

Univ.-Prof. Dr. Radu Ioan Boţ

Vienna, April 2, 2019 To be discussed on April 9, 2019

Convex Optimization Exercise session 3

- 13. Let $(X, \|\cdot\|)$ be a real normed space.
 - (a) Let $\varphi : \mathbb{R} \to \overline{\mathbb{R}}$ be a proper and even function and $f : X \to \overline{\mathbb{R}}$, $f(x) = \varphi(||x||)$. Prove that $f^*(x^*) = \varphi^*(||x^*||_*) \ \forall x^* \in X^*$.
 - (b) Let be $f: X \to \mathbb{R}, f(x) = \frac{1}{p} ||x||^p$ for $p \in (1, +\infty)$. Calculate f^* .
- 14. Let $(X, \|\cdot\|)$ be a real normed space. Calculate the convex subdifferential of the following functions:
 - (a) $f: X \to \mathbb{R}, f(x) = ||x||;$
 - (b) $f: X \to \mathbb{R}, f(x) = \frac{1}{2} ||x||^2$.
- 15. Let X be a real normed space and $f: X \to \overline{\mathbb{R}}$ be a given function. Prove that the following statements are true:
 - (a) $\partial(\lambda f)(x) = \lambda \partial f(x) \ \forall \lambda > 0 \ \forall x \in X;$
 - (b) $\partial (f + x^*)(x) = \partial f(x) + x^* \ \forall x^* \in X^* \ \forall x \in X;$
 - (c) if $g: X \to \overline{\mathbb{R}}, g(x) = f(x+z)$, for $z \in X$, then $\partial g(x) = \partial f(x+z)$.
- 16. Let U be a convex subset of a real normed space X and $x \in U$. The set

$$N_U(x) = \{x^* \in X^* : \langle x^*, y - x \rangle \le 0 \ \forall y \in U\}$$

is called *normal cone* of U in x. Prove that the following statements are true:

- (a) $N_U(x)$ is a convex cone;
- (b) $N_U(x) = \partial \delta_U(x);$
- (c) if $x \in \operatorname{core}(U)$, then $N_U(x) = \{0\}$.

Hint. A set $K \subseteq X$ is called *cone*, if for every $\lambda \ge 0$ it holds $\lambda K \subseteq K$.

- 17. (a) Find a proper and convex function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ and an element $x \in \text{dom } f$ such that $f'(x; d) \in \mathbb{R}$ for every $d \in \mathbb{R}^n$, while f is not Gâteaux-differentiable at x.
 - (b) Let be

$$f: \mathbb{R} \to \overline{\mathbb{R}}, f(x) = \begin{cases} -\sqrt{1-x^2}, & \text{if } |x| \le 1, \\ +\infty, & \text{otherwise.} \end{cases}$$

Calculate f'(-1; d) for every d > 0.

- 18. Let $f : \mathbb{R}^n \to \mathbb{R}, f(x) = \max\{x_1, ..., x_n\}.$
 - (a) Prove that f is a convex function.
 - (b) Calculate f'(x; d) for every $x, d \in \mathbb{R}^n$.
 - (c) Calculate $\partial f(x)$ for every $x \in \mathbb{R}^n$.