images by the
three light overlapping branches are disjoint.

Let YZ be a finite partition of Z whose elements are all have length at
most ε. By substituting YZ in the place of Z in Z0, we obtain a finite
refinement Y of Z0. By (3.3), there are no multiple edges in the Markov
diagram of F with respect to Y .

Assume now that light overlaps occur above q > 1 many monotonicity
intervals Z1, . . . Zq ∈ Z0. For each i ∈ [q], let εi be the number defined in
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(3.3) using the branches above Zi, and let YZi
be a finite partition of Zi

whose elements are all have length at most εi. By replacing Zi in Z0 with
YZi

for every i ∈ [q], we obtain the finite partition Y . The Markov diagram
of F with respect to Y does not contain any multiple edges.

Lemma 3.4 implies that for a CPLIFS with only light overlaps [6, Corol-
lary 1/i] also holds.

Proposition 3.5. Let F be a CPLIFS with only light overlaps, and for a
finite partition Y let (D(Y), →) be the Markov diagram of F with respect to
Y. Then there exists a Y finite partition such that

(3.4) lim
N→∞

ϱ
(
FD(Y)\D(Y)N

(s)
)

= 1,

where F(s) is the matrix associated to (D(Y), →).

For the convenience of the reader, we include here a modified version of
the proof of [6, Corollary 1/i].

Proof. According to Lemma 3.4, there exists a Y finite refinement of Z0 such
that there are no multiple edges in (D, →) := (D(Y), →). Fix N > 1, and
let Z ∈ D \ DN . Further, let (k1, j1) be the label of one of the edges from Z,
and let (k1, j1), . . . , (kq, jq) be a sequence of labels corresponding to a path
of directed edges in D \ DN for some arbitrary q > 0. We will show that
if q ≤ N , then (k1, j1), . . . , (kq, jq) defines at most two directed paths of the
form Z0 = Z → Z1 → · · · → Zq in D \ DN .

Assume that q < N and one of the endpoints of Z is a critical point.
Without loss of generality suppose that Z = [w, x] where w ∈ K. The
successors of Z by the branch (k1, j1) can only end in f−1

k1,j1(w), f−1
k1,j1(x) or at

some critical point. Out of them only at most one is in D\DN , since intervals
of the form [a, b] where a ∈ T i1v1, b ∈ T i2v2, v1, v2 ∈ K, 0 ≤ i1, i2 ≤ N are all
contained in DN . Namely, the interval which ends in f−1

k1,j1(x). Therefore Z1
is uniquely defined. Similarly, Zi must be that sucessor of Zi−1 which ends
in f−1

ki,ji
◦ · · · ◦ f−1

k1,j1(x), for i ∈ [q]. So in this case Z1, . . . , Zq are uniquely
defined.

If none of the endpoints of Z = [x, y] is a critical point, then there are at
most two successors of Z in D \ DN . Both of these intervals end in a critical
point, so we can apply the previous argument for them. Thus we have two
versions for Z1, . . . , Zq.

We just showed that in the matrix
(
FD\DN

(s)
)nN

, in the row of an ar-
bitrary Z ∈ D \ DN there are at most 2n · KN many non-zero elements for
all n > 0. Here we used KN as an upper bound for the possible number of
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N length paths in D \ DN . It follows from Lemma 3.4 that the elements of(
FD\DN

(s)
)nN

are all upper bounded by 1, since there are no multiple edges
in (D, →). Thus

(3.5) ϱ
(
FD\DN

(s)
)

≤ nN

√
∥

(
FD\DN

(s)
)nN

∥∞ ≤ nN
√

2nKN = N
√

2 · n
√

K,

for any n ≥ 1, and with this the statement is proved.

Lemma 3.2 and Proposition 3.5 together gives

F has only light overlaps =⇒ F is limit-irreducible.

That is for a CPLIFS F with only light overlaps and with a generated self-
similar system satisfying the ESC, we always have dimH Λ = min{1, sF},
where Λ is the attractor of F .

3.2. The case of cross overlaps

We call the elements of the set{
x ∈ I

∣∣∣∃k1, k2 ∈ [m], ∃j1 ∈ [l(k1)], ∃j2 ∈ [l(k2)] : f−1
k1,j1(x) = f−1

k2,j2(x)
}

intersecting points. They form a subset of the critical points K. Let w ∈ I
be an intersecting point, then the elements of D can only contain w as their
endpoint. If D ∈ D ends in w, then we say that D is causing cross overlaps
at w.

Lemma 3.6. Let F be a CPLIFS with associated expanding multi-valued
mapping T . Let x0 ∈ I be an intersecting point. If the generated self-similar
system S of F satisfies the ESC, then there is no finite N for which x0 ∈
T N(x0).

Proof. We will prove the statement by contradiction and assume that there
is a finite N > 0 such that x0 ∈ T N(x0). Let f−1

k′
1,j′

1
and f−1

k̂1,ĵ1
be two different

branches of T that maps x0 to the same value. These must exist since x0 is
an intersecting point. Without loss of generality, assume that the sequence
of branches ((k1, j1), . . . , (kN , jN)) maps x0 to itself. Precisely,

f−1
kN ,jN

◦ · · · ◦ f−1
k1,j1(x0) = x0.

The same holds for the sequence of branches ((k1, j1), . . . , (kN , jN), (k′
1, j′

1))
and

(
(k1, j1), . . . , (kN , jN), (k̂1, ĵ1)

)
as well.



18 R. DÁNIEL PROKAJ, PETER RAITH AND KÁROLY SIMON

For a given branch f−1
k,j , we write Sk,j for the corresponding element of

the generated self-similar IFS S. It follows that

(3.6) S(k1,j1),...,(kN ,jN ),(k′
1,j′

1) ≡ S(k1,j1),...,(kN ,jN ),(k̂1,ĵ1).

Using these two functions, we can construct at least two identical iterates
with different codes for any level n > N . It implies that the ESC fails for
S.

Lemma 3.7. Let F be a CPLIFS whose generated self-similar system satis-
fies the ESC. Let T be the expanding multi-valued mapping associated to F
and W be the set of all intersecting points. Fix P > 0. Then there exists a
finite refinement Y of Z0 such that

(3.7) ∀Z ∈ Y , ∀w ∈ W, ∀n ∈ [P ] : w ∈ Z =⇒ Z ∩ (∪T n(Z)) = ∅.

Proof. Suppose that w ∈ W is an arbitrary intersecting point. According to
Lemma 3.6, ∀n ∈ [P ] : w ̸∈ T n(w). That is, the distance of w and the set
∪n∈[P ]T

n(w) is positive. Let d > 0 be this distance. Recall that ρmin denotes
the smallest contraction ratio in F , hence 1/ρmin is the largest slope of T .

Let p ∈ R be a point that satisfies

(3.8) |w − p| <
dρP

min
1 + ρP

min
.

Let Z ∈ Z0 be a monotonicity interval that contains w, and let p be the only
point in Z that satisfies (3.8). Intersecting points are also critical points,
thus Z can only contain one such point. We cut Z into two closed intervals
by p and call them YZ , Y ′

Z .
We can construct the pair of intervals YZ , Y ′

Z for any monotonicity interval
Z ∈ Z0 that contains an intersecting point w ∈ W . By replacing all Z in Z0
that causes cross overlaps with the correspoding {YZ , Y ′

Z}, we obtain a finite
partition Y that satisfies (3.7).

Proof of Proposition 3.1. We are going to construct a limit-irreducible par-
tition of F with the help of Lemma 3.7 and Lemma 3.4. Write M for the
number of intersection points in the system and K for the order of over-
lapping. We know that ϱ (F(s)) > 1, so we can fix an ε > 0 for which
ϱ (F(s)) > 1 + ε.

Fix a P > 0 big enough such that

(3.9) P
√

K < M+1
√

1 + ε.
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We apply Lemma 3.7 to F and P to obtain the finite partition Y . Let (D, →)
be the Markov diagram of F with respect to Y , and let Z ∈ Y be an interval
that causes a cross overlapping. Thanks to the construction of Y , Z does
not intersect with its first P successors. In other words, no P length directed
path in D \ DP can visit Z more than once.

Let Zcross be the set of all images of Z by the different cross overlapping
branches defined above it. The elements of Zcross are nested. Therefore,
using the cross overlapping branch with the biggest expansion ratio, we can
dominate every directed path of length at most P in D\DP that goes through
Z and contains an element of Zcross. This means that for every n ∈ [P ] and
for every directed path Ẑ → C1 → · · · → Cn in D \ DP with Ẑ ⊂ Z and
C1 ∈ Zcross, there exists a directed path Z → D1 → · · · → Dn in D \ DP

such that D1 is the successor of Z by a branch of the biggest slope, and
∀k ∈ [n] : Ck ⊂ Dk. It is essentially the same as erasing all other cross
overlapping branches of T above Z, see Figure 4. We do the same domination
for all Z ∈ Y that causes a cross overlapping. Let Fmax(s) be the matrix of
this dominated system. We write max in the upper index to indicate that
after the domination the only cross overlapping branch left above each Z
that originally caused a cross overlap is the one with the biggest expansion
ratio.

Zw Zw

Dominating

Figure 4: This figure illustrates how we handle cross overlappings by dom-
inating the branches around the intersecting point w with a branch of the
biggest slope. The nodes of the Markov diagram remain the same, we only
delete some edges.

Our new system, the one we obtained by dominating the cross overlapping
branches, can only have light overlaps. The Markov diagram of this system
has the same nodes as the original, we only erased edges by the domination.
Using Proposition 3.5, we get the finite refinement Y ′ of Y for which (3.4)
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holds with Fmax(s). That is there exists an N > P such that

(3.10) ϱ
(
Fmax

D′\D′
N

(s)
)

< 1 + ε,

where (D′, →) is the Markov diagram of F with respect to Y ′. Let F′(s)
be the matrix associated to (D′, →). It follows from the construction of
the matrix Fmax(s) that every entry of Fmax(s) is smaller or equal to the
corresponding entry of F′(s).

Now we show that the submatrix F′
D′\D′

N
(s) has spectral radius smaller

than that of F′(s). Let Z ∈ Y be one of those intervals that caused a cross
overlapping before the domination. Observe that in (D′ \ D′

N , →) at most K
many directed edges start from Z. That is we dominated at most KM many
paths in (D′ \ D′

N , →) with a single one. By this we obtain the upper bound

(3.11)
(

∥
(
F′

D′\D′
N

(s)
)nP

∥∞

) 1
nP

≤
(

P
√

K
)M

(
∥

(
Fmax

D′\D′
N

(s)
)nP

∥∞

) 1
nP

,

for any 1 ≤ n. It follows that

(3.12) ϱ
(
F′

D′\D′
N

(s)
)

≤
(

P
√

K
)M

· ϱ
(
Fmax

D′\D′
N

)
.

We conclude the proof by substituting (3.10) and (3.9) into (3.12)

(3.13) ϱ
(
F′

D′\D′
N

(s)
)

< 1 + ε < ϱ (F′(s)) .

According to Theorem 3.2, F is limit-irreducible.
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