Vienna, June 18, 2019

Univ.-Prof. Dr. Radu Ioan Boț

Convex Optimization Exercise session 7

37. (Proximal-gradient algorithm) Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a proper, convex and lower semicontinuous function and $g : \mathbb{R}^n \to \mathbb{R}$ a convex and differentiable function with $\frac{1}{\beta}$ -Lipschitz continuous gradient. To solve the convex optimization problem

$$\inf_{x \in \mathbb{R}^n} \{ f(x) + g(x) \},\$$

- (i) implement the proximal-gradient algorithm with relaxation variable $\lambda_k = 1, k \ge 0$, and constant stepsize β ;
- (ii) implement the accelerated proximal-gradient algorithm (FISTA) with $\alpha_k = \frac{t_k 1}{t_{k+1}}, k \ge 1$, where $t_1 = 1$ and $t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}, k \ge 1$;
- (iii) implement the accelerated proximal-gradient algorithm (FISTA) with $\alpha_k = \frac{t_k 1}{t_{k+1}}, k \ge 1$, where $t_1 = 1$ and $t_k = \frac{k+a-1}{a}, k \ge 1$, by considering different values for a > 3.

Test the algorithms for

$$n = 50, \quad f(x) = \|x\|_1, \quad g(x) = {1 \ \left(\frac{1}{5}\|\cdot\|\right)(x) = \begin{cases} \frac{1}{2}\|x\|^2, & \text{if } \|x\| \le \frac{1}{5}\\ \frac{1}{5}\|x\| - \frac{1}{50}, & \text{otherwise,} \end{cases}}$$

by using as stopping criterion $(f+g)(x_k) - (f+g)(x^*) \le 10^{-3}$, where x^* denotes the unique minimizer of f+g.

For all three algorithms display the objective function values $((f+g)(x^k) - (f+g)(x^*), k = 0, 1, 2, ...)$ as well as the theoretical upper bounds for $(f+g)(x^k) - (f+g)(x^*)$ as functions of the number of iterations k (in a single plot).

For all three algorithms display the RMSE $(\frac{1}{\sqrt{50}} || x_k - x^* ||, k = 0, 1, 2, ...)$ as functions of the number of iterations k (in a single plot).

Send the generated files by July 2, 2019 at radu.bot@univie.ac.at.

38. (MAP versus DR) Implement the method of alternating projections and the Douglas-Rachford algorithm for determining an element in the intersection of two sets. Apply the algorithms to find an element in the intersection of the sets

$$S = \mathbb{R}^2_+$$
 and $T = \{(u, v) \in \mathbb{R}^2 : u + 5v = 6\}.$

(i) Use $d_T(x_k) \leq 10^{-4}$ as stopping criterion for the method of alternating projections.

- (ii) Use $d_S(P_T(x_k)) \le 10^{-4}$ as stopping criterion for the Douglas-Rachford algorithm.
- (iii) Use $x_0 \in \{(u_0, v_0) \in \mathbb{Z} \times \mathbb{Z} : u_0 \in [0, 100], v_0 \in [-100, 0]\}$ as starting points for both algorithms.

Plot for both algorithms the number of iterates needed to satisfy the stopping criteria. Send the generated files by July 2, 2019 at radu.bot@univie.ac.at.