

Univ.-Prof. Dr. Radu Ioan Boţ

Vienna, March 4, 2019 To be discussed on March 11, 2019

Convex Optimization Exercise session 1

1. Let U be a convex subset of a real normed space and $\alpha, \beta \in [0, +\infty)$. Show that

$$(\alpha + \beta)U = \alpha U + \beta U.$$

- 2. Let U be a convex subset of a real normed space. Show that the following statements are true:
 - (i) $\operatorname{cl} U$ is convex;
 - (ii) for every $x \in \operatorname{int} U$ and every $y \in \operatorname{cl} U$ it holds $\lambda x + (1 \lambda)y \in \operatorname{int} U \,\forall \lambda \in (0, 1]$;
 - (iii) int U is convex;
 - (iv) if $\operatorname{int} U \neq \emptyset$, then $\operatorname{cl}(\operatorname{int} U) = \operatorname{cl} U$ and $\operatorname{int}(\operatorname{cl} U) = \operatorname{int} U$.
- 3. Let U be a convex subset of the real normed space X. The algebraic interior of the set U is defined as

$$\operatorname{core} U := \left\{ x \in U : X = \bigcup_{\lambda > 0} \lambda(U - x) \right\}.$$

Show that: if $int(U) \neq \emptyset$, then int(U) = core(U).

- 4. Give an example of a convex subset of a real normed space with empty interior and non-empty algebraic interior.
- 5. Let X be a real normed space, $f: X \to \overline{\mathbb{R}}$ a convex function and $x_0 \in X$ such that $f(x_0) = -\infty$. Show that $f(x) = -\infty$ for every $x \in \operatorname{core}(\operatorname{dom} f)$.
- 6. Let X be a real normed space, $f: X \to \overline{\mathbb{R}}$ a given function and $x \in X$. Show that f is lower semicontinuous at x if and only if for every sequence $(x^k)_{k\geq 0}$ such that $x^k \to x$ as $k \to +\infty$ it holds $\liminf_{k\to+\infty} f(x^k) \geq f(x)$.