

Univ.-Prof. Dr. Radu Ioan Boţ

Vienna, May 28, 2019 To be discussed on June 4, 2019

Convex Optimization Exercise session 6

31. (a) For $\underline{\alpha}, \overline{\alpha}$ real numbers, such that $\underline{\alpha} < \overline{\alpha}$, calculate the proximal operator of

$$\sigma_{[\underline{\alpha},\overline{\alpha}]}: \mathbb{R} \to \mathbb{R}, \ \sigma_{[\underline{\alpha},\overline{\alpha}]}(x) = \begin{cases} \underline{\alpha}x, & \text{if } x < 0\\ 0, & \text{if } x = 0\\ \overline{\alpha}x, & \text{if } x \ge 0. \end{cases}$$

- (b) Calculate the proximal operator of the function $\|\cdot\|_1 : \mathbb{R}^n \to \mathbb{R}$.
- 32. For $\alpha > 0$, calculate the proximal operator of the following real-valued functions defined on \mathbb{R} :
 - (a) $x \mapsto \max\{|x| \alpha, 0\};$ (b)

$$x \mapsto \begin{cases} \frac{1}{2}x^2, & \text{if } |x| \le \alpha \\ \alpha |x| - \frac{\alpha^2}{2}, & \text{otherwise.} \end{cases}$$

- 33. Let H be a real Hilbert spaces.
 - (a) For $f: H \to \overline{\mathbb{R}}$ a proper, convex and lower semicontinuous function and $\gamma > 0$, prove that

$$\operatorname{prox}_{\gamma(^{1}f)}(x) = \frac{x + \gamma \operatorname{prox}_{(\gamma+1)f}(x)}{\gamma + 1},$$

where

$${}^{1}f: H \to \mathbb{R}, \; {}^{1}f(x) = \inf_{y \in H} \left\{ f(y) + \frac{1}{2} \|y - x\|^{2} \right\},$$

denotes the Moreau envelope of f of parameter 1.

- (b) For $C \subseteq H$ a nonempty, convex and closed set, calculate the proximal operator of the squared distance function $\frac{1}{2}d_C^2$.
- 34. Let H be a real Hilbert space.
 - (a) If $f : \mathbb{R} \to \overline{\mathbb{R}}$ is a proper, convex and lower semicontinuous function and $u \in H$, determine the proximal operator of the function $x \mapsto f(\langle u, x \rangle)$.
 - (b) If *H* is a finite-dimensional space, $e_1, ..., e_n$ an orthonormal basis of *H* and $f: H \to \overline{\mathbb{R}}$, $f(x) = \sum_{i=1}^n f_i(\langle x, e_i \rangle)$, where $f_i: \mathbb{R} \to \overline{\mathbb{R}}, i = 1, ..., n$ are proper, convex and lower semicontinuous functions, determine the proximal operator of *f*.

- 35. Let H be a real Hilbert space, $f: H \to \overline{\mathbb{R}}$ a proper, convex and lower semicontinuous function and $\gamma > 0$.
 - (a) Prove that $\operatorname{prox}_{(\gamma f)}(x) = x + \frac{1}{\gamma+1} \left(\operatorname{prox}_{(\gamma+1)f}(x) x \right) \quad \forall x \in H.$
 - (b) For $g: H \to \mathbb{R}, g(x) = \frac{1}{2\gamma} \|x\|^2 (\gamma f)(x)$, prove that $g(x) = (f + \frac{1}{2\gamma} \|\cdot\|^2)^* \left(\frac{1}{\gamma}x\right) \quad \forall x \in H$ and deduce from here that g is convex.

(c) Show that
$$\operatorname{prox}_g(x) = x - \frac{1}{\gamma} \operatorname{prox}_{\frac{\gamma^2}{\gamma+1}f} \left(\frac{\gamma}{\gamma+1}x\right) \quad \forall x \in H$$

Hint. For proving (a) use Exercise 33.

36. Implement the proximal point algorithm with variable stepsizes in MATLAB. Apply the algorithm to minimize the convex function

$$f: \mathbb{R}^n \to \mathbb{R}, \ f(x) = \frac{\lambda}{2} ||x||^2 + ||x||_1,$$

- (i) by considering different values for the dimension n (for instance, n = 1, 10, 100, 1000) and for the starting point x^0 ;
- (ii) by considering different values for the parameter λ ($\lambda = 0, 1, 10, 100, 1000, 10000$);
- (iii) by using as stopping criterion $||x^k x^*|| \le 10^{-3}$, where x^* denotes the unique minimizer of f;
- (iv) by using both constant stepsizes $\gamma_k = 1, \forall k \ge 0$, and variable stepsizes $\gamma_k = \frac{1}{k+1}, \forall k \ge 0$.

Display the RMSE $(\frac{1}{\sqrt{n}} ||x^k - x^*||, k = 0, 1, 2, ...)$ and the objective function values $(f(x^k) - f(x^*), k = 0, 1, 2, ...)$ as functions of the number of iterations k (in two separate plots).

Send the generated files by June 11, 2019 at radu.bot@univie.ac.at.