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Preface

“Mathematics is the most beautiful and most powerful creation of the human
spirit.” (Stefan Banach)
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Chapter I

Normed spaces

1 Definitions and examples

In this lecture we consider vector spaces over the fields K = R or K = C. We
use the syntagm vector space over K in order to indicate that both a real and
a complex vector space can be meant. If not otherwise stated, we will tacitly
assume that the vector space is not the trivial one {0}.

Definition 1.1 (Seminorm and norm) Let X be a vector space over K. A func-
tion p : X → [0,+∞) is called seminorm if

(a) p(λx) = |λ|p(x) ∀λ ∈ K ∀x ∈ X;

(b) (triangle inequality) p(x+ y) ≤ p(x) + p(y) ∀x, y ∈ X.

In this case (X, p) is called a seminormed space.
The function p is called norm if, in addition,

(c) p(x) = 0⇔ x = 0.

Norms are usually denoted with the symbol ‖ · ‖ and (X, ‖ · ‖) is called a normed
space.

One can easily see that (a) (for λ = 0 and x = 0) yields p(0) = 0.
On a normed space (X, ‖ · ‖) one can induce in a natural way the metric

d : X ×X → [0,+∞), d(x, y) = ‖x− y‖.

It is easy to see that the metric axioms are, for arbitrary x, y, z,∈ X, fulfilled:

(a) d(x, y) ≥ 0;

(b) d(x, y) = d(y, x);
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8 I Normed spaces

(c) d(x, y) ≤ d(x, z) + d(y, z);

(d) d(x, y) = 0⇔ x = y.

Definition 1.2 (Cauchy sequence and convergent sequence) Let (X, ‖ · ‖) be a
normed space and (xn)n∈N a sequence in X. We say that

(a) (xn)n∈N is a Cauchy sequence if

∀ε > 0 there exists N ∈ N such that ∀m,n ≥ N it holds ‖xm − xn‖ < ε.

(b) (xn)n∈N converges to x ∈ X (and write limn→+∞ xn = x) if

∀ε > 0 there exists N ∈ N such that ∀n ≥ N it holds ‖xn − x‖ < ε.

In a normed space every convergent sequence is a Cauchy sequence, however,
as we will see later, the opposite statement is in general not true.

Definition 1.3 (Banach space) A metric space (X, d) is said to be complete if
every Cauchy sequence in X converges to an element in X. A complete normed
space (X, ‖ · ‖) is called Banach space.

In Chapter III we will show that every normed space which is not complete
can be “embedded” into a Banach space.

Example 1.4 The vector space Kn endowed with each of the following norms
(defined for x = (x1, ..., xn) ∈ Kn)

‖x‖1 =
n∑
i=1

|xi|

‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

‖x‖∞ = max
i=1,...,n

|xi|

is a Banach space. Every sequence in Kn which is Cauchy/convergent with respect
to one of the norms is Cauchy/convergent with respect to each of the other two
norms.

Example 1.5 (The space `∞(T )) Let T be a nonempty set and

`∞(T ) := {x : T → K | x is a bounded function}.

It is easy to see that, for x ∈ `∞(T ),

‖x‖∞ = sup
t∈T
|x(t)|
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defines a norm on on `∞(T ), which is the so-called supremum norm.

(`∞(T ), ‖ · ‖∞) is a Banach space.
We will show that this normed space is complete. Let (xn)n∈N be a Cauchy

sequence in `∞(T ). Let t ∈ T be fixed. Since

|xm(t)− xn(t)| ≤ ‖xm − xn‖∞ ∀m,n ∈ N,

it follows that (xn(t))n∈N is a Cauchy sequence in K. Since K is complete, there
exists x(t) := limn→+∞ xn(t) ∈ K. This defines a function x : T → K. We show
that (xn)n∈N converges to x in the supremum norm (which actually means that
the sequence converges uniformly to x on K).

Let ε > 0 be fixed. Then there exists N ∈ N such that

‖xm − xn‖∞ <
ε

2
∀m,n ≥ N.

Let t ∈ T . Then there exists M ≥ N such that

|xM(t)− x(t)| < ε

2
.

For every n ≥ N it holds

|xn(t)− x(t)| ≤|xn(t)− xM(t)|+ |xM(t)− x(t)|

≤‖xn − xM‖∞ +
ε

2
< ε.

On the one hand, for every t ∈ T it holds

|x(t)| ≤ |xN(t)|+ |x(t)− xN(t)| ≤ ‖xN‖∞ + ε,

which shows that x is bounded. On the other hand, we have

‖xn − x‖∞ < ε ∀n ≥ N,

which proves that xn → x as n→ +∞.

Lemma 1.6 (a) If X is a Banach space and M is a closed linear subspace of
X, then M is complete.

(b) If X is a normed space and M a complete linear subspace of X, then M is
closed.

Proof. (a) Let (xn)n∈N be a Cauchy sequence in M . Since X is a Banach space,
there exists x := limn→+∞ xn ∈ X. Taking into account that M is closed, x ∈M .

(b) Let (xn)n∈N ⊆ M be a given sequence and x := limn→+∞ xn ∈ X. Since
the sequence (xn)n∈N is convergent, it is also a Cauchy sequence. From the fact
that M is complete it yields that (xn)n∈N must have a limit in M . Using that
the limit of the sequence is unique, it follows that x ∈M . This proves that M is
closed. �
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Lemma 1.6 can be used to prove the completeness of linear subspaces of
Banach spaces. To this end one just has to prove that the respective linear
subspaces are closed.

Example 1.7 (The space of continuous functions) Let T be a topological (met-
ric) space and

Cb(T ) := {x : T → K | x is a bounded and continuous function}.

It is obvious that Cb(T ) is a linear subspace of `∞(T ).

Cb(T ) endowed with the supremum norm is a Banach space.
To prove this, according to Lemma 1.6, it is enough to show that if (xn)n∈N ⊆

Cb(T ) is a sequence, which converges uniformly to a bounded function x on T ,
then x is continuous on T .

To this end, let t0 ∈ T be fixed and ε > 0. Then there exists N ∈ N such that
‖xN − x‖∞ < ε

3
. Since xN is continuous, there exists a neighbourhood U(t0) of

t0 in T such that for all t ∈ U(t0) it holds |xN(t) − xN(t0)| < ε
3
. From here we

have for all t ∈ U(t0) that

|x(t)− x(t0)| ≤|x(t)− xN(t)|+ |xN(t)− xN(t0)|+ |xN(t0)− x(t0)|
≤2‖x− xN‖∞ + |xN(t)− xN(t0)| < ε.

This shows that x is continuous at t0. Since t0 was arbitrarily chosen, it follows
that x is continuous.

If T is a compact topological (metric) space, then every continuous function
x : T → K is bounded. In such a case, instead of Cb(T ), one writes C(T ).

Example 1.8 (Spaces of differentiable functions) Let

C1[a, b] := {x : [a, b]→ K | x is continuously differentiable on [a, b]}.

C1[a, b] is a linear subspace of C[a, b].

C1[a, b] endowed with the supremum norm is not a Banach space.
This is a consequence of Lemma 1.6(b) and of the fact that C1[a, b] is not

closed with respect to the supremum norm. Indeed, define for every n ≥ 1

xn : [−1, 1]→ R, xn(t) =

(
t2 +

1

n

) 1
2

.

We obtain in this way a sequence of continuously differentiable functions, which
converges uniformly to the absolute value function | · |, which is obviously not a
continuously differentiable function.



1 Definitions and examples 11

We consider on C1[a, b] the following norms (which is easy to see)

‖x‖ = max{‖x‖∞, ‖x′‖∞} = sup
t∈[a,b]

max{|x(t)|, |x′(t)|}

|||x||| =‖x‖∞ + ‖x′‖∞.

C1[a, b] endowed with each of the norms ‖ · ‖ and ||| · ||| is a Banach space.
It holds

‖x‖ ≤ |||x||| ≤ 2‖x‖ ∀x ∈ C1[a, b].

Thus, (C1[a, b], ‖ · ‖) is complete if and only if (C1[a, b], ||| · |||) is complete. Let
(xn)n∈N be a Cauchy sequence with respect to one of the two norms. Then
(xn)n∈N and (x′n)n∈N are Cauchy sequences with respect to ‖ · ‖∞. Since C[a, b] is
complete with respect to the supremum norm, the two sequences have both limits
in C[a, b]; let these be x and y, respectively. Since (xn)n∈N converges uniformly
to x and (x′n)n∈N converges uniformly to y, it follows that x is differentiable and
x′ = y. In conclusion, x ∈ C1[a, b] and limn→+∞ xn = x.

Analogously, for r ∈ N, r ≥ 1, let be

Cr[a, b] := {x : [a, b]→ K | x is r − times continuously differentiable on [a, b]}.

Cr[a, b] endowed with the norm |||x||| =
∑r

i=0 ‖x(i)‖∞ is a Banach space.

Similarly, one can endow spaces of r-times continuously differentiable func-
tions of several real variables with corresponding norms in order to obtain Banach
spaces.

Example 1.9 (The sequence spaces c00, c0, c, `
∞) Consider the vector spaces

c00 :={(tn)n∈N ⊆ K | tn 6= 0 for at most finitely many n}
c0 :={(tn)n∈N ⊆ K | lim

n→+∞
tn = 0}

c :={(tn)n∈N ⊆ K | (tn)n∈N is convergent}
`∞ := `∞(N) ={(tn)n∈N ⊆ K | (tn)n∈N is bounded}

endowed with the supremum norm

‖x‖∞ = sup
n∈N
|tn|, for x = (tn)n∈N.

It holds
c00 ⊂ c0 ⊂ c ⊂ `∞

and, as seen in Example 1.5, `∞ is a Banach space.

c0, c and `∞ are Banach spaces with respect to the supremum norm, c00 is not
a Banach space.
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c00 is not closed (and the conclusion follows from Lemm 1.6 (b)). Let x =
( 1
n
)n∈N and, for every n ∈ N,

xn :=

(
1,

1

2
, ...,

1

n
, 0, 0, ...

)
.

Then (xn)n∈N ⊆ c00 and ‖xn − x‖∞ = 1
n+1
→ 0 as n→ +∞, however, x /∈ c00.

c is closed. Let (xn)n∈N ⊆ c and xn → x ∈ `∞ as n→ +∞. Let xn := (tn,k)k∈N

and limk→+∞ tn,k = tn,∞ for every n ∈ N, and x := (tk)k∈N. Since (xn)n∈N is a
Cauchy sequence, (tn,∞)n∈N is a Cauchy sequence, too, thus convergent in K. Let
t∞ := limn→+∞ tn,∞. We show that limk→+∞ tk = t∞, which will prove that x ∈ c.

To this end, let be ε > 0 and N ∈ N such that

‖xN − x‖∞ <
ε

3
and |tN,∞ − t∞| <

ε

3
.

Let K ∈ N be such that for all k ≥ K

|tN,k − tN,∞| <
ε

3
.

Therefore,

|tk − t∞| ≤|tk − tN,k|+ |tN,k − tN,∞|+ |tN,∞ − t∞|

≤‖xN − x‖∞ +
2ε

3
< ε ∀k ≥ K.

c0 is closed. Let (xn)n∈N ⊆ c0 and xn → x ∈ `∞ as n → +∞. Using the
notations above, we have that x ∈ c and limk→+∞ tk = t∞ = limn→+∞ tn,∞ = 0.
In conclusion, x ∈ c0.

Example 1.10 (The sequence spaces `p (1 ≤ p <∞)) Let

`p :=

{
(tn)n∈N ⊆ K |

+∞∑
n=1

|tn|p < +∞

}
and, for x = (tn)n∈N,

‖x‖p :=

(
+∞∑
n=1

|tn|p
) 1

p

.

(`p, ‖ · ‖p) is a Banach space.
For λ ∈ K and x ∈ `p we obviously have that λx ∈ `p.
Let now x = (tn)n∈N, y = (sn)n∈N ∈ `p and n ≥ 1 be fixed. By the Minkowski

inequality (see Übungsbeispiel 2) it holds for all m ≥ n(
n∑
k=1

|tk + sk|p
) 1

p

≤

(
n∑
k=1

|tk|p
) 1

p

+

(
n∑
k=1

|sk|p
) 1

p

≤

(
m∑
k=1

|tk|p
) 1

p

+

(
m∑
k=1

|sk|p
) 1

p

.
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By letting m→ +∞ we see that(
n∑
k=1

|tk + sk|p
) 1

p

≤

(
+∞∑
k=1

|tk|p
) 1

p

+

(
+∞∑
k=1

|sk|p
) 1

p

= ‖x‖p + ‖y‖p < +∞.

By letting now n→ +∞ we obtain the Minkowski inequality for sequences

‖x+ y‖p ≤ ‖x‖p + ‖y‖p, (1.1)

which yields x+ y ∈ `p.
Therefore, `p is a vector space. It is easy to see that (a), (b) (by taking into

account (1.1)) and (c) in Definition 1.1 are verified, thus ‖ · ‖p is a norm on `p.
It remains to show that (`p, ‖ · ‖p) is complete. To this end we consider a

Cauchy sequence (xn)n∈N in `p, where xn := (tn,k)k∈N for all n ∈ N. Let k ∈ N be
fixed. Since |tm,k − tn,k| ≤ ‖xm − xn‖p for all m,n ∈ N, it follows that (tn,k)k∈N

is a Cauchy sequence in K. Thus there exists tk := limn→+∞ tn,k ∈ K. Let
x := (tk)k∈N. We will prove that x ∈ `p and ‖xn − x‖p → 0 as n→ +∞.

Let ε > 0 be fixed and N ∈ N such that ‖xm − xn‖p < ε
2

for all m,n ≥ N .
Let K ∈ N be fixed. It holds(

K∑
k=1

|tm,k − tn,k|p
) 1

p

≤ ‖xm − xn‖p <
ε

2
∀m,n ≥ N.

For all n ≥ N and all K ∈ N, by letting m→ +∞, we get(
K∑
k=1

|tk − tn,k|p
) 1

p

≤ ε

2

and further, by letting K → +∞,(
+∞∑
k=1

|tk − tn,k|p
) 1

p

= ‖x− xn‖p < ε ∀n ≥ N.

Thus ‖xn−x‖p → 0 as n→ +∞ and xN−x ∈ `p, which leads to x = x−xN+xN ∈
`p.

Remark 1.11 (Hölder inequality for sequences) For x ∈ `1 and y ∈ `∞ it holds
xy ∈ `1 and

‖xy‖1 ≤ ‖x‖1‖y‖∞.
By using the Hölder inequality (see Übungsbeispiel 1 (b)) and the same technique
as in Example 1.10 one can prove that, for p, q > 1 fulfilling 1

p
+ 1

q
= 1 and x ∈ `p

and y ∈ `q, it holds xy ∈ `1 and

‖xy‖1 ≤ ‖x‖p‖y‖q.
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Before introducing a new class of Banach function spaces we will prove the
following lemma, which characterizes complete seminormed spaces.

Lemma 1.12 Let (X, ‖ · ‖) be a seminormed space. The following statements
are equivalent:

(i) X is complete, namely, every Cauchy sequence in X (in the sense of Defini-
ton 1.2(a)) converges to an element in X (in the sense of Definiton 1.2(b)).

(ii) Every absolutely convergent series in X is convergent, in other words, for
every sequence (xn)n∈N ⊆ X fulfilling

∑+∞
n=1 ‖xn‖ < +∞ there exists x ∈ X

such that limN→+∞

∥∥∥∑N
n=1 xn − x

∥∥∥ = 0.

Proof. (i) ⇒ (ii) For every n ≥ 1 let be sn :=
∑n

k=1 xn. For every n > m ≥ 1
we have

‖sn − sm‖ =

∥∥∥∥∥
n∑

k=m+1

xk

∥∥∥∥∥ ≤
n∑

k=m+1

‖xk‖.

Thus limm,n→+∞ ‖sn− sm‖ = 0, which means that (sn)n∈N is a Cauchy sequence.
From here and the fact that X is complete the conclusion follows.

(ii) ⇒ (i) Let (xn)n∈N be a Cauchy sequence in X. For every k ∈ N, let be
Nk ∈ N such that

‖xm − xn‖ <
1

2k
∀m,n ≥ Nk.

This leads to a sequence (xnk)k∈N fulfilling

‖xnk+1
− xnk‖ <

1

2k
∀k ∈ N.

We notice that
∑+∞

k=1 ‖xnk+1
− xnk‖ < +∞, which means that there exists y ∈ X

such that

0 = lim
K→+∞

∥∥∥∥∥
K∑
k=1

(xnk+1
− xnk)− y

∥∥∥∥∥ = lim
K→+∞

∥∥xnK+1
− xn1 − y

∥∥ .
We will show that the whole sequence (xn)n∈N converges to xn1 + y (in the sense
of Definiton 1.2(b)). Let ε > 0 and N ∈ N be such that

‖xm − xn‖ <
ε

2
∀m,n ≥ N.

Let k ∈ N be such that nk ≥ N and

‖xnk − (xn1 + y)‖ < ε

2
.

Then for all n ≥ N it holds

‖xn − (xn1 + y)‖ ≤ ‖xn − xnk‖+ ‖xnk − (xn1 + y)‖ < ε,

and the statement is proved. �
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Example 1.13 (The spaces Lp (1 ≤ p < ∞)) Let I ⊆ R be an interval, Σ the
Borel σ-algebra on I (the smallest σ-algebra containing all open subsets of I)
and λ the Lebesgue measure on I. Let (if f is measurable, then |f |p is also
measurable)

Lp(I) :=

{
f : I → K | f is measurable and

∫
I

|f |pdλ < +∞
}

and, for f ∈ Lp(I),

‖f‖∗p :=

(∫
I

|f |pdλ
) 1

p

.

For α ∈ K and f ∈ Lp(I) we obviously have that αf ∈ Lp(I). Choose now
f, g ∈ Lp(I). Then f + g is measurable and it holds∫
I

|f(t) + g(t)|pdλ(t) ≤
∫
I

(|f(t)|+ |g(t)|)pdλ(t) ≤
∫
I

(2 max{|f(t)|, |g(t)|})pdλ(t)

= 2p
∫
I

max{|f(t)|p, |g(t)|p}dλ(t)

≤ 2p
(∫

I

|f(t)|pdλ(t) +

∫
I

|g(t)|pdλ(t)

)
< +∞.

This proves that Lp(I) is a vector space.

(Lp(I), ‖ · ‖∗p) is a complete seminormed space.
It holds

‖αf‖∗p =

(∫
I

|αf(t)|pdλ(t)

) 1
p

= |α|
(∫

I

|f |pdλ
) 1

p

= |α|‖f‖∗p ∀α ∈ K ∀f ∈ Lp(I).

In order to prove the triangle inequality we will derive first variants of the Hölder
and the Minkowski inequality in the context of function spaces.

A variant of the Hölder inequality for Lp(I): Let p, q > 1 be such that 1
p

+ 1
q

=

1, f ∈ Lp(I) and g ∈ Lq(I). Then fg ∈ L1(I) and

‖fg‖∗1 ≤ ‖f‖∗p‖g‖∗q. (1.2)

We denote A := (‖f‖∗p)p and B := (‖g‖∗q)q. If A = 0, then f = 0 almost
everywhere (a.e.), thus fg = 0 a.e. and the conclusion follows. We come to
the same conclusion if B = 0, thus we can assume that A,B > 0. The Young
inequality (see Übungsbeispiel 1(a)) yields for every t ∈ I

|f(t)|
A

1
p

|g(t)|
B

1
q

=

(
|f(t)|p

A

) 1
p
(
|g(t)|q

B

) 1
q

≤ 1

p

|f(t)|p

A
+

1

q

|g(t)|q

B
.

The conclusion follows by integration.
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A variant of the Minkowski inequality for Lp(I): Let p ≥ 1 and f, g ∈ Lp(I).
Then

‖f + g‖∗p ≤ ‖f‖∗p + ‖g‖∗p. (1.3)

We assume that p > 1 (the case p = 1 is trivial) and define q := p
p−1

. Then
1
p

+ 1
q

= 1. We apply twice (1.2):

(‖f + g‖∗p)p =

∫
I

|f(t) + g(t)|pdλ(t)

≤
∫
I

|f(t)||f(t) + g(t)|p−1dλ(t) +

∫
I

|g(t)||f(t) + g(t)|p−1dλ(t)

≤ ‖f‖∗p‖|f + g|p−1‖∗q + ‖g‖∗p‖|f + g|p−1‖∗q
= (‖f‖∗p + ‖g‖∗p)(‖f + g‖∗p)p−1.

From here, the conclusion follows.
The triangle inequality for ‖ ·‖∗p is nothing else than (1.3). Thus (Lp(I), ‖ ·‖∗p)

is a seminormed space. One can easily see that ‖ · ‖∗p is “only” a seminorm, since
‖f‖∗p = 0 if and only if f = 0 almost everywhere. However, as we will see in the
following, (Lp(I), ‖ · ‖∗p) is complete.

We will use Lemma 1.12 (ii) ⇒ (i). Let (fn)n∈N ⊆ Lp(I) be such that M :=∑+∞
n=1 ‖fn‖∗p < +∞. We define for every n ∈ N the functions gn(t) =

∑n
k=1 |fk(t)|

for all t ∈ I. Since Lp(I) is a vector space, gn ∈ Lp(I) for every n ∈ N. In
addition, according to the Minkowski inequality, we have

‖gn‖∗p ≤
n∑
k=1

‖fk‖∗p ≤M < +∞ ∀n ∈ N.

Since for every t ∈ I, 0 ≤ gn(t) ≤ gn+1(t) for every n ∈ N, there exists g(t) :=
limn→+∞ gn(t) =

∑+∞
k=1 |fk(t)| ∈ [0,+∞]. The function g is measurable. Making

use of the Theorem of Beppo Levi we can conclude that∫
I

g(t)pdλ(t) = lim
n→+∞

∫
I

gn(t)pdλ(t) ≤Mp.

This mean that gp and, consequently, g is finite almost everywhere. In other
words, there exists a set N ∈ Σ of measure zero such that

g(t) =
+∞∑
k=1

|fk(t)| ∈ R ∀t ∈ I \N.

Using the Cauchy criterion for series we can conclude that

f(t) :=
+∞∑
k=1

fk(t) ∈ K
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exists for every t ∈ I \N . We define f(t) := 0 for all t ∈ N and get in this way
a measurable function f : I → K.

We define for every n ∈ N the functions sn(t) =
∑n

k=1 fk(t) for all t ∈ I. Then

|sn(t)| ≤ gn(t) ≤ g(t) ∀n ∈ N ∀t ∈ I \N.

Therefore |f(t)| ≤ g(t) for all t ∈ I \ N , which implies that
∫
I
|f(t)|pdλ(t) ≤∫

I
g(t)pdλ(t) ≤Mp, thus f ∈ Lp(I).
Finally, we have limn→+∞ |sn(t)− f(t)| = 0, thus limn→+∞ |sn(t)− f(t)|p = 0

for every t ∈ I \N . On the other hand,

0 ≤ |sn(t)− f(t)|p = lim
m→+∞

∣∣∣∣∣
m∑
k=n

fk(t)

∣∣∣∣∣
p

≤

(
lim

m→+∞

m∑
k=n

|fk(t)|

)p

= g(t)p

for every t ∈ I \ N and g is Lebesgue integrable. By the Lebesgue dominated
convergence Theorem we conclude that

lim
n→+∞

∥∥∥∥∥
n∑
k=1

fk − f

∥∥∥∥∥
∗

p

= lim
n→+∞

‖sn − f‖∗p = lim
n→+∞

(∫
I

|sn(t)− f(t)|pdλ(t)

) 1
p

= 0.

In order to obtain a complete normed space we have to identify functions
which coincide almost everywhere. This approach uses the notion of quotient
(semi) normed space.

Definition 1.14 Let (X, ‖ · ‖) be a seminormed space and A ⊆ X. The distance
function to the set A is defined as

dist(·, A) : X → R, dist(x,A) := inf{‖x− a‖ : a ∈ A}.

It holds dist(x,A) = 0⇔ x ∈ A.

Theorem 1.15 Let X be a seminormed space over K and M ⊆ X a nonempty
linear subspace. Let

X/M := {[x] = x+M | x ∈ X}

be the quotient space of X by M . Recall that X/M with the operations

[x] + [y] := [x+ y] ∀x, y ∈ X

and
λ[x] := [λx] ∀λ ∈ K ∀x ∈ X

is a vector space over K. The following statements are true:

(a) ‖[x]‖ := dist(x,M) defines a seminorm on X/M .
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(b) If M is closed, then ‖ · ‖ is a norm on X/M .

(c) If X is complete and M is closed, then X/M is complete.

Proof. (a) We prove first that ‖ · ‖ is well-defined. If x + M = y + M , then
there exists m ∈M such that x = y +m. Thus dist(x,M) = inf{‖y +m−m′‖ :
m′ ∈M} = inf{‖y −m′‖ : m′ ∈M} = dist(y,M).

It is clear that dist(x,M) ≥ 0 for all x ∈ X.
For λ ∈ K and x ∈ X it holds

‖λ[x]‖ = dist(λx,M) = inf{‖λx−m‖ : m ∈M} = inf{‖λx− λm‖ : m ∈M}
= |λ| inf{‖x−m‖ : m ∈M} = |λ| dist(x,M) = |λ|‖[x]‖.

Let x, y ∈ X and ε > 0. Then there exist m,n ∈ M such that ‖x − m‖ ≤
‖[x]‖+ ε and ‖y − n‖ ≤ ‖[y]‖+ ε. It holds

‖[x] + [y]‖ = ‖[x+ y]‖ ≤ ‖(x+ y)− (m+ n)‖ ≤ ‖x−m‖+ ‖y − n‖
≤ ‖[x]‖+ ‖[y]‖+ 2ε.

Letting ε→ 0, it yields ‖[x] + [y]‖ ≤ ‖[x]‖+ ‖[y]‖.
(b) We have that ‖[x]‖ = 0⇔ dist(x,M) = 0⇔ x ∈M = M ⇔ [x] = [0].
(c) Let (xn)n∈N ⊆ X be such that

∑+∞
n=1 ‖[xn]‖ < +∞. For every n ∈ N there

exists mn ∈M such that ‖xn−mn‖ ≤ ‖[xn]‖+2−n. Then
∑+∞

n=1 ‖xn−mn‖ < +∞
and, according to Lemma 1.12 (i)⇒ (ii), there exists x :=

∑+∞
n=1(xn−mn). This

implies for every N ∈ N∥∥∥∥∥[x]−
N∑
n=1

[xn]

∥∥∥∥∥ =

∥∥∥∥∥
[
x−

N∑
n=1

xn

]∥∥∥∥∥ = dist

(
x−

N∑
n=1

xn,M

)

≤

∥∥∥∥∥x−
N∑
n=1

(xn −mn)

∥∥∥∥∥ .
Letting N → +∞, it yields

∑+∞
n=1[xn] = [x]. In the light of Lemma 1.12 (ii)⇒ (i)

we obtain that X/M is complete. �

Remark 1.16 If (X, ‖ · ‖) is a seminormed space, then N := {x ∈ X : ‖x‖ = 0}
is a closed linear subspace of X. For every x ∈ X it holds dist(x,N) = ‖x‖.
Thus, according to Theorem 1.15, ‖[x]‖ := ‖x‖ for every x ∈ X, defines a norm
on X/N and, if X is complete, then X/N is a Banach space.

Coming back to the Lp spaces discussed in Example 1.13, we consider the
kernel of the seminorm ‖ · ‖∗p (which actually does not depend on p)

Np := {f is measurable | f = 0 a.e.} = {f is measurable | ‖f‖∗p = 0}
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and the quotient vector space

Lp(I) := Lp(I)/Np.

We denote the quotient norm on Lp(I) by ‖ · ‖p or by ‖ · ‖Lp . In view of Remark
1.16 we have that:

(Lp(I), ‖ · ‖p) is a Banach space for p ≥ 1.
The elements of Lp(I) are equivalence classes of functions, however, they are

handled as functions. This means that instead of [f ] ∈ Lp(I) we write f ∈ Lp(I).
Having a measure space (Ω,Σ, µ) one can similarly introduce for p ≥ 1 the

space Lp(Ω,Σ, µ), which is also shortly denoted by Lp(µ), and prove that:

(Lp(µ), ‖ · ‖p) is a Banach space for p ≥ 1.
For Ω = N, Σ = the power set of the set of natural numbers, and µ = the

counting measure, it holds Lp(Ω,Σ, µ) = `p.

Example 1.17 (The spaces L∞) Let I ⊆ R be an interval, Σ the Borel σ-algebra
on I and λ the Lebesgue measure on I. Further, let be

L∞(I) := {f : I → K | f is measurable and

∃N ∈ Σ, λ(N) = 0 such that f |I\N is bounded}

and, for f ∈ L∞(I),

‖f‖∗L∞ := inf
N∈Σ,λ(N)=0

sup
t∈I\N

|f(t)| = inf
N∈Σ,λ(N)=0

‖f |I\N‖∞ (< +∞).

It is easy to see that L∞(I) is a vector space.
We notice that for every f ∈ L∞(I) there exists a set N = N(f) ∈ Σ of

measure zero such that ‖f‖∗L∞ = ‖f |I\N‖∞. Indeed, for every k ∈ N, let be Nk ∈
Σ with λ(Nk) = 0 such that ‖f |I\Nk‖∞ ≤ ‖f‖∗L∞ + 1

k
. Define N := ∪k∈NNk ∈ Σ.

Then λ(N) = 0 and

‖f‖∗L∞ ≤ ‖f |I\N‖∞ ≤ ‖f |I\Nk‖∞ ≤ ‖f‖
∗
L∞ +

1

k
∀k ∈ N.

Letting k → +∞, the conclusion follows.

(L∞(I), ‖ · ‖∗∞) is a complete seminormed space.
For every α ∈ K and every f ∈ L∞(I) it holds

‖αf‖∗∞ = inf
N∈Σ,λ(N)=0

‖αf |I\N‖∞ = |α| inf
N∈Σ,λ(N)=0

‖f |I\N‖∞ = |α|‖f‖∗∞.

Let f, g ∈ L∞(I) and N(f), N(g) ∈ Σ such that λ(N(f)) = λ(N(g)) = 0,
‖f‖∗L∞ = ‖f |I\N(f)‖∞ and ‖g‖∗L∞ = ‖g|I\N(g)‖∞. We have

‖f + g‖∗L∞ ≤ ‖(f + g)|I\(N(f)∪N(g))‖∞ ≤ ‖f |I\(N(f)∪N(g))‖∞ + ‖g|I\(N(f)∪N(g))‖∞
≤ ‖f |I\N(f)‖∞ + ‖g|I\N(g)‖∞ = ‖f‖∗L∞ + ‖g‖∗L∞ .
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Next we will prove that L∞(I) is complete. Let (fn)n∈N a Cauchy sequence
in L∞(I) and, for every pair (n,m) ∈ N×N, let Nn,m ∈ Σ such that λ(Nn,m) = 0
and ‖fn − fm‖∗L∞ = ‖(fn − fm)|I\Nn,m‖∞. Define N := ∪n,m∈NNn,m ∈ Σ. It holds
λ(N) = 0 and for all n,m ∈ N

‖(fn − fm)|I\N‖∞ ≤ ‖(fn − fm)|I\Nn,m‖∞ = ‖fn − fm‖∗L∞ .

This implies that (fn|I\N)n∈N is a Cauchy sequence in (`∞(I \ N), ‖ · ‖∞) and,
consequently, convergent to a function f : I \N → K. We define f(t) = 0 for all
t ∈ N and notice that f is the uniform limit of the sequence of measurable and
bounded functions (fnχI\N)n∈N, where, for a set A ⊆ I, χA(t) = 1 for t ∈ A and
χA(t) = 0 for t /∈ A. This implies that

lim
n→+∞

‖fn − f‖∗L∞ ≤ lim
n→+∞

‖(fn − f)|I\N‖∞ = 0.

The kernel of the seminorm ‖ · ‖∗∞ is

N∞ := {f is measurable | f = 0 a.e.}

and the corresponding quotient vector space is denoted by

L∞(I) := L∞(I)/N∞.

The quotient norm on L∞(I) is denoted by ‖ · ‖L∞ and it is called the essential
supremum norm. In view of Remark 1.16 we have that

(L∞(I), ‖ · ‖L∞) is a Banach space.
The elements of L∞(I) are handled as functions, which means that instead of

[f ] ∈ L∞(I) we write f ∈ L∞(I).
For a given measure space (Ω,Σ, µ) one can introduce in a similar way the

space L∞(Ω,Σ, µ), which is also shortly denoted by L∞(µ), and prove that

(L∞(µ), ‖ · ‖L∞) is a Banach space.

2 Properties of normed spaces

The following theorem shows that addition, multiplication with scalar and ‖ · ‖
are continuous mappings on normed spaces.

Theorem 2.1 Let X a normed space. The following statements are true:

(a) If xn → x and yn → y as n→ +∞, then xn + yn → x+ y as n→ +∞.

(b) If λn → λ in K and xn → x as n→ +∞, then λnxn → λx as n→ +∞.

(c) If xn → x as n→ +∞, then ‖xn‖ → ‖x‖ as n→ +∞.
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Proof. (a) We have

‖(xn + yn)− (x+ y)‖ ≤ ‖xn − x‖+ ‖yn − y‖ → 0 (n→ +∞).

(b) We have

‖λnxn − λx‖ ≤ |λn − λ|‖xn‖+ |λ|‖xn − x‖ → 0 (n→ +∞).

(c) We have

|‖xn‖ − ‖x‖| ≤ ‖xn − x‖ → 0 (n→ +∞).

�

As a direct consequence of Theorem 2.1, we obtain that the closure of a linear
subspace of a normed space is also a linear subspace.

Definition 2.2 (Equivalent norms) Two norms ‖·‖ and |||·||| defined on a vector
space X are said to be equivalent if there exist two positive numbers 0 < m ≤M
such that

m‖x‖ ≤ |||x||| ≤M‖x‖ ∀x ∈ X.

Theorem 2.3 Let ‖ · ‖ and ||| · ||| be two norms on X. The following statements
are equivalent:

(i) ‖ · ‖ and ||| · ||| are equivalent.

(ii) A sequence in X is convergent with respect to ‖·‖ if and only if it is convergent
with respect to ||| · |||.

(c) A sequence in X converges to zero with respect to ‖·‖ if and only if it converges
to zero with respect to ||| · |||.

Proof. The implications (i)⇒ (ii)⇒ (iii) are trivial.
(iii) ⇒ (i). We assume that there is no M > 0 such that |||x||| ≤ M‖x‖

for every x ∈ X. This means that for every n ∈ N there exists xn ∈ X such
that |||xn||| > n‖xn‖. We define yn := xn

n‖xn‖ for every n ∈ N and notice that

‖yn‖ = 1
n
→ 0 (n → +∞). Since |||yn||| > 1 for every n ∈ N, (yn)n∈N does not

converge to zero with respect to ||| · |||. Contradiction! The existence of m > 0
can be shown analogously. �

If the norms ‖ · ‖ and ||| · ||| defined on a vector space X are equivalent, then

(xn)n∈N is a Cauchy sequence in (X, ‖ · ‖)
⇔ (xn)n∈N is a Cauchy sequence in (X, ||| · |||),

which means that

(X, ‖ · ‖) is complete ⇔ (X, ||| · |||) is complete.
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Example 2.4 (a) The norms ‖ ·‖ and ||| · ||| on C1[a, b] introduced in Example
1.8 are equivalent. They are not equivalent to ‖ · ‖∞.

(b) The norms ‖ · ‖1 (see Übungsbeispiel 7) and ‖ · ‖∞ on C[0, 1] are not equiv-
alent. It holds ‖x‖1 ≤ ‖x‖∞ for every x ∈ C[0, 1]. However, (C[0, 1], ‖ · ‖∞)
is complete (see Example 1.7), while (C[0, 1], ‖ · ‖1) is not complete (see
Übungsbeispiel 7).

(c) For α > 0, we define on C[0, 1] the norm

|||x|||α := sup
0≤t≤1

|x(t)|e−αt.

Such constructions are useful in the theory of ordinary differential equa-
tions. It holds

|||x|||α ≤ ‖x‖∞ ≤ eα|||x|||α ∀x ∈ C[0, 1],

which means that ||| · |||α and ‖ · ‖∞ are equivalent.

Theorem 2.5 Any two norms defined on a finite-dimensional space are equiva-
lent.

Proof. Let X be a vector space of dimension n, {e1, ..., en} a basis of X and
‖ · ‖ a norm on X. We will show that ‖ · ‖ is equivalent to the Euclidean norm
‖ · ‖2. The triangle inequality and the Cauchy-Schwarz (Hölder) inequality yield∥∥∥∥∥

n∑
i=1

αiei

∥∥∥∥∥ ≤
n∑
i=1

|αi|‖ei‖ ≤

(
n∑
i=1

|αi|2
) 1

2
(

n∑
i=1

‖ei‖2

) 1
2

=

(
n∑
i=1

‖ei‖2

) 1
2
∥∥∥∥∥

n∑
i=1

αiei

∥∥∥∥∥
2

∀(α1, ..., αn) ∈ Kn,

therefore

‖x‖ ≤

(
n∑
i=1

‖ei‖2

) 1
2

‖x‖2 ∀x ∈ X.

This implies that ‖ · ‖ is continuous in (X, ‖ · ‖2), since, for xn
‖·‖2−→ x (n→ +∞)

we have (see Theorem 2.1(c)) ‖xn‖ → ‖x‖ (n→ +∞).
Using that S = {x ∈ X : ‖x‖2 = 1} is compact in (X, ‖ · ‖2), there exists

m > 0 such that
m := min

x∈S
‖x‖.

Since 1
‖x‖2x ∈ S for every x 6= 0, we obtain that

m‖x‖2 ≤ ‖x‖ ∀x ∈ X.

This shows that every norm on X is equivalent to ‖ · ‖2, and from here the
conclusion follows. �



2 Properties of normed spaces 23

The following lemma will play an important role in the characterization of
finite-dimensional normed spaces.

Lemma 2.6 (Riesz Lemma) Let X be a normed space and M ⊆ X a closed
linear subspace of X such that M 6= X and 0 < δ < 1. Then there exists xδ ∈ X
such that ‖xδ‖ = 1 and

‖xδ −m‖ ≥ 1− δ ∀m ∈M.

Proof. Let x ∈ X \M . Since M is closed, dist(x,M) = inf{‖x − m‖ : m ∈
M} > 0 (see Definition 1.14). Since dist(x,M) < 1

1−δ dist(x,M), there exists

mδ ∈M such that ‖x−mδ‖ < 1
1−δd(x,M). Define

xδ :=
x−mδ

‖x−mδ‖
.

Then ‖xδ‖ = 1 and for every m ∈M it holds (notice that mδ + ‖x−mδ‖m ∈M)

‖xδ −m‖=
1

‖x−mδ‖
‖x− (mδ + ‖x−mδ‖m)‖≥ 1− δ

dist(x,M)
dist(x,M) =1− δ.

�

Remark 2.7 Riesz Lemma does not hold in general for δ = 0. In order to see
this, consider X := {x ∈ C[0, 1] | x(0) = 0} endowed with the supremum norm

and M := {x ∈ X |
∫ 1

0
x(t)dt = 0} (see Übungsbeispiel 13).

Theorem 2.8 Let X be a normed space. The following statements are equiva-
lent:

(i) dimX <∞.

(ii) BX := {x ∈ X | ‖x‖ ≤ 1} is compact.

(iii) Every bounded sequence in X has a convergent subsequence.

Proof. (i) ⇒ (ii). Follows from the equivalence of norms in finite-dimensional
normed spaces and the Theorem of Heine-Borel, which says that a subset of Rn

is compact if and only if it is bounded and closed.
(ii) ⇒ (iii). Let (xn)n∈N and M ≥ 0 be such that ‖xn‖ ≤ M for all n ∈ N.

Then (xn)n∈N ⊆MBX , which, according to (ii), is a compact set. The conclusion
follows from the Theorem of Bolzano-Weierstraß.

(iii) ⇒ (i). Assume that dimX = ∞. Let x1 ∈ X with ‖x1‖ = 1 and define
M1 := lin{x1}, where linA denotes the linear subspace generated by the set A.
Then M1 is finite-dimensional, thus M1 6= X and, according to Lemma 1.6 (b), it
is a closed linear subspace of X. According to Riesz Lemma, there exists x2 ∈ X
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such that ‖x2‖ = 1 and ‖x2 − x1‖ ≥ 1
2
. We define M2 := lin{x1, x2} and make

use of the same arguments to obtain an element x3 ∈ X such that ‖x3‖ = 1 and
‖x3 − x1‖ ≥ 1

2
, ‖x3 − x2‖ ≥ 1

2
. In this way we construct inductively a sequence

(xn)n∈N with the property that ‖xn‖ = 1 for every n ∈ N and ‖xn − xm‖ ≥ 1
2

for every n 6= m. The sequence (xn)n∈N is bounded, however it cannot have a
convergent subsequence, since it has no Cauchy subsequence. �

In the final part of this chapter we will introduce and discuss the notion of
separability of normed spaces.

Definition 2.9 (Separable space) A topological (metric) space T is called sepa-
rable if it has a countable dense subset, in other words, if there exists a countable
set D ⊆ T such that D = T .

Rn is separable, since Qn is dense in Rn. Since every subset of a separable
metric space is separable, it follows that every T ⊆ Rn is a separable space.

Lemma 2.10 Let X be a normed space. The following statements are equivalent:

(i) X is separable.

(ii) There exists a countable set A such that X := linA.

Proof. (i) ⇒ (ii). Since X is separable, X = A, for a countable set A ⊆ X.
Then X = A ⊆ linA ⊆ X and the conclusion follows.

(ii)⇒ (i). We consider first the case when K = R and denote

B :=

{
n∑
k=1

λkxk : n ∈ N, λk ∈ Q, xk ∈ A, k = 1, ..., n

}
.

It is obvious that B is countable. We will prove that B = X. Let x ∈ X
and ε > 0. Choose a0 ∈ linA, a0 =

∑n
k=1 λkxk, where n ∈ N, λk ∈ R and

xk ∈ A, k = 1, ..., n, such that ‖x− a0‖ < ε
2
. For every k = 1, ..., n, choose µk ∈ Q

such that (
∑n

k=1 ‖xk‖) |λk − µk| <
ε
2
. Then, for a :=

∑n
k=1 µkxk ∈ B, it holds

‖x− a‖ ≤ ‖x− a0‖+ ‖a0 − a‖ ≤
ε

2
+ max

k=1,...,n
|λk − µk|

(
n∑
k=1

‖xk‖

)
< ε.

In the case when K = C one just needs to replace in the above proof Q by Q + iQ.
�
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Example 2.11

(a) The space `p is separable for all 1 ≤ p <∞. For n ∈ N, let

en = (0, ..., 0, 1, 0, ...),

where the n-th element is 1 and all other elements are 0. For A := {en | n ∈ N}
it holds `p = linA. Indeed, for x = (tn)n∈N we have∥∥∥∥∥x−

n∑
k=1

tkek

∥∥∥∥∥
p

=

(
+∞∑

k=n+1

|tk|p
) 1

p

→ 0 (n→ +∞).

(b) The spaces c00, c0 and c are separable.

(c) The space `∞ is not separable. Assume that `∞ is separable and let D be a
countable set in `∞ such that D = `∞. Let F be the family of all subsets of N.
Then F is uncountable. For every F ∈ F , let χF ∈ `∞ be the sequence defined as
χF (n) = 1, for n ∈ F , and χF (n) = 0, otherwise. If F,G ∈ F with F 6= G, then
‖χF − χG‖∞ = 1. For every F ∈ F , let dF ∈ D be such that ‖χF − dF‖∞ < 1

4
.

We notice that, if F,G ∈ F with F 6= G, then ‖dF−dG‖∞ > 1
4
. Indeed, assuming

that ‖dF − dG‖∞ ≤ 1
4
, it holds

‖χF − χG‖∞ ≤ ‖χF − dF‖∞ + ‖dF − dG‖∞ + ‖dG − χG‖∞ ≤
3

4
.

Contradiction! This proves that F 7→ dF is injective and, since it maps an
uncountable set into a countable one, we obtain the desired contradiction.

Example 2.12

(a) The space C[a, b] is separable. According to the Stone-Weierstrass Theorem
(see [4, Theorem 7.26]), the linear subspace P [a, b] of polynomial functions defined
on [a, b] is dense in (C[a, b], ‖ · ‖∞). Thus C[a, b] = lin{1, t, t2, ...} for K = R, and
C[a, b] = lin{1, i, t, it, t2, it2, ...} for K = C.

(b) The space Lp[a, b] is separable for all 1 ≤ p < ∞. We will show that P [a, b]
is dense in (Lp[a, b], ‖ · ‖Lp). To this end we will use that C[a, b] is dense in
(Lp[a, b], ‖ · ‖Lp) (see [5, Theorem 3.14]). Let f ∈ Lp[a, b]. Then there exists
(fn)n∈N ⊆ C[a, b] such that ‖fn−f‖Lp → 0 (n→ +∞). For all n ∈ N there exists

gn ∈ P [a, b] such that ‖fn−gn‖∞ ≤ 1
n
. Since ‖fn−gn‖Lp ≤ (b−a)

1
p‖fn−gn‖∞ ≤

(b − a)
1
p 1
n

for all n ∈ N, it holds ‖fn − gn‖Lp → 0 (n → +∞). The conclusion
follows from the fact that

‖gn − f‖Lp ≤ ‖gn − fn‖Lp + ‖fn − f‖Lp ∀n ∈ N.

(c) The space L∞[a, b] is not separable.
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Chapter II

Continuous linear operators

3 Properties and examples of continuous linear

operators

Definition 3.1 A continuous linear mapping between two normed spaces is
called continuous linear operator. A continuous linear mapping from a normed
space into its field of scalars is called continuous linear functional.

In the following, for a continuous linear operator T : X → Y , we will write
Tx instead of T (x).

Theorem 3.2 Let X and Y be two normed spaces and T : X → Y a linear
operator. The following statements are equivalent:

(i) T is continuous.

(ii) T is continuous at 0.

(iii) There exists M ≥ 0 such that

‖Tx‖ ≤M‖x‖ ∀x ∈ X.

(iv) T is uniformly continuous.

Proof. (iii)⇒ (iv). Let ε > 0 and δ > 0 be such that Mδ < ε. Then for every
x, y ∈ X with ‖x−y‖ ≤ δ it holds ‖Tx−Ty‖ = ‖T (x−y)‖ ≤M‖x−y‖ ≤Mδ < ε.

(iv)⇒ (i)⇒ (ii). Everything is clear.
(ii) ⇒ (iii). Assuming that (iii) does not hold, for all n ∈ N there exists

xn ∈ X such that ‖Txn‖ > n‖xn‖. It is obvious that xn 6= 0 for all n ∈ N. Define
yn := xn

n‖xn‖ and notice that ‖yn‖ = 1
n

for all n ∈ N. Thus yn → 0 as n → +∞,

however, ‖Tyn‖ = ‖Txn‖
n‖xn‖ > 1 for all n ∈ N, thus (Tyn)n∈N does not converge to

zero. Contradiction! �
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Definition 3.3 We denote the smallest constant M in Theorem 3.2 (iii) by ‖T‖,
namely,

‖T‖ := inf{M ≥ 0 | ‖Tx‖ ≤M‖x‖ ∀x ∈ X}.
It is easy to see that

‖T‖ = sup
x 6=0

‖Tx‖
‖x‖

= sup
‖x‖=1

‖Tx‖ = sup
‖x‖≤1

‖Tx‖

and
‖Tx‖ ≤ ‖T‖‖x‖ ∀x ∈ X.

Continuous linear operators map the unit ball BX = {x ∈ X | ‖x‖ ≤ 1}
into a bounded set. This is the reason why they are also called bounded linear
operators.

It is easy to see that

L(X, Y ) := {T : X → Y | T is linear and continuous},

endowed with the operations

(S + T )(x) := Sx+ Tx

(λT )(x) := λTx,

is a vector space. The zero element is the operator x 7→ 0 for all x ∈ X. We also
denote L(X) := L(X,X).

Theorem 3.4 (a) ‖T‖ = sup‖x‖≤1 ‖Tx‖ defines a norm on L(X, Y ), which is
the so-called operator norm.

(b) If Y is complete, then L(X, Y ) is also complete.

Proof. (a) It holds ‖T‖ ≥ 0 and ‖T‖ = 0 if and only if T = 0. In addition,

‖λT‖ = sup
‖x‖≤1

‖λTx‖ = |λ| sup
‖x‖≤1

‖Tx‖ = |λ|‖T‖ ∀λ ∈ K ∀T ∈ L(X, Y ).

Furthermore, for S, T ∈ L(X, Y ) it holds

‖S + T‖ = sup
‖x‖≤1

‖(S + T )x‖ = sup
‖x‖≤1

‖Sx+ Tx‖ ≤ sup
‖x‖≤1

‖Sx‖+ sup
‖x‖≤1

‖Tx‖

≤ ‖S‖+ ‖T‖.

(b) Let (Tn)n∈N be a Cauchy sequence in L(X, Y ) and x ∈ X. Then (Tnx)n∈N

is a Cauchy sequence in Y . Let Tx := limn→+∞ Tnx. For all λ, µ ∈ K and all
u, v ∈ X it holds

T (λu+ µv) = lim
n→+∞

Tn(λu+ µv) = lim
n→+∞

λTnu+ µ lim
n→+∞

Tnv = λTu+ µTv,
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which shows that T is linear.
Let ε > 0. Then there exists N ∈ N such that

‖Tn − Tm‖ <
ε

2
∀m,n ≥ N.

Let x ∈ X with ‖x‖ ≤ 1. Choose M ≥ N such that

‖TMx− Tx‖ <
ε

2
.

Then, for every n ≥ N , it holds

‖Tnx− Tx‖ ≤ ‖Tnx− TMx‖+ ‖TMx− Tx‖ ≤ ‖Tn − TM‖+
ε

2
< ε.

Taking the supremum over all {x ∈ X | ‖x‖ ≤ 1}, it yields ‖Tn−T‖ < ε for every
n ≥ N , thus Tn converges to T in the operator norm as n → +∞. In addition,
‖T‖ ≤ ‖T − TN‖+ ‖TN‖ < +∞, which shows that T ∈ L(X, Y ). �

Lemma 3.5 If S ∈ L(X, Y ) and T ∈ L(Y, Z), then TS ∈ L(X,Z) and

‖TS‖ ≤ ‖T‖‖S‖.

Proof. TS is a linear operator and for every x ∈ X it holds

‖TSx‖ ≤ ‖T‖‖Sx‖ ≤ ‖T‖‖S‖‖x‖,

thus TS is continuous and ‖TS‖ ≤ ‖T‖‖S‖. �

Please notice that for the operators S : R2 → R2, S(x, y) = (x, 0), and T :
R2 → R2, T (x, y) = (0, y), it holds 0 = ‖TS‖ < ‖T‖‖S‖ = 1.

The following result shows that continuous linear operators defined on a dense
linear subspace of a normed space can be extended to the whole space.

Theorem 3.6 Let X be a normed space, M a dense linear subspace of X, Y a
Banach space, and T ∈ L(M,Y ). Then there exists a unique continuous linear

extension T̂ ∈ L(X, Y ) of T . In addition, ‖T̂‖ = ‖T‖.

Proof. Let x ∈ X and (xn)n∈N ⊆ M be such that xn → x (n → +∞). This
means that (xn)n∈N is a Cauchy sequence, which yields that (Txn)n∈N is a Cauchy

sequence in Y . Thus limn→+∞ Txn := T̂ x ∈ Y exists. Then T̂ is well-defined,
linear and continuous on X. It is easy to see that ‖T̂‖ = ‖T‖.

Assume that S ∈ L(X, Y ) is another continuous linear extension of T and let
x ∈ X. Then there exists (xn)n∈N ⊆ M such that xn → x (n → +∞) and we

have Sx = limn→+∞ Sxn = limn→+∞ Txn = T̂ x. �
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Example 3.7 (a) The identity operator Id : X → X, x 7→ x, fulfills Id ∈ L(X)
and ‖ Id ‖ = 1.

(b) Let X be a vector space and ‖ · ‖ and ||| · ||| two norms on X. The two
norms are equivalent if and only if both operators

Id : (X, ‖ · ‖)→ (X, ||| · |||) and Id : (X, ||| · |||)→ (X, || · ||)

are continuous.

(c) Let X be a finite-dimensional normed space and Y an arbitrary normed
space. Then every linear operator T : X → Y is continuous. Let {e1, ..., en}
be a basis of X. According to Theorem 2.5, there exists M > 0 such that
for every x ∈ X with x =

∑n
i=1 αiei it holds

∑n
i=1 |αi| ≤ M‖x‖. The

conclusion follows from the fact that for every x =
∑n

i=1 αiei ∈ X it holds

‖Tx‖ =

∥∥∥∥∥T
(

n∑
i=1

αiei

)∥∥∥∥∥ ≤
n∑
i=1

|αi|‖Tei‖ ≤ max
i=1,...,m

‖Tei‖M‖x‖.

Example 3.8 (a) Let T : (C[0, 1], ‖ · ‖∞) → K, Tx = x(0). Then T is linear
and

|Tx| = |x(0)| ≤ ‖x‖∞ ∀x ∈ C[0, 1].

Thus T is continuous and ‖T‖ ≤ 1. For the function 1(t) = 1 for every
t ∈ [0, 1], it holds T1 = 1, thus ‖T‖ = 1.

(b) Let T : C1[0, 1] → K, Tx = x(0) + x′(1). T is linear. If we endow C1[0, 1]
with the norm ‖x‖C1 = ‖x‖∞ + ‖x′‖∞, then we get

|Tx| ≤ ‖x‖∞ + ‖x′‖∞ = ‖x‖C1 ∀x ∈ C1[0, 1],

thus T is continuous and ‖T‖ ≤ 1. Since T1 = 1, it holds ‖T‖ = 1.

If we endow C1[0, 1] with the norm |||x||| = max{‖x‖∞, ‖x′‖∞}, then we
get

|Tx| ≤ ‖x‖∞ + ‖x′‖∞ ≤ 2|||x||| ∀x ∈ C1[0, 1],

thus T is continuous and ‖T‖ ≤ 2. For x(t) =
(
t− 1

2

)2
+ 3

4
for every

t ∈ [0, 1], it holds |Tx| = 2 and |||x||| = 1, thus ‖T‖ = 2.

(c) The differential operator D : C1[0, 1] → C[0, 1], Dx = x′, is well-defined
and linear.

If we endow C1[0, 1] and C[0, 1] with the supremum norm, then D is not
continuous. Indeed, for xn(t) := tn, for all n ≥ 1, we have ‖xn‖∞ = 1
and ‖Dxn‖∞ = supt∈[0,1] |ntn−1| = n. Thus, there is no M ≥ 0 such that
‖Dxn‖∞ ≤M‖xn‖∞ for all n ≥ 1.

If we endow C1[0, 1] with ‖x‖C1 = ‖x‖∞ + ‖x′‖∞ and C[0, 1] with the
supremum norm, then ‖Dx‖∞ ≤ ‖x‖C1 for all x ∈ C1[0, 1], thus D is
continuous.
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Example 3.9 (a) Let T : c → K, Tx = limk→+∞ tk, for x = (tk)k∈N. Then T
is linear and continuous, and ‖T‖ = 1. Notice that c0 = T−1({0}), which
is another proof for the fact that c0 is closed in c.

(b) Let T : c00 → K, Tx =
∑+∞

k=1 ktk, for x = (tk)k∈N. T is well-defined and
linear. If we endow c00 with the supremum norm, then T is not continuous.
Indeed, for en = (0, ..., 0, 1, 0, ...), where the n-th element is 1 and all others
are 0, we have ‖en‖∞ = 1 and |Ten| = n for all n ∈ N.

Example 3.10 (integral operators)

(a) Let g ∈ C[0, 1] and

T : C[0, 1]→ K, Tx =

∫ 1

0

x(t)g(t)dt.

T is linear. For every x ∈ C[0, 1] it holds

|Tx| =
∣∣∣∣∫ 1

0

x(t)g(t)dt

∣∣∣∣ ≤ ∫ 1

0

|x(t)||g(t)|dt ≤
(∫ 1

0

|g(t)|dt
)
‖x‖∞.

This proves that T is continuous and ‖T‖ ≤
∫ 1

0
|g(t)|dt. We will show that

actually ‖T‖ =
∫ 1

0
|g(t)|dt.

Let ε > 0. Define

xε(t) =
g(t)

|g(t)|+ ε
∀t ∈ [0, 1].

Then xε ∈ C[0, 1], ‖xε‖∞ ≤ 1, and

|Txε| =
∫ 1

0

|g(t)|2

|g(t)|+ ε
dt ≥

∫ 1

0

|g(t)|dt− ε.

This gives

‖T‖ = sup
‖x‖∞≤1

|Tx| ≥ sup
ε>0
|Txε| ≥

∫ 1

0

|g(t)|dt,

and proves the statement.

(b) Let T : C[0, 1]→ K, Tx =
∫ 1

0
x(t)dt. As seen in (a), T is a continuous linear

operator with ‖T‖ = 1. Let X = {x ∈ C[0, 1] | x(0) = 0} be endowed with
the supremum norm and S := T |X . Then

‖S‖ = sup
x∈X,x 6=0

|Sx|
‖x‖∞

≤ sup
x∈C[0,1],x 6=0

|Tx|
‖x‖∞

= ‖T‖.
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On the other hand, for all n ∈ N and xn(t) = n+1
n
t
1
n we have that xn ∈

X, ‖xn‖∞ = n+1
n

and |Sxn| = 1, thus

‖S‖ ≥ sup
n∈N

|Sxn|
‖xn‖∞

= sup
n∈N

n

n+ 1
= 1.

This shows that ‖S‖ = 1. One can notice that there exists no x ∈
X, ‖x‖∞ ≤ 1, such that |Sx| = ‖S‖ = 1.

(c) Let (Ω,Σ, µ) be a measure space, 1 ≤ p ≤ ∞, and 1
p

+ 1
q

= 1 (with 1
∞ = 0).

Then, for every g ∈ Lq(µ), the operator

Tg : Lp(µ)→ K, (Tg)(f) =

∫
fgdµ,

is linear and continuous with ‖Tg‖ ≤ ‖g‖Lq . This is a direct consequence
of the Hölder inequality in integral form (see Übungsbeispiel 14).

We actually have
‖Tg‖ = ‖g‖Lq (3.1)

if

(i) 1 < p ≤ ∞;

(ii) p = 1 and µ is semi-finite, namely, for every M ∈ Σ with µ(M) = +∞
there exists N ⊂M,N ∈ Σ, with 0 < µ(N) < +∞.

(i) This is obvious if g = 0 almost everywhere. Otherwise, let A := {x ∈
Ω | |g(x)| > 0} and choose:

(i1) if 1 < p <∞, f := g
|g|

(
|g|
‖g‖Lq

) q
p
χA. Then ‖f‖Lp = 1 and

∫
fgdµ =

‖g‖Lq ;
(i2) if p =∞, f := g

|g|χA. Then ‖f‖L∞ = 1 and
∫
fgdµ = ‖g‖L1 .

(ii) For the proof of (3.1) in case p = 1 (see Übungsbeispiel 21, Gruppe
1).

Example 3.11 (Fredholm integral operator) Let k : [0, 1] × [0, 1] → K be con-
tinuous and

T : C[0, 1]→ C[0, 1], (Tx)(s) :=

∫ 1

0

k(s, t)x(t)dt,

the so-called Fredholm integral operator with kernel k.
We show that for all x ∈ C[0, 1] the function Tx : [0, 1]→ K is continuous. Let

ε > 0. Since k is uniformly continuous (being continuous on a compact set), there
exists δ > 0 such that for all (s, t), (s′, t′) ∈ [0, 1]× [0, 1] with ‖(s, t)−(s′, t′)‖2 < δ
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it holds |k(s, t) − k(s′, t′)| < ε. This means that for every s, s′ ∈ [0, 1] with
|s− s′| < δ it holds

|(Tx)(s)− (Tx)(s′)| ≤
∫ 1

0

|k(s, t)− k(s′, t)||x(t)|dt ≤ ε‖x‖∞,

which proves that Tx is continuous.
T is linear. If C[0, 1] is endowed with the supremum norm, then T is contin-

uous. Indeed, we have (according to Example 3.10 (a))

‖T‖ = sup
‖x‖∞≤1

‖Tx‖∞ = sup
‖x‖∞≤1

sup
s∈[0,1]

|(Tx)(s)| = sup
s∈[0,1]

sup
‖x‖∞≤1

∣∣∣∣∫ 1

0

k(s, t)x(t)dt

∣∣∣∣
= sup

s∈[0,1]

∫ 1

0

|k(s, t)|dt ≤ ‖k‖∞.

In the following we will investigate the invertibility of continuous linear oper-
ators in normed spaces. If T : X → Y is a bijective continuous linear continuous
operator between two normed spaces X and Y , then its inverse T−1 : Y → X
is linear, but, in general, not continuous. The continuity of the inverse operator
plays an important role, for instance, in the characterization of the dependence
of a solution of a linear equation from the data. The following result provides a
first characterization of the continuity of the inverse operator.

Theorem 3.12 Let T : X → Y be a linear operator between two normed spaces
X and Y . Then the inverse T−1 : ranT := T (X)→ X exists and is a continuous
operator if and only if there exists m > 0 such that

‖Tx‖ ≥ m‖x‖ ∀x ∈ X. (3.2)

Proof. “⇐” Notice that ranT is a linear subspace of Y . If (3.2) holds, then T is
injective and its inverse T−1 : ranT → X exists. For λ, µ ∈ K and Tx, Ty ∈ ranT ,
it holds

T−1(λTx+ µTy) = T−1(T (λx+ µy)) = λx+ µy = λT−1(Tx) + µT−1(Ty),

which shows that the inverse operator is linear. Since, according to (3.2),

‖T−1y‖ ≤ 1

m
‖y‖ ∀y ∈ ranT,

we obtain that T−1 is continuous.
“⇒” Using that T−1 : ranT → X is continuous, it holds

‖T−1y‖ ≤ ‖T−1‖‖y‖ ∀y ∈ ranT,

and, from here,

‖x‖ = ‖T−1(Tx)‖ ≤ ‖T−1‖‖Tx‖ ∀x ∈ X,

which shows that (3.2) is fulfilled for m := 1
‖T−1‖ . �
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Example 3.13 The inverse of the identity operator Id : (C[0, 1], ‖ · ‖∞) →
(C[0, 1], ‖ · ‖1) is not continuous. Otherwise, there would exists m > 0 such
that ‖x‖1 ≥ m‖x‖∞ for all x ∈ C[0, 1]; in particular, for xn(t) = tn it holds

1
n+1

= ‖xn‖1 ≥ m‖xn‖∞ = m for all n ∈ N. Contradiction!

Definition 3.14 (isomorphism) A continuous linear operator T : X → Y be-
tween two normed spaces X and Y is called isomorphism if T is bijective and
T−1 is continuous. If for a linear operator T : X → Y it holds ‖Tx‖ = ‖x‖ for
all x ∈ X, then T is said to be isometric. Two normed spaces X and Y are said
to be (isometrically) isomorphic if the there exists an (isometric) isomorphism
between them; we denote this by (X ∼= Y ) X w Y .

If T : X → Y is an isomorphism, then there exist M ≥ m > 0 such that

m‖x‖ ≤ ‖Tx‖ ≤M‖x‖ ∀x ∈ X.

Example 3.15 (c w c0) Let x = (sk)k∈N ∈ c and l(x) := limk→+∞ sk ∈ K. We
define y = (tk)k∈N by t1 := l(x) and tk := sk−1 − l(x) for all k ≥ 2. Then y ∈ c0

and T : x 7→ y is a linear operator from c to c0. For all x ∈ c it holds

‖Tx‖∞ = sup
k∈N
|tk| ≤ sup

k∈N
|sk|+ |l(x)| ≤ 2‖x‖∞.

This proves that T is continuous.
Let y = (tk)k∈N ∈ c0 and define x = (sk)k∈N by sk := tk+1 + t1 for all k ≥ 1.

Then x ∈ c and S : y 7→ x is a linear operator from c0 to c. For all y ∈ c0 it holds

‖Sy‖∞ = sup
k∈N
|sk| ≤ sup

k∈N
|tk+1|+ |t1| ≤ 2‖y‖∞.

This proves that S is continuous.
It is easy to see that ST = Idc and TS = Idc0 , thus S−1 = T and T is an

isomorphism.

Example 3.16 (quotient operator) A linear operator T : X → Y between two
normed spaces X and Y is called quotient operator if T maps the open unit ball
in X onto the open unit ball in Y , in other words, if T (intBX) = intBY . Then
T is surjective and continuous with ‖T‖ = 1. It is clear that T is surjective. Let
x ∈ X with ‖x‖ ≤ 1. Then

∥∥T ( n
n+1

x
)∥∥ < 1 or, equivalently, ‖Tx‖ < n+1

n
for

all n ≥ 1, thus ‖Tx‖ ≤ 1. This proves that ‖T‖ ≤ 1. On the other hand, let
y ∈ Y with ‖y‖ = 1. Then for all n ∈ N there exists xn ∈ X, ‖xn‖ < 1, such that

Txn = n
n+1

y. For all n ∈ N we have ‖T‖ ≥ ‖Txn‖
‖xn‖ > n

n+1
‖y‖ = n

n+1
, thus ‖T‖ ≥ 1.

If M ⊆ X is a closed linear subspace of the normed space X, then T :
X → X/M, x 7→ [x], is a quotient operator. Indeed, if ‖x‖ < 1, then ‖[x]‖ =
dist(x,M) ≤ ‖x‖ < 1. On the other hand, if [x] ∈ X/M fulfils ‖[x]‖ < 1, then
there exists m ∈M such that ‖x−m‖ < 1 and it holds T (x−m) = [x−m] = [x].

If T : X → Y is a quotient operator, then X/ kerT ∼= Y = ranT (first
isomorphism theorem), where kerT = {x ∈ X | Tx = 0} (see Übungsbeispiel 23,
Gruppe 1).
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The following result introduces a method which can be sometimes used to
calculate the inverse of an operator. For T ∈ L(X), we denote T 0 := Id and
T n := T ◦ ... ◦ T (n times) for all n ∈ N.

Theorem 3.17 (Neumann series) Let X be a normed space and T ∈ L(X). If∑+∞
n=0 T

n is convergent in L(X), then Id−T is invertible and

(Id−T )−1 =
+∞∑
n=0

T n.

The series
∑+∞

n=0 T
n is convergent in L(X) if X is a Banach space and ‖T‖ < 1.

In this situation, ‖(Id−T )−1‖ ≤ 1
1−‖T‖ .

Proof. Let be m ∈ N,m ≥ 0, and Sm :=
∑m

n=0 T
n. Then

(Id−T )Sm = Sm(Id−T ) = Id−Tm+1 ∀m ≥ 0.

The Cauchy criterion guarantees that T n → 0 as n → +∞. Using that the
operators S 7→ TS and S 7→ ST are continuous (see Lemma 3.5), we obtain

Id = lim
m→+∞

(Id−Tm+1) = lim
m→+∞

(Id−T )Sm = (Id−T ) lim
m→+∞

Sm

and, similarly,
Id = lim

m→+∞
Sm(Id−T ),

which proves that

(Id−T )−1 = lim
m→+∞

Sm =
+∞∑
n=0

T n.

Assume now that ‖T‖ < 1. It holds
∑+∞

n=0 ‖T n‖ ≤
∑+∞

n=0 ‖T‖n < +∞, thus∑+∞
n=0 T

n is absolutely convergent. Since X is complete, L(X) is also complete,
thus, according to Lemma 1.12,

∑+∞
n=0 T

n is convergent. In addition,

‖(Id−T )−1‖ =

∥∥∥∥∥
+∞∑
n=0

T n

∥∥∥∥∥ ≤
+∞∑
n=0

‖T‖n =
1

1− ‖T‖
.

�

4 Dual spaces

Definition 4.1 (dual space) Let X be a normed space over K. The space L(X,K)
of continuous linear functionals on X is called dual space of X and is denoted by
X∗.
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The dual space X∗ of a normed space X endowed with the norm

‖x∗‖ := sup
‖x‖≤1

|x∗(x)|

is a Banach space.

Example 4.2 ((`p)∗ ∼= `q, 1 ≤ p <∞; (c0)∗ ∼= `1)

(a) Let 1 ≤ p <∞ and 1
p

+ 1
q

= 1 (with 1
∞ = 0). The operator

T : `q → (`p)∗, (Tx)(y) =
+∞∑
n=1

sntn,

where x = (sn)n∈N ∈ `q and y = (tn)n∈N ∈ `p, is an isometric isomorphism.

We will prove the statement for 1 < p <∞. The proof in case p = 1 follows
similarly.

Let x = (sn)n∈N ∈ `q. According to the Hölder inequality we have

|(Tx)(y)| ≤ ‖x‖q‖y‖p < +∞ ∀y = (tn)n∈N ∈ `p,

which proves that
∑+∞

n=1 sntn is convergent. In addition, Tx is linear and
continuous, thus, Tx ∈ (`p)∗ and ‖Tx‖ ≤ ‖x‖q.
It is easy to see that T is linear. Assuming that Tx = 0, it follows that
sn = (Tx)(en) = 0 for all n ∈ N, thus x = 0, which proves that T is
injective.

We prove that T is surjective and isometric. To this end, let y∗ ∈ (`p)∗ and
define

sn := y∗(en) and x := (sn)n∈N ∀n ∈ N.

We will prove that

x ∈ `q, Tx = y∗, ‖x‖q ≤ ‖y∗‖ = ‖Tx‖.

For all n ∈ N we define

tn :=

{ |sn|q
sn

for sn 6= 0,

0 for sn = 0.

For all N ∈ N it holds

N∑
n=1

|tk|p =
N∑
n=1

|sn|p(q−1) =
N∑
n=1

|sn|q
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and
N∑
n=1

|sn|q =
N∑
n=1

sntn =
N∑
n=1

tny
∗(en) = y∗

(
N∑
n=1

tnen

)

≤ ‖y∗‖

(
N∑
n=1

|tn|p
) 1

p

= ‖y∗‖

(
N∑
n=1

|sn|q
) 1

p

,

thus
(∑N

n=1 |sn|q
) 1
q ≤ ‖y∗‖. Letting N → +∞ we get x ∈ `q and ‖x‖q ≤

‖y∗‖.
By construction, (Tx)(en) = y∗(en) for all n ∈ N, thus (Tx)(y) = y∗(y)
for all y ∈ c00 = lin{en : n ∈ N}. The continuity of Tx and y∗ gives
(Tx)(y) = y∗(y) for all y ∈ c00 = lin{en : n ∈ N} = `p (see Example 2.11),
thus Tx = y∗.

(b) In a similar way, one can prove that the operator

T : `1 → (c0)∗, (Tx)(y) =
+∞∑
n=1

sntn,

where x = (sn)n∈N ∈ `1 and y = (tn)n∈N ∈ c0, is an isometric isomorphism.

(c) We will see in Example 6.13 that `1 ( (`∞)∗.

Example 4.3 Let 1 ≤ p ≤ ∞ and 1
p

+ 1
q

= 1 (with 1
∞ = 0). By using the

operator

(Tx)(y) =
n∑
i=1

xiyi,

for x = (x1, ...., xn) ∈ Kn and y = (y1, ...., yn) ∈ Kn, it is easy to see that

(Kn, ‖ · ‖p)∗ ∼= (Kn, ‖ · ‖q).
Example 4.4 (a) Let (Ω,Σ, µ) be a finite measure space, 1 ≤ p < ∞, and

1
p

+ 1
q

= 1 (with 1
∞ = 0). The operator

T : Lq(µ)→ (Lp(µ))∗, (Tg)(f) =

∫
Ω

fgdµ,

is an isometric isomorphism, thus (Lp(µ))∗ ∼= Lq(µ). The spaces (L∞(µ))∗

and L1(µ) are in general not isomorph.

(b) Let K be a compact topological Hausdorff (metric) space, Σ a σ-algebra
on K and M(K,Σ) the Banach space of measures on Σ endowed with the
total variation norm (see Übungsbeispiel 12, Gruppe 1). The operator

T : M(K)→ (C(K))∗, (Tµ)(x) =

∫
K

xdµ,

is an isometric isomorphism, thus (C(K))∗ ∼= M(K).
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5 Compact operators

Compact operators are meant to compensate in infinite-dimensional normed
spaces the missing property that “every bounded sequence has a convergent sub-
sequence”.

Definition 5.1 (compact operator) A linear operator T between two normed
spaces X and Y is called compact if T (BX) is relatively compact, which means
that T (BX) is compact. Let K(X, Y ) := {T : X → Y | T is compact} and
K(X) := K(X,X).

Given a linear operator T : X → Y , the following statements are equivalent:

(i) T is compact;

(ii) For every bounded set B ⊆ X the set T (B) is relatively compact in Y ;

(iii) For every bounded sequence (xn)n∈N ⊆ X the sequence (Txn)n∈N ⊆ Y has
a convergent subsequence.

It is easy to see that compact operators are continuous, thus K(X, Y ) ⊆
L(X, Y ). In the following we will treat compact operators between a normed
space and a Banach space, in order to guarantee that the closure of T (BX) lies
in the right space.

Theorem 5.2 Let X be a normed space and Y a Banach space.

(a) K(X, Y ) is a closed linear subspace of L(X, Y ), which means that K(X, Y )
is a Banach space.

(b) If Z is a further Banach space, T ∈ L(X, Y ) and S ∈ L(Y, Z) such that
either T or S is compact, then ST is compact.

Proof. (a) If T ∈ K(X, Y ) and λ ∈ K, then, obviously, λT ∈ K(X, Y ).
Take now S, T ∈ K(X, Y ) and (xn)n∈N ⊆ X a bounded sequence. Then
there exists a subsequence (xnk)k∈N such that (Sxnk)k∈N and (Txnk)k∈N are
convergent, thus ((S + T )xnk)k∈N is convergent. This shows that K(X, Y )
is a linear subspace.

We will prove the closedness of this space by using a diagonalization ar-
gument. Let (Tn)n∈N ⊆ K(X, Y ) and T ∈ L(X, Y ) with ‖Tn − T‖ → 0
as n → +∞. Let (xn)n∈N ⊆ X a bounded sequence. Since T1 is com-
pact, there exists a convergent subsequence (T1xkn)n∈N. Denote x1

n := xkn
for all n ∈ N. Since T2 is compact, there exists a convergent subse-
quence (T2x

1
kn

)n∈N. Denote x2
n := x1

kn
for all n ∈ N. Since T3 is compact,

there exists a convergent subsequence (T3x
2
kn

)n∈N. Denote x3
n := x2

kn
for
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all n ∈ N. We continue this process and define in this way a sequence
ξ1 := xk1 , ξ2 := x1

k2
, ξ3 := x2

k3
, ..., ξn+1 := xnkn+1

, .... Then, for every m ∈ N,
the sequence (Tmξn)n∈N is convergent.

We will prove that (Tξn)n∈N is also convergent by proving that it is a Cauchy
sequence. Let L > 0 be such that ‖xn‖ ≤ L for all n ∈ N. This means that
‖ξn‖ ≤ L for all n ∈ N. Let ε > 0, M ∈ N such that ‖TM − T‖ < ε

3L
and

N ∈ N such that

‖TMξm − TMξn‖ <
ε

3
∀m,n ≥ N.

Then for all m,n ≥ N it holds

‖Tξm − Tξn‖ ≤ ‖Tξm − TMξm‖+ ‖TMξm − TMξn‖+ ‖TMξn − Tξn‖

≤ 2L‖T − TM‖+
ε

3
< ε,

which leads to the desired conclusion.

(b) Let (xn)n∈N ⊆ X be a bounded sequence and assume that S is compact.
Then (Txn)n∈N ⊆ Y is bounded, too, and (STxn)n∈N ⊆ Z has a convergent
subsequence.

Assume that T is compact. Then there exists a convergent subsequence
(Txnk)k∈N ⊆ Y . Consequently, (STxnk)k∈N ⊆ Z is convergent.

�

Example 5.3 (a) If X is a finite-dimensional normed space and T : X → Y is
linear, then T is compact. According to Example 3.7 (a), T is continuous
and, therefore, since BX is compact in X, T (BX) is compact in Y .

(b) If X is a normed space, Y a Banach space, T ∈ L(X, Y ) and ranT is
finite-dimensional, then T is compact, since T (BX) ⊆ ranT is bounded
and, therefore, relatively compact.

(c) For X a normed space and Y a Banach space, let

F (X, Y ) := {T ∈ L(X, Y ) | ranT is finite-dimensional}

be the so-called space of finite-rank operators. We denote F (X) :=F (X,X).
By using (b) and and Theorem 5.2(a), it follows that F (X, Y ) ⊆ K(X, Y ).

(d) If X is a normed space and Y a separable Banach space such that there
exists a bounded sequence (Sn)n∈N in F (Y ) with the property

lim
n→+∞

Sny = y ∀y ∈ Y, (5.1)
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then it holds F (X, Y ) = K(X, Y ) (see Übungsbeispiel 26(a)).

Relation (5.1) is fulfilled when Y = c0 or Y = `p, 1 ≤ p <∞ by

Sn ((tk)k∈N) = (t1, ..., tn, 0, ...) ∀n ∈ N.

It is also fulfilled in case Y = C[0, 1] and Y = Lp[0, 1], 1 ≤ p <∞.

The following theorem provides an useful compactness criterion.

Theorem 5.4 (Arzelá-Ascoli Theorem) Let (T, d) be a compact metric space and
M ⊆ (C(T ), ‖ · ‖∞)) with the properties:

(i) M is bounded;

(ii) M is closed;

(iii) M is equicontinuous, namely,

∀ε > 0 ∃δ > 0 such that ∀x ∈M d(s, t) < δ ⇒ |x(s)− x(t)| < ε.

Then M is compact.

Proof. We will prove that M is sequentially compact, in other words, that every
sequence in M has a convergent subsequence in M . The compactness of M will
follow from the Bolzano-Weierstraß Theorem (see Übungsbeispiel 26, Gruppe 1).

First we will show that T is separable. Let n ∈ N. Since T =
⋃
t∈T{s ∈

T | d(t, s) < 1
n
}, there exists tn1 , ..., t

n
mn ∈ T such that T =

⋃mn
k=1{s ∈ T | d(tnk , s) <

1
n
}. This shows that the countable set {tnk : 1 ≤ k ≤ mn, n ∈ N} is dense in T .

Let (xn)n∈N be a sequence in M and {t1, t2, ...} a countable dense set in T .
Since M is bounded, the sequence (xn(t1))n∈N is bounded in K, thus, it has a
convergent subsequence (xkn(t1))n∈N. Denote x1

n := xkn for all n ∈ N. The
sequence (x1

n(t2))n∈N is bounded in K, thus, it has a convergent subsequence
(x1

kn
(t2))n∈N. Denote x2

n := x1
kn

for all n ∈ N. The sequence (x2
n(t3))n∈N is

bounded in K, thus, it has a convergent subsequence (x2
kn

(t3))n∈N. Denote x3
n :=

x2
kn

for all n ∈ N. We continue this process and define in this way the diagonal
sequence ξ1 := xk1 , ξ2 := x1

k2
, ξ3 := x2

k3
, ..., ξn+1 := xnkn+1

, .... Then, for every
m ∈ N, the sequence (ξn(tm))n∈N is convergent.

We will prove that (ξn)n∈N is convergent by proving that it is a Cauchy se-
quence with respect to the supremum norm. Let ε > 0 and δ > 0 such that
the property in (iii) holds. Let B1, ..., Bp be open balls of radius δ

2
such that

T = ∪pl=1Bp. For all l = 1, ..., p in every Bl there exists an element tl of the
countable dense set in T . Let N ∈ N be such that

|ξn(tl)− ξm(tl)| < ε

3
∀m,n ≥ N ∀l = 1, ..., p.
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We choose an arbitrary t ∈ T and l ∈ {1, ..., p} such that t ∈ Bl. It holds
d(t, tl) < δ and the equicontinuity of M gives

|ξn(t)− ξn(tl)| < ε

3
∀n ∈ N.

Combining the last two inequalities it yields for all m,n ≥ N

|ξm(t)− ξn(t)| ≤ |ξm(t)− ξm(tl)|+ |ξm(tl)− ξn(tl)|+ |ξn(tl)− ξn(t)| < ε.

Since t ∈ T was arbitrarily chosen, it yields ‖ξm − ξn‖∞ ≤ ε for all m,n ≥ N ,
which provides the desired conclusion. �

Example 5.5 The Fredholm integral operator

T : C[0, 1]→ C[0, 1], (Tx)(s) =

∫ 1

0

k(s, t)x(t)dt,

with kernel k ∈ C([0, 1]2) is compact. Let M := T (BX), which is a closed set.
Since T is continuous (see Example 3.11), M is bounded. We proved in Example
3.11 that T (BX) is equicontinuous, thus M is equicontinuous, too. The Arzelá-
Ascoli Theorem guarantees that M is compact, which means that T is a compact
operator.
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Chapter III

The Hahn-Banach Theorem

6 Extension of functionals

In this chapter we will provide results which guarantee the existence of nonzero
continuous linear functionals with certain properties.

Definition 6.1 Let X be a vector space. A mapping p : X → R is called
sublinear if

(a) p(λx) = λp(x) ∀λ ≥ 0 ∀x ∈ X;

(b) p(x+ y) ≤ p(x) + p(y) ∀x, y ∈ X.

Example 6.2 Every seminorm is sublinear. Every linear functional defined on
a real vector space is sublinear.

Theorem 6.3 (Hahn-Banach Theorem for Real Vector Spaces) Let X be a real
vector space and M a linear subspace of X. Further, let p : X → R be sublinear
and l : M → R be linear such that

l(x) ≤ p(x) ∀x ∈M.

Then there exists a linear extension L : X → R such that

L|M = l and L(x) ≤ p(x) ∀x ∈ X.

Proof. Step 1. We will prove the statement in case dimX/M = dim{[x] =
x + M | x ∈ X} = 1. This means that there exists x0 ∈ X \M such that every
x ∈ X can be represented as

x = m+ λx0 for m ∈M,λ ∈ R.

For r ∈ R fixed, we introduce the linear functional on X

Lr(x) = Lr(m+ λx0) := l(m) + λr.

43
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It is clear that Lr(m) = l(m) for all m ∈M , thus Lr is a linear extension of l. It
remains to show that there exists r ∈ R such that Lr ≤ p.

The inequality Lr ≤ p holds if and only if

l(m) + λr ≤ p(m+ λx0) ∀m ∈M ∀λ ∈ R. (6.1)

Relation (6.1) is obviously fulfilled for λ = 0. In case λ > 0, (6.1) is satisfied if
and only if

r ≤ p
(m
λ

+ x0

)
− l
(m
λ

)
∀m ∈M ⇔ r ≤ inf

s∈M
(p(s+ x0)− l(s)) .

In case λ < 0, (6.1) is satisfied if and only if

−r ≤ p

(
m

−λ
− x0

)
− l
(
m

−λ

)
∀m ∈M ⇔ r ≥ sup

t∈M
(l(t)− p(t− x0)) .

This shows that there exists a real number r such that Lr ≤ p if and only if

l(t)− p(t− x0) ≤ p(s+ x0)− l(s) ∀s, t ∈M.

Since

l(s) + l(t) = l(s+ t) ≤ p(s+ t) ≤ p(s+ x0) + p(t− x0) ∀s, t ∈M,

such a real number r always exists.
One can notice that r is not uniquely determined, which means that the

extension Lr is also not uniquely determined.
Step 2. We prove the statement of the theorem in the general case and use

to this end the Zorn Lemma.
Zorn Lemma. If (A,≤) is a nonempty partially ordered set in which every

chain (this is a totally ordered set, namely, a set for the elements of which either
a ≤ b or b ≤ a holds) has an upper bound, then A has a maximal element (this
means that there exists max ∈ A such that if max ≤ a for a ∈ A, then max = a).

Let

A :=

{
(N,LN) | N is a linear subspace of X with M ⊆ N,

LN : N → R is linear with LN ≤ p|N and LN |M = l

}
and the partial order on A

(N1, LN1) ≤ (N2, LN2)⇔ N1 ⊆ N2, LN2 |N1 = LN1 .

The set A is nonempty since (M, l) ∈ A. Let ((Ni, LNi)i∈I) be a totally ordered
subset of A. Then (N,LN), where

N := ∪i∈INi and LN(x) := LNi(x) ∀x ∈ Ni,
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is an upper bound of this chain. Notice that, since ((Ni, LNi)i∈I) is totally ordered,
N is a linear subspace of X and LN is well-defined and linear.

Let (X0, LX0) be a maximal element of A. Assuming that X0 6= X, according
to Step 1, there would exist a majorant of (X0, LX0) in A, which would contradict
its maximality. Thus, X0 = X and L := LX0 solves the extension problem. �

The following lemma will allow us to extend Theorem 6.3 to complex vector
spaces.

Lemma 6.4 Let X be a complex vector space.

(a) If l : X → R is a R-linear functional, namely,

l(λx+ µy) = λl(x) + µl(y) ∀λ, µ ∈ R ∀x, y ∈ X,

then
l̃ : X → C, l̃(x) := l(x)− il(ix),

is a C-linear functional and Re l̃ = l.

(b) If h : X → C is a C-linear functional, then l := Reh is R-linear and, for l̃
defined as above, it holds l̃ = h.

(c) If p : X → R is a seminorm and l : X → C is a C-linear functional, then

|l(x)| ≤ p(x) ∀x ∈ X ⇔ |Re l(x)| ≤ p(x) ∀x ∈ X.

(d) If X is a normed space and l : X → C is C-linear and continuous, then
‖l‖ = ‖Re l‖.

Proof. (a) It is clear that l̃ is R-linear and Re l̃ = l. Since l̃(ix) = il̃(x),
we obtain that l̃ is C-linear.

(b) It is clear that l = Reh is R-linear. In addition, for all x ∈ X we have

h(x) = Reh(x) + i Imh(x) = Reh(x)− iRe ih(x) = Reh(x)− iReh(ix)

=l(x)− il(ix) = l̃(x).

(c) The implication “⇒” is obvious. Let now x ∈ X and λ ∈ C, |λ| = 1,
such that l(x) = λ|l(x)|. We have

|l(x)| = λ−1l(x) = l(λ−1x) = |Re l(λ−1x)| ≤ p(λ−1x) = p(x).

(d) Is a direct consequence of (c).
�
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Theorem 6.5 (Hahn-Banach Theorem for Complex Vector Spaces) Let X be a
complex vector space and M a linear subspace of X. Further, let p : X → R be
sublinear and l : M → C be linear such that

Re l(x) ≤ p(x) ∀x ∈M.

Then there exists a linear extension L : X → C such that

L|M = l and ReL(x) ≤ p(x) ∀x ∈ X.

Proof. We apply Theorem 6.3 for Re l and get a R-linear functional F : X → R
with F |M = Re l and F (x) ≤ p(x) for all x ∈ X. According to Lemma 6.4, there
exists a C-linear function L : X → C with F = ReL. One can easily see that
L|M = l. �

In the following we apply the algebraic versions of the Hahn-Banach Theorem
to normed spaces.

Theorem 6.6 (Hahn-Banach Theorem for Normed Spaces) Let X be a normed
space over K and M a linear subspace of X. For every continuous linear func-
tional m∗ : M → K there exists a continuous linear functional x∗ : X → K such
that

x∗|M = m∗ and ‖x∗‖ = ‖m∗‖.

Proof. Assume first that X is a real normed space and define p(x) = ‖m∗‖‖x‖
for all x ∈ X. Theorem 6.3 provides a linear functional x∗ : X → R fulfilling
x∗|M = m∗ and x∗(x) ≤ p(x) for all x ∈ X. Since −x∗(x) = x∗(−x) ≤ p(−x) =
p(x) for all x ∈ X, it yields |x∗(x)| ≤ ‖m∗‖‖x‖ for all x ∈ X, thus x∗ is continuous
and ‖x∗‖ ≤ ‖m∗‖. In addition,

‖m∗‖ = sup
‖m‖≤1,m∈M

|m∗(m)| = sup
‖m‖≤1,m∈M

|x∗(m)| ≤ sup
‖x‖≤1,x∈X

|x∗(x)| = ‖x∗‖.

For X a complex normed space we can use Theorem 6.5 and the same ar-
guments to obtain a linear functional x∗ : X → C fulfilling x∗|M = m∗ and
‖Rex∗‖ = ‖m∗‖. To conclude we use Lemma 6.4 which gives ‖Rex∗‖ = ‖x∗‖.
�

Corollary 6.7 In every normed space X there exists for every x ∈ X, x 6= 0, a
continuous linear functional x∗ ∈ X∗ such that

‖x∗‖ = 1 and x∗(x) = ‖x‖.

In particular, the dual space X∗ separates points in X, which means that for all
x, y ∈ X, x 6= y, there exists x∗ ∈ X∗ such that x∗(x) 6= x∗(y).
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Proof. The first statement follows from Theorem 6.6 for M := lin{x} and
m∗ : M → K, m∗(λx) = λ‖x‖. The second statement follows by applying the
first statement to x− y 6= 0. �

Corollary 6.7 leads to the following result, which is symmetric to the definition
of the norm of a continuous linear functional.

Corollary 6.8 In every normed space X it holds

‖x‖ = max
x∗∈BX∗

|x∗(x)| ∀x ∈ X,

where “max” indicates that the supremum is attained.

Corollary 6.9 Let X be a normed space, M ⊆ X a closed linear subspace of X
and x ∈ X \M . Then there exists x∗ ∈ X∗ such that

x∗|M = 0 and x∗(x) 6= 0.

Proof. Consider the quotient operator [·] : X → X/M . Then [m] = 0 for all
m ∈ M and [x] 6= 0. According to Corollary 6.7, there exists l ∈ (X/M)∗ such
that l([x]) 6= 0. To conclude, we take x∗ := l ◦ [·] ∈ X∗. �

The following result is an immediate consequence of Corollary 6.9.

Corollary 6.10 Let X be a normed space and M a linear subspace of X. The
following statements are equivalent:

(i) M is dense in X.

(ii) If x∗ ∈ X∗ fulfills x∗|M = 0, then x∗ = 0.

We will close this section by providing some direct consequences of the Hahn-
Banach Theorem.

Let X be a normed space, M ⊆ X and N ⊆ X∗. The closed linear subspace

M⊥ := {x∗ ∈ X∗ | x∗(x) = 0 ∀x ∈M}

is called anihilator of M in X∗. The closed linear subspace

N⊥ := {x ∈ X | x∗(x) = 0 ∀x∗ ∈ N}

is called anihilator of N in X.

Theorem 6.11 Let X be a normed space and M a closed linear subspace of X.
Then

(X/M)∗ ∼= M⊥ (6.2)

and
M∗ ∼= X∗/M⊥. (6.3)
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Proof. The isometric isomorphism proving (6.2) is

l ∈ (X/M)∗ 7→ x∗ = l ◦ [·] ∈M⊥.

The isometric isomorphism proving (6.3) is

x∗ +M⊥ ∈ X∗/M⊥ 7→ x∗|M ∈M∗.

�

Theorem 6.12 Every normed space with a separable dual space is separable.

Proof. Since X∗ is separable we have that SX∗ = {x∗ ∈ X∗ | ‖x∗‖ = 1} is also
separable (see Übungsbeispiel 17(a)). Let {x∗1, x∗2, ...} be a countable dense subset
of SX∗ . For every k ∈ N we can choose (see Übungsbeispiel 18) xk ∈ SX = {x ∈
X | ‖x‖ = 1} such that |x∗k(xk)| ≥ 1

2
. Define M := lin{x1, x2, ...}. We will prove

that M is dense in X, which, by taking into account Lemma 2.10, will allow us
to conclude that X is separable.

Let x∗ ∈ X∗ with x∗|M = 0. We will prove that x∗ = 0 and the conclusion
will follow via Corollary 6.10. Assume without loss of generality that ‖x∗‖ = 1.
Then there exists x∗K ∈ SX∗ such that ‖x∗ − x∗K‖ ≤ 1

4
. This yields

1

2
≤ |x∗K(xK)| = |x∗K(xK)− x∗(xK)| ≤ ‖x∗K − x∗‖‖xK‖ ≤

1

4
.

Contradiction! �

Example 6.13 (`1 ( (`∞)∗) The operator

T : `1 → (`∞)∗, (Tx)(y) =
+∞∑
n=1

sntn,

where x = (sn)n∈N ∈ `1 and y = (tn)n∈N ∈ `∞, is isometric, but not surjective. It
is easy to see that T is isometric.

We will show that T is not surjective. Consider the continuous linear func-
tional lim : c → K, lim z := limk→+∞ rn, for z = (rn)n∈N ∈ c (see Example
3.9). In the light of Theorem 6.6 we can extend it to a continuous linear func-
tional x∗ : `∞ → K with ‖x∗‖ = ‖ lim ‖ = 1. Assume that that there exists
x = (sn)n∈N ∈ `1 such that x∗(y) = (Tx)(y) =

∑+∞
n=1 sntn for all y = (tn)n∈N ∈ `∞.

For all n ∈ N it holds
sn = x∗(en) = lim en = 0,

thus x∗ = 0. Contradiction!
One should notice that there exists no isomorphism between `1 and (`∞)∗,

as `1 is separable (see Example 2.11 (a)) and (`∞)∗ is not separable (otherwise,
according to Theorem 6.12, `∞ would be also separable, which, as seen in Example
2.11 (c), is not the case).
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Corollary 6.14 Let X be a normed space, I an index set, and xi ∈ X and ci ∈ K
for all i ∈ I. The following statements are equivalent:

(i) There exists x∗ ∈ X∗ such that x∗(xi) = ci for all i ∈ I.

(ii) There exists M ≥ 0 such that for every finite set F ⊆ I it holds∣∣∣∣∣∑
i∈F

λici

∣∣∣∣∣ ≤M

∥∥∥∥∥∑
i∈F

λixi

∥∥∥∥∥ .
Proof. (i)⇒ (ii). Take M := ‖x∗‖.

(ii)⇒ (i). Follows from Theorem 6.6 for M := lin{xi | i ∈ I} and m∗ : M →
K,m∗

(∑
i∈F λixi

)
=
∑

i∈F λici for every finite set F ⊆ I, which is a continuous
linear functional on M . �

7 Separation theorems for convex sets

In this section we will deal with geometric versions of the Hahn-Banach The-
orem. Given two disjoint convex sets U, V ⊆ X, the aim is to separate them
through continuous linear functionals, more precisely, to formulate conditions
which guarantee the existence of x∗ ∈ X∗, x∗ 6= 0, such that

sup
x∈U

x∗(x) ≤ inf
x∈V

x∗(x) (in case K = R),

respectively,
sup
x∈U

Rex∗(x) ≤ inf
x∈V

Rex∗(x) (in case K = C).

Definition 7.1 Let X be a vector space and A ⊆ X.

(i) The set A is called convex if λx + (1 − λ)y ∈ A for all x, y ∈ A and all
0 ≤ λ ≤ 1.

(ii) The set coreA := {a ∈ A | ∀x ∈ X ∃δ > 0 such that a+λx ∈ A ∀λ ∈ [0, δ]}
is called the algebraic interior of the set A. If A is convex, then coreA =
{a ∈ A | ∪λ>0 λ(A− a) = X}.

(iii) The set A is called absorbing if 0 ∈ coreA.

Definition 7.2 (Minkowski functional) Let X be a vector space and A ⊆ X an
absorbing set. The Minkowski functional of A is defined by

pA : X → R, pA(x) := inf{λ ≥ 0 | x ∈ λA}.

In a normed space X we have pBX = pintBX = ‖ · ‖. The following proposition
collects some properties of the Minkowski functional (see Übungsbeispiel 33).
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Proposition 7.3 Let X be a vector space and A ⊆ X a convex and absorbing
set.

(a) Then pA is finite, sublinear and coreA = {x ∈ X | pA(x) < 1}.

(b) If, in addition, X is a normed space and A is a neighbourhood of 0, then
pA is continuous,

intA = coreA = {x ∈ X | pA(x) < 1} and A = {x ∈ X | pA(x) ≤ 1}.

Lemma 7.4 If X is a normed space and U ⊆ X a convex and open set with
0 /∈ U , then there exists x∗ ∈ X∗ such that

Rex∗(x) < 0 ∀x ∈ U.

Proof. If U = ∅, then the statement follows from Corollary 6.7.
We consider first the case K = R. Let x0 ∈ U and A := U − x0. Then A is

an open set with 0 ∈ A and −x0 /∈ A. The Minkowski functional pA is finite,
sublinear and it fulfils pA(−x0) ≥ 1.

On Y := lin{x0} we define the linear functional

y∗(tx0) = (−t)pA(−x0) ∀t ∈ R.

For t < 0 we have y∗(tx0) = pA(tx0), while for t ≥ 0 we have y∗(tx0) =
(−t)pA(−x0) ≤ 0 ≤ pA(tx0), thus

y∗(y) ≤ pA(y) ∀y ∈ Y.

Theorem 6.3 provides a linear extension x∗ of y∗ on X such that x∗(x) ≤ pA(x)
for all x ∈ X. Let ε > 0 be such that {x ∈ X | ‖x‖ < ε} ⊆ A. Then for every
x ∈ X, x 6= 0, it holds εx

2‖x‖ ∈ A = intA, thus pA(x) < 2
ε
‖x‖. This means that for

every x ∈ X we have

|x∗(x)| = max{x∗(x), x∗(−x)} ≤ max{pA(x), pA(−x)} ≤ 2

ε
‖x‖,

which proves that x∗ is continuous.
In addition, for every x ∈ U it holds

x∗(x) = x∗(x− x0) + x∗(x0) ≤ pA(x− x0)− pA(−x0) ≤ pA(x− x0)− 1 < 0,

since x− x0 ∈ A.
In case K = C the statement follows by combining Theorem 6.5 with Lemma

6.4. �
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Example 7.5 Consider the normed space (c00, ‖ · ‖∞) over R and

U = {(tn)n∈N ∈ c00 \ {0} | tN > 0 for N := max{n ∈ N | tn 6= 0}} .

The set U is convex and 0 /∈ U . It is easy to notice that U is not open (for
instance, e1 ∈ U \ intU). However, there exists no x∗ ∈ (c00)∗ such that x∗|U < 0.
Assume that there exists such a continuous linear functional on c00. Then it
has a unique continuous linear extension on c0 (see Theorem 3.6). According to
Example 4.2(b) this can be identified with a sequence (sn)n∈N ∈ `1. Since en ∈ U ,
x∗(en) = sn < 0 for all n ∈ N. Consider x := − s2

s1
e1 + e2 ∈ U . Then x∗(x) = 0,

which leads to a contradiction.

Theorem 7.6 (Hahn-Banach Separation Theorem) Let X be a normed space
and U, V ⊆ X two convex sets such that U is open and U ∩ V = ∅. Then there
exists x∗ ∈ X∗ such that

Rex∗(u) < Rex∗(v) ∀u ∈ U ∀v ∈ V.

Proof. The set U − V = {u − v | u ∈ U, v ∈ V } is convex and open (since
U −V = ∪v∈V (U − v)), and 0 /∈ U −V . Lemma 7.4 provides an element x∗ ∈ X∗
such that Re x∗(u−v) < 0 for all u ∈ U and all v ∈ V , which leads to the desired
conclusion. �

Theorem 7.7 (Hahn-Banach Strong Separation Theorem) Let X be a normed
space and U, V ⊆ X two convex sets such that U is compact, V is closed and
U ∩ V = ∅. Then there exists x∗ ∈ X∗ such that

sup
u∈U

Rex∗(u) < inf
v∈V

Rex∗(v).

Proof. The set U − V is closed and 0 /∈ U − V . This means that there exists
r > 0 such that {x ∈ X | ‖x‖ < r} ∩ (U − V ) = ∅. According to Theorem 7.6,
there exists x∗ ∈ X∗, x∗ 6= 0, such that

Rex∗(x) < Rex∗(u− v) ∀x ∈ X with ‖x‖ < r ∀u ∈ U ∀v ∈ V,

thus

sup
x∈X,‖x‖<r

|Rex∗(x)| ≤ inf
u∈U,v∈V

Rex∗(u− v)

or, equivalently,

0 < r‖Rex∗‖ ≤ inf
u∈U,v∈V

Rex∗(u− v),

which finishes the proof. �
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8 Weak convergence and reflexivity

Let X be a normed space, X∗ its dual space, and X∗∗ the dual space of X∗. X∗∗

is called the bidual space of X.

Theorem 8.1 (the canonical embedding of a normed space into its bidual) The
mapping iX : X → X∗∗ defined for every x ∈ X as

iX(x) : X∗ → K, (iX(x)) (x∗) = x∗(x),

is a linear isometry (which is in general not surjective). It is called the canonical
embedding of the normed space X into its bidual.

Proof. Let x ∈ X. It is easy to see that iX(x) is linear. Since | (iX(x)) (x∗)| =
|x∗(x)| ≤ ‖x∗‖‖x‖ for all x ∈ X and all x∗ ∈ X∗, iX(x) is continuous and
‖iX(x)‖ ≤ ‖x‖. On the other hand, according to Corollary 6.8, there exists
x∗ ∈ X∗, ‖x∗‖ ≤ 1, such hat | (iX(x)) (x∗)| = |x∗(x)| = ‖x‖, thus ‖iX(x)‖ = ‖x‖.

Obviously, iX is linear. �

The canonical embedding allows to identify a normed space X with a linear
subspace of its bidual. If X is complete, then iX(X) is also complete, thus it is
a closed linear subspace of X∗∗ (see Lemma 1.6(b)).

For a normed space X, since X∗∗ is a Banach space, we have that iX(X) is
a closed linear subspace, thus it is complete (see Lemma 1.6(a)). This means
that every normed space is isometrically isomorph to a dense linear subspace of
a Banach space.

Definition 8.2 (reflexive space) A Banach space X is said to be reflexive if
iX : X → X∗∗ is surjective.

Since X∗∗ is complete, a non complete normed space cannot be reflexive.

Example 8.3 (a) c0 and `1 are not reflexive. Let X = c0. We have seen in
Example 4.2 that X∗ ∼= `1 and X∗∗ ∼= `∞. Let x = (sn)n∈N ∈ c0. We
associate x∗ ∈ (c0)∗ = X∗ with an element (tn)n∈N ∈ `1 and get

(ic0(x)) (x∗) = x∗(x) =
+∞∑
n=1

sntn = Lx(x
∗),

where Lx ∈ (`1)∗ = X∗∗ maps x∗ = (tn)n∈N ∈ X∗ to
∑+∞

n=1 sntn. Thus
ic0(x) = Lx ∈ (c0)∗∗. By identifying (c0)∗∗ with `∞ and Lx with x, we get
ic0 : c0 → `∞, ic0(x) = x. Obviously, ic0 is not surjective.
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Similarly, for x = (sn)n∈N ∈ `1 and x∗ ∈ (`1)∗, which we can associate with
an element (tn)n∈N ∈ `∞, we have

(i`1(x)) (x∗) = x∗(x) =
+∞∑
n=1

sntn.

We have seen in Example 6.13 that i`1 is not surjective.

(b) For 1 < p < ∞, the spaces `p and Lp(µ) are reflexive. As above, the
canonical embedding i`p can be identified with the identical operator Id :
`p → `p, therefore it is surjective. Similar arguments prove that the spaces
Lp(µ), 1 < p <∞, are reflexive.

(c) Finite-dimensional normed spaces X are reflexive, since dimX = dimX∗ =
dimX∗∗.

(d) If X is reflexive, then X ∼= X∗∗. However, the opposite statement is not
true in general. For the space J in (Übungsbeispiel 9, Gruppe 1) it holds
J ∼= J∗∗, however, iJ is not surjective.

Theorem 8.4 (a) Closed linear subspaces of reflexive spaces are reflexive.

(b) A Banach space X is reflexive if and only if X∗ is reflexive.

Proof. (a) Let X be reflexive and M ⊆ X a closed linear subspace. Let m∗∗ ∈
M∗∗. The functional x∗ 7→ m∗∗(x∗|M) on X∗ is linear and continuous, since

|m∗∗(x∗|M)| ≤ ‖m∗∗‖‖x∗|M‖ ≤ ‖m∗∗‖‖x∗‖,

which means that it is an element of X∗∗. Since X is reflexive, there exists x ∈ X
such that

m∗∗(x∗|M) = x∗(x) ∀x∗ ∈ X∗.

We have that x ∈ M . Otherwise, according to Corollary 6.9, there would exists
x∗ ∈ X∗ such that x∗|M = 0 and x∗(x) 6= 0. Contradiction! From now on, we
denote x by m.

It remains to show that m∗∗(m∗) = m∗(m) for all m∗ ∈ M∗. Indeed, let
m∗ ∈ M∗ and x∗ ∈ X∗ its extension (the existence of which is guaranteed by
Theorem 6.6). It holds m∗∗(m∗) = m∗∗(x∗|M) = x∗(m) = m∗(m). We proved
that iM(m) = m∗∗, which shows that M is reflexive.

(b) “⇒” Assume that X is reflexive. Let x∗∗∗ ∈ X∗∗∗. The functional x∗ :
X → K, x∗(x) = x∗∗∗(iX(x)), is linear and continuous, thus x∗ ∈ X∗. For every
x∗∗ ∈ X∗∗ there exists x ∈ X such that iX(x) = x∗∗, thus

x∗∗∗(x∗∗) = x∗∗∗(iX(x)) = x∗(x) = (iX(x))(x∗) = x∗∗(x∗),
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which shows that x∗∗∗ = iX∗(x
∗). In conclusion, iX∗ is surjective.

“⇐” If X∗ is reflexive, then X∗∗ is also reflexive and, according to (a), the
closed linear subspace iX(X) is reflexive, too. Since X ∼= iX(X), it follows that
X is also reflexive. �

Theorem 8.4 and Theorem 6.12 give the following corollary.

Corollary 8.5 A reflexive normed space is separable if and only if its dual space
is separable.

Example 8.6 The spaces `∞, L1[0, 1], L∞[0, 1] and C[0, 1] are not reflexive.

Definition 8.7 (weak convergence) Let X be a normed space. A sequence
(xn)n∈N ⊆ X is said be weakly convergent to x ∈ X if

lim
n→+∞

x∗(xn) = x∗(x) ∀x∗ ∈ X∗.

We write xn
w−→ x (n→ +∞).

Since X∗ separates points in X (see Corollary 6.7), the limit is uniquely deter-
mined. Every convergent sequence is weakly convergent. The sequence (en)n∈N in
`p, 1 < p <∞, or in c0 converges weakly to 0, while ‖en‖ = 1 for all n ∈ N, which
shows that weakly convergent sequences are in general not convergent. However,
in finite-dimensional spaces, a sequence is convergent if and only if it is weakly
convergent.

Theorem 8.8 In a reflexive space X every bounded sequence has a weakly con-
vergent subsequence.

Proof. First we assume that X is separable. According to Corollary 8.5, X∗

is also separable; assume that X∗ = {x∗1, x∗2, ...}. Let (xn)n∈N be a bounded
sequence in X. By using a similar diagonalization technique as in the proof of
the Arzelá-Ascoli Theorem, we construct a subsequence (ξn)n∈N such that the
sequence (x∗m(ξn))n∈N is convergent for all m ∈ N.

Let x∗ ∈ X∗ and ε > 0. Let M > 0 such that ‖xn‖ ≤ M for all n ∈ N and
K ∈ N such that ‖x∗K − x∗‖ < ε

3M
. Then there exists N ∈ N such that for all

m,n ≥ N it holds

|x∗(ξn)− x∗(ξm)| ≤ 2M‖x∗K − x∗‖+ |x∗K(ξn)− x∗K(ξm)| < ε.

This shows that (x∗(ξn))n∈N is a Cauchy sequence, therefore, a convergent se-
quence.

Consider the functional on X∗

lim : X∗ → K, lim(x∗) = lim
n→+∞

x∗(ξn).
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It is well-defined and linear. Since

| lim(x∗)| =
∣∣∣∣ lim
n→+∞

x∗(ξn)

∣∣∣∣ = lim
n→+∞

|x∗(ξn)| ≤ ‖x∗‖M ∀x∗ ∈ X∗,

lim ∈ X∗∗. Since X is reflexive, there exists ξ ∈ X such that iX(ξ) = lim, which
means that

x∗(ξ) = lim(x∗) = lim
n→+∞

x∗(ξn) ∀x∗ ∈ X∗

and therefore shows that ξn
w−→ ξ (n→ +∞).

Consider now the general case of a reflexive normed space X. Let (xn)n∈N be a
bounded sequence in X and the closed linear subspace Y := lin{x1, x2, ...}. Then
Y is separable and reflexive. As proved above, there exists a subsequence (ξn)n∈N

and an element ξ ∈ Y such that y∗(ξn) → y∗(ξ) (n → +∞) for all y∗ ∈ Y ∗. Let
x∗ ∈ X∗. Then x∗|Y ∈ Y ∗, which means that x∗(ξn) → x∗(ξ) (n → +∞). This
shows that ξn

w−→ ξ (n→ +∞). �

In `2 we have that en
w−→ 0 as n→ +∞ and (en)n∈N ⊆ S`2 = {x ∈ `2 | ‖x‖ =

1}, which is a closed set. This shows that closed sets are not necessarily “weakly
closed”. However, the two notions are equivalent for convex sets. This is another
consequence of the Hahn-Banach Theorem.

Theorem 8.9 Let X be a normed space and U ⊆ X a closed convex set. If
(xn)n∈N ⊆ U is weakly convergent to x, then x ∈ U .

Proof. Assume that x /∈ U . According to the Hahn-Banach Strong Separation
Theorem, there exist ε > 0 and x∗ ∈ X∗ such that ε < Rex∗(u) − Rex∗(x) =
Rex∗(u−x) for all u ∈ U . Thus Re x∗(xn−x) > ε for all n ∈ N, which contradicts
limn→+∞ x

∗(xn) = x∗(x). �

Corollary 8.10 If xn
w−→ x (n → +∞), then there exists a sequence of convex

combinations

yn =
Nn∑
i=n

λni xi, where λni ≥ 0, i = n, ..., Nn,

Nn∑
i=n

λni = 1,

such that limn→+∞ ‖yn − x‖ = 0.

Proof. For all n ∈ N, define Un := co{xn, xn+1, ...}, where coA := ∩{C ⊆
X | A ⊆ C,C is convex} denotes the convex hull of a set A. According to
Theorem 8.9, x ∈ Un for all n ∈ N. Thus, for all n ∈ N, there exists an element
yn ∈ co{xn, xn+1, ...} such that ‖yn − x‖ < 1

n
. �
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9 Adjoint operators

Adjoint operators are dual objects which are associated to continuous linear op-
erators.

Definition 9.1 (adjoint operator) Let X and Y be normed spaces and T ∈
L(X, Y ). The operator T ∗ : Y ∗ → X∗ defined through

(T ∗y∗)(x) := y∗(Tx) ∀x ∈ X ∀y∗ ∈ Y ∗

is called the adjoint operator of T .

It is easy to see that T ∗y∗ ∈ X∗ for every y∗ ∈ Y ∗ and that T ∗ ∈ L(Y ∗, X∗).

Example 9.2 (a) Let 1 ≤ p <∞ and T : `p → `p be the left shift operator

T (s1, s2, ...) = (s2, s3, ...).

In order to find its adjoint operator T ∗ : `q → `q, where 1
p

+ 1
q

= 1, we will

identify y∗ ∈ (`p)∗ with an element (tn)n∈N ∈ `q. For x = (sn)n∈N we have
y∗(Tx) =

∑+∞
n=1 sn+1tn =

∑+∞
n=2 sntn−1. This shows that T ∗ is the right shift

operator
T ∗(t1, t2, ...) = (0, t1, t2, ...).

For p = q = 2 we have TT ∗ = Id, however, T ∗T 6= Id.

(b) Let 1 ≤ p <∞ and T(p) : Lp[0, 1]→ Lp[0, 1] be the multiplication operator
T(p)f = hf , where h ∈ L∞[0, 1]. Its adjoint operator is the multiplication
operator T(q) : Lq[0, 1] → Lq[0, 1] on Lq[0, 1], where 1

p
+ 1

q
= 1. Indeed, for

all f ∈ Lp[0, 1] and g ∈ Lq[0, 1] it holds

(T ∗(p)g)(f) =

∫ 1

0

(T(p)f)(t)g(t)dt =

∫ 1

0

h(t)f(t)g(t)dt

=

∫ 1

0

(T(q)g)(t)f(t)dt = (T(q)g)(f).

(c) The adjoint operator of the canonical embedding iX : X → X∗∗, (iX)∗ :
X∗∗∗ → X∗, fulfils ((iX)∗(x∗∗∗))(x) = x∗∗∗(iX(x)) for all x ∈ X and all
x∗∗∗ ∈ X∗∗∗, thus it is nothing else than the restriction mapping x∗∗∗ 7→
x∗∗∗|iX(X).

Theorem 9.3 (a) The mapping T 7→ T ∗ from L(X, Y ) to L(Y ∗, X∗) is linear
and isometric, namely, ‖T‖ = ‖T ∗‖.

(b) For T ∈ L(X, Y ) and S ∈ L(Y, Z) it holds (ST )∗ = T ∗S∗.
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Proof. (a) The linearity of the mapping is clear. By using Corollary 6.8 we get

‖T‖ = sup
x∈BX

‖Tx‖ = sup
x∈BX

sup
y∗∈BY ∗

|y∗(Tx)| = sup
y∗∈BY ∗

‖T ∗y∗‖ = ‖T ∗‖.

(b) Follows by straightforward calculations. �

Lemma 9.4 For T ∈ L(X, Y ) we have

T ∗∗ ◦ iX = iY ◦ T.

Proof. For every x ∈ X and every y∗ ∈ Y ∗ it holds

[T ∗∗(iX(x))](y∗) = (iX(x))(T ∗y∗) = (T ∗y∗)(x) = y∗(Tx) = [iY (Tx)](y∗).

�

By using Lemma 9.4 one can easily see that S ∈ L(Y ∗, X∗) is an adjoint
operator if and only if S∗(X) ⊆ Y , where X and Y are identified with iX(X)
and iY (Y ), respectively. This remark is helpful when showing that the mapping
in Theorem 9.3(a) is in general not surjective (see Übungsbeispiel 37).

Theorem 9.5 (Schauder Theorem) Let X and Y be Banach spaces and T : X →
Y a continuous linear operator. T is compact if and only if T ∗ is compact.

Proof. “⇒” Let T be compact and (y∗n)n∈N a bounded sequence in Y ∗. Then
K := T (BX) ⊆ Y is a compact metric space. The sequence (fn := y∗n|K)n∈N is
bounded and equicontinuous, since

|fn(u)− fn(v)| ≤ sup
n∈N
‖y∗n‖‖u− v‖ ∀n ∈ N.

According to the Arzelá-Ascoli Theorem, {fn | n ∈ N} is relatively compact, thus
there exists a convergent subsequence (fnk)k∈N. For all k, l ∈ N it holds

‖T ∗y∗nk−T
∗y∗nl‖ = sup

x∈Bx
|(y∗nk−y

∗
nl

)(Tx)| = sup
y∈T (Bx)

|(y∗nk−y
∗
nl

)(y)| = ‖y∗nk−y
∗
nl
‖∞,

since T (BX) is dense in K. Thus (T ∗y∗nk)k∈N is convergent, which proves that T ∗

is compact.

“⇐” Let T ∗ be compact. From the first part of the proof it follows that
T ∗∗ is also compact, thus T ∗∗ ◦ iX is compact and, according to Lemma 9.4,
iY ◦T : X → Y ∗∗ is also compact. Since iY (Y ) is a closed linear subspace of Y ∗∗,
it follows that T is compact. �
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For T : X → Y a given linear operator, we have seen that kerT = {x ∈ X :
Tx = 0} and ranT = T (X) are linear subspaces. If T is continuous, then kerT
is also closed; on the other hand, ranT is in general not closed. To see this,
consider for instance the identity operator from (P [a, b], ‖ · ‖∞) to (C[a, b], ‖ · ‖∞)
(see Übungsbeispiel 8). We have the following characterization of the closure of
the range of a continuous linear operator.

Theorem 9.6 It holds
ranT = (kerT ∗)⊥.

Proof. “⊆” Let y = Tx ∈ ranT . For all y∗ ∈ kerT ∗ we have y∗(y) = y∗(Tx) =
T ∗y∗(x) = 0, thus ranT ⊆ (kerT ∗)⊥, and the inclusion follows from the fact that
the anihilator is closed.

“⊇” Let y /∈ ranT . According to Corollary 6.9, there exists y∗ ∈ Y ∗ such
that y∗|ranT = 0 and y∗(y) 6= 0. Thus T ∗y∗(x) = y∗(Tx) = 0 for all x ∈ X, which
shows that y∗ ∈ kerT ∗. Since y∗(y) 6= 0, y /∈ (kerT ∗)⊥. �

The following corollary is a direct consequence of Theorem 9.6.

Corollary 9.7 Let T : X → Y a continuous linear operator with closed range
and y ∈ Y . The operator equation

Tx = y

has a solution if and only if the following implication holds

T ∗y∗ = 0 =⇒ y∗(y) = 0.



Chapter IV

The fundamental theorems for
operators on Banach spaces

In this chapter we will study the fundamental theorems for operators on Banach
spaces. The main tool in the derivation of these results is the Baire Category
Theorem.

10 An essential tool: the Baire Category Theo-

rem

Theorem 10.1 (Baire Theorem) Let (T, d) be a complete metric space and a
sequence (On)n∈N of open and dense sets in T . Then ∩n∈NOn is dense in T .

Proof. Set D := ∩n∈NOn. We will prove that every open ball Uε(x0) = {x ∈
T | d(x0, x) < ε}, for ε > 0 and x0 ∈ T , intersects D.

As O1 is open and dense, O1 ∩ Uε(x0) is open and nonempty. We choose
x1 ∈ O1 and 0 < ε1 <

1
2
ε such that

Uε1(x1) ⊆ O1 ∩ Uε(x0).

As O2 is open and dense, O2 ∩ Uε1(x1) is open and nonempty. Then there
exist x2 ∈ O2 and 0 < ε2 <

1
2
ε1 such that

Uε2(x2) ⊆ O2 ∩ Uε1(x1) ⊆ O1 ∩O2 ∩ Uε(x0).

By repeating the above procedure, we can inductively construct the sequences
(εn)n∈N and (xn)n∈N such that for all n ≥ 2

0 < εn <
1

2
εn−1, thus, εn <

ε

2n
,

and
Uεn(xn) ⊆ On ∩ Uεn−1(xn−1) ⊆ ... ⊆ O1 ∩ ... ∩On ∩ Uε(x0).

59
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Let N ∈ N. For all n > N it holds xn ∈ UεN (xN) ⊆ U 1

2N
ε(xN), thus (xn)n∈N is

a Cauchy sequence. Since T is complete, there exists x := limn→+∞ xn ∈ UεN (xN)
for all N ∈ N, thus

x ∈ ∩n∈NOn ∩ Uε(x0) = D ∩ Uε(x0).

�

Notice that Theorem 10.1 does not claim that ∩n∈NOn is open. Notice also
that the completeness of the metric space T is an essential hypothesis. Indeed,
for T = Q, and assuming that Q = {q1, q2, ...}, the sets On := Q \ {qn} are open
and dense in Q, while ∩n∈NOn = ∅.

A countable intersection of open sets is called a Gδ set (the notation originated
in Germany: G means “Gebiet”, δ means “Durchschnitt”). Theorem 10.1 says
that in a complete metric space the countable intersection of dense Gδ sets is a
dense Gδ set.

Definition 10.2 (a) A subset D of a metric space is called nowhere dense if
int(D) = ∅.

(b) The set D is said to be of the first category if there exists a sequence
(Dn)n∈N of nowhere dense sets with D = ∪n∈NDn.

(c) The set D is said to be of the second category if D is not of the first category.

The set {1/n | n ∈ N} is nowhere dense in R. The set Q is of the first category
in R.

Corollary 10.3 (Baire Category Theorem) The complement of a subset of the
first category of a complete metric space is dense.

Proof. Let (Dn)n∈N be a sequence of nowhere dense sets with D = ∪n∈NDn.
Then X \ D = ∩n∈N(X \ Dn) ⊇ ∩n∈N(X \ Dn). The conclusion follows from

Theorem 10.1, by noticing that X \Dn are open and dense sets, since X \Dn =
X \ int(Dn) = X for all n ∈ N. �

A useful consequence of Corollary 10.3 follows.

Corollary 10.4 A nonempty complete metric space is a set of the second cate-
gory in itself.

The Baire Category Theorem is a very helpful instrument when proving ex-
istence results. We will illustrate this in Übungsbeispiel 38, Gruppe 1, where
we will show that there exists continuous functions on [0, 1] that are nowhere
differentiable.



11 The Uniform Boundedness Principle 61

11 The Uniform Boundedness Principle

Theorem 11.1 (Banach-Steinhaus Theorem) Let X be a Banach space, Y a
normed space, I an index set, and Ti ∈ L(X, Y ), for i ∈ I, a family of continuous
linear operators. If

sup
i∈I
‖Tix‖ < +∞ ∀x ∈ X,

then
sup
i∈I
‖Ti‖ < +∞.

Proof. Define En := {x ∈ X | supi∈I ‖Tix‖ ≤ n} for all n ∈ N. It holds
X = ∪n∈NEn. Since Ti is continuous, for all i ∈ I, the set En = ∩i∈I‖Ti‖−1([0, n]),
for n ∈ N, is closed. According to Corollary 10.4, X is of second category, thus
at least one of the sets (En)n∈N has an interior point.

Let N ∈ N, yN ∈ EN and ε > 0 be such that Uε(yN) = {x ∈ X | ‖x− yN‖ <
ε} ⊆ EN . For every u ∈ X with ‖u‖ < ε it holds u + yN , u − yN ∈ EN , thus
u = 1

2
(u+ yN) + 1

2
(u− yN) ∈ 1

2
EN + 1

2
EN ⊆ EN , since EN is convex.

Let i ∈ I. For all ‖u‖ < ε it holds ‖Tiu‖ ≤ N , thus ‖Ti‖ ≤ N
ε

. In conclusion,

sup
i∈I
‖Ti‖ ≤

N

ε
.

�

The completeness of X is an essential hypothesis for the Uniform Boundedness
Principle. Indeed, consider the family of operators (Tn)n∈N ⊆ L(c00,K) defined by
Tn((tm)m∈N) = ntn for all n ∈ N. Obviously, we have supn∈N |Tn((tm)m∈N)| < +∞
for all (tm)m∈N ∈ c00, however, supn∈N ‖Tn‖ = supn∈N n = +∞.

Corollary 11.2 Let U be a subset of a normed space X. The following state-
ments are equivalent:

(a) U is bounded.

(b) x∗(U) ⊆ K is bounded for all x∗ ∈ X∗.

Proof. “(a)⇒ (b)” Clear.
“(b) ⇒ (a)”. Consider the family of operators (iX(x))x∈U ⊆ L(X∗,K). For

every x∗ ∈ X∗ it holds

sup
x∈U
|(iX(x))(x∗)| = sup

x∈U
|x∗(x)| < +∞,

thus
sup
x∈U
‖(iX(x)‖ = sup

x∈U
‖x‖ < +∞,

which proves that U is bounded. �
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Corollary 11.3 Weak convergent sequences are bounded.

Proof. Let (xn)n∈N converge weakly to x. The statement follows from Corollary
11.2, by noticing that (x∗(xn))n∈N is convergent, thus bounded, for all x∗ ∈ X∗.
�

The following corollary is a dual statement to Corollary 11.2 and is a direct
consequence of Theorem 11.1.

Corollary 11.4 Let X be a Banach space and U be a subset of its dual space
X∗. The following statements are equivalent:

(a) U is bounded.

(b) The set {x∗(x) | x∗ ∈ U} is bounded for all x ∈ X.

The following corollary shows that operators defined as pointwise limits of
continuous linear operators are also continuous and linear.

Corollary 11.5 Let X be a Banach space, Y a normed space and (Tn)n∈N ⊆
L(X, Y ) such that for all x ∈ X the limit Tx := limn→+∞ Tnx exists. Then it
holds T ∈ L(X, Y ).

Proof. The linearity of T is clear. For all x ∈ X we have that supn∈N ‖Tnx‖ <
+∞, thus M := supn∈N ‖Tn‖ < +∞. From here we get

‖Tx‖ = lim
n→+∞

‖Tnx‖ ≤M‖x‖ ∀x ∈ X.

�

12 The Open Mapping Theorem

Definition 12.1 (open mapping) A mapping between two metric spaces that
maps open sets to open sets is called open.

An open mapping does not necessarily map closed sets to closed sets. The
projection mapping p : R2 → R, p(u, v) = u is open, however, p({(u, v) ∈ R2 | u >
0, v > 0, uv ≥ 1}) = (0,+∞). Obviously, a bijective mapping is open if and only
if its inverse is continuous.

Lemma 12.2 Let T : X → Y be a linear operator between two normed spaces
X and Y . The following statements are equivalent:

(i) T is open.
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(ii) T maps open balls around zero to zero neighbourhoods, namely,

∀r > 0 ∃ε > 0 such that Vε ⊆ T (Ur),

where Ur := {x ∈ X | ‖x‖ < r} and Vε := {y ∈ Y | ‖y‖ < ε}.

(iii)
∃ε > 0 such that Vε ⊆ T (U1).

Proof. “(ii)⇔ (iii)” Clear, since Ur = rU1 and T is linear.
“(i)⇒ (ii)” Also clear, since 0 ∈ T (Ur) and T (Ur) is open.
“(ii) ⇒ (i)” Let O be an open set in X, y ∈ T (O) and x ∈ O such that

Tx = y. Let r > 0 be such that x + Ur ⊆ O and, according to (ii), let ε > 0 be
such that Vε ⊆ T (Ur). Then it holds y+ Vε ⊆ Tx+ T (Ur) ⊆ T (O), which proves
that T (O) is an open neighbourhood of y. This shows that T (O) is open. �

Example 12.3 (a) Every quotient operator (see Example 3.16) is open.

(b) The operator T : `∞ → c0, T ((tn)n∈N) = ( 1
n
tn)n∈N, is not open, since the set

T (U1) =
{

(sn)n∈N ∈ c0 | |sn| < 1
n
∀n ∈ N

}
is not open.

Every open linear operator is surjective. The following remarkable result,
which goes back to Stefan Banach, asserts that in complete normed spaces the
opposite statement is also true.

Theorem 12.4 (Open Mapping Theorem) Let X and Y be Banach spaces and
T ∈ L(X, Y ) a surjective operator. Then T is open.

Proof. We will show that statement (iii) in Lemma 12.2 holds.
Step 1. We will show that there exists ε0 > 0 such that Vε0 ⊆ T (U1).
Since T is surjective, we have Y = ∪n∈NT (Un). According to the Baire Cat-

egory Theorem, there exists N ∈ N such that int(T (UN)) 6= ∅. Let y0 ∈ T (UN)
and ε > 0 such that

‖z − y0‖ < ε ⇒ z ∈ T (UN).

Since T (UN) is symmetric (z ∈ T (UN) ⇒ −z ∈ T (UN)), it holds −y0 ∈ T (UN)
and

‖z + y0‖ < ε ⇒ z ∈ T (UN).

Let y ∈ Y with ‖y‖ < ε. Then y + y0, y − y0 ∈ T (UN), thus (since T (UN) is
convex) y = 1

2
(y + y0) + 1

2
(y − y0) ∈ T (UN), which shows that Vε ⊆ T (UN) and,

consequently, V ε
N
⊆ T (U1).

Step 2. Let ε0 > 0 with Vε0 ⊆ T (U1). We will prove that in fact it holds
Vε0 ⊆ T (U1). This will lead to the desired conclusion.
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Let y ∈ Vε0 . We choose ε > 0 such that ‖y‖ < ε < ε0. Let y := ε0
ε
y. Then

‖y‖ < ε0, thus, according to Step 1, y ∈ T (U1).
We choose 0 < α < 1 such that

ε

ε0

1

1− α
< 1.

Then there exists y0 = Tx0 ∈ T (U1) such that

‖y − y0‖ < αε0.

Since y−y0
α
∈ Vε0 ⊆ T (U1), there exists y1 = Tx1 ∈ T (U1) such that∥∥∥∥y − y0

α
− y1

∥∥∥∥ < αε0

or, equivalently, ‖y − (y0 + αy1)‖ < α2ε0.

Since y−(y0+αy1)
α2 ∈ Vε0 ⊆ T (U1), there exists y2 = Tx2 ∈ T (U1) such that∥∥∥∥y − (y0 + αy1)

α2
− y2

∥∥∥∥ < αε0

or, equivalently, ‖y − (y0 + αy1 + α2y2)‖ < α3ε0.
In this way we can inductively construct a sequence (xn)n≥0 ⊆ U1 with∥∥∥∥∥y − T

(
n∑
i=0

αixi

)∥∥∥∥∥ < αn+1ε0 ∀n ≥ 0.

Since α < 1, the series
∑+∞

i=0 α
ixi is absolutely convergent, thus there exists

x :=
∑+∞

i=0 α
ixi ∈ X. Obviously, Tx = y.

For x := ε
ε0
x we have Tx = y and

‖x‖ ≤ ε

ε0

+∞∑
i=0

αi‖xi‖ ≤
ε

ε0

+∞∑
i=0

αi =
ε

ε0

1

1− α
< 1,

which proves that y ∈ T (U1). �

One can notice that the statement of the Open Mapping Theorem remains
valid if instead of Y is a Banach space and T is surjective we assume that Y is a
normed space and ranT is not of the first category in Y .

The Open Mapping Theorem has a series of important consequences.

Corollary 12.5 Let X and Y be Banach spaces and T ∈ L(X, Y ) a bijective
operator. Then T−1 is continuous.
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If ‖ · ‖ and ||| · ||| are two norms defined on a vector space X, such that both
norms make X a Banach space, and there exists M > 0 with

‖x‖ ≤M |||x||| ∀x ∈ X,

then the identity operator from (X, ||| · |||) to (X, ‖ · ‖) has a continuous inverse,
thus the two norms are equivalent.

Corollary 12.6 Let X and Y be Banach spaces and T ∈ L(X, Y ) an injective
operator. Then ranT is closed if and only if T−1 : ranT → X is continuous.

Proof. “⇒” If ranT is closed, then ranT is a Banach space. Since T : X →
ranT is a continuous and bijective operator, according to Corollary 12.5, T−1 :
ranT → X is continuous.

“⇐” If T−1 : ranT → X is continuous, then ranT ' X, which implies that
ranT is complete. According to Lemma 1.6 (b), ranT is closed. �

13 The Closed Graph Theorem

Definition 13.1 (closed graph operator) Let X and Y be normed spaces, M ⊆
X a linear subspace and T : M → Y a linear operator. The operator T is called
closed graph if for every sequence (xn)n∈N ⊆ M such that (xn)n∈N converges to
x ∈ X and (Txn)n∈N converges to y ∈ Y , it holds x ∈M and Tx = y.

For an operator T defined on a linear subspace M ⊆ X we usually write
domT = M and T : domT ⊆ X → Y . The graph of a linear operator T :
domT ⊆ X → Y is defined as

grT := {(x, Tx) | x ∈M} ⊆ X × Y.

Obviously, grT is a linear subspace of X × Y . The operator T is closed graph if
and only if grT is closed in X ⊕1 Y (see Übungsbeispiel 6).

Example 13.2 (a) Let C[−1, 1] be endowed with the supremum norm. The
differential operatorD : C1[−1, 1] ⊆ C[−1, 1]→ C[−1, 1], Dx = x′, is graph
closed. Let (xn)n∈N ⊆ C1[−1, 1] be such that (xn)n∈N converges (uniformly)
to x ∈ C[−1, 1] and (x′n)n∈N converges (uniformly) to y ∈ C[−1, 1]. Thus x
is differentiable and x′ = y, which proves that x ∈ C1[−1, 1] and Dx = y.

Notice that D is not continuous (see Example 3.8(c)).

(b) The differential operator D : C1[−1, 1] ⊆ L2[−1, 1] → L2[−1, 1], Dx = x′,

is not graph closed. Let xn : [−1, 1]→ R, xn(t) =
(
t2 + 1

n

) 1
2 , for all n ∈ N,

x = | · | and y = sgn. Then (xn)n∈N ⊆ C1[−1, 1], xn → x and Dxn → y in
L2[−1, 1] as n→ +∞. However, x /∈ C1[−1, 1].
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Lemma 13.3 Let X and Y be Banach spaces, M ⊆ X a linear subspace and
T : M ⊆ X → Y a closed graph operator. The following statements are true:

(a) M embedded with the norm |||x||| := ‖x‖+‖Tx‖, x ∈ X, is a Banach space;
||| · ||| is called graph norm.

(b) T : (M, ||| · |||)→ Y is continuous.

Proof. (a) It is easy to see that ||| · ||| is a norm. Let (xn)n∈N be a Cauchy
sequence in M . This means that (xn)n∈N and (Txn)n∈N are Cauchy sequences
in X and Y , respectively. Thus there exist x := limn→+∞ xn ∈ X and y :=
limn→+∞ Txn ∈ Y . Since T is closed graph, x ∈ M and Tx = y. From here
it follows that |||xn − x||| → 0 as n → +∞, which proves that (M, ||| · |||) is
complete.

(b) The continuity follows from the fact that ‖Tx‖ ≤ |||x||| for all x ∈M . �

The following result characterizes the continuity of the inverse of a closed
graph operator.

Theorem 13.4 Let X and Y be Banach spaces, M ⊆ X a linear subspace and
T : M ⊆ X → Y a closed graph and surjective operator. Then T is open. If, in
addition, T is injective, then T−1 is continuous.

Proof. According to Lemma 13.3, T : (M, ||| · |||)→ Y is continuous. The Open
Mapping Theorem guarantees that T is open. Let O ⊆ M be an open set with
respect to ‖ · ‖, the original norm on X. Since ‖ · ‖ ≤ ||| · ||| on M , O is open with
respect to ||| · |||, thus T (O) is open. This shows that T is open with respect to
the original norms or, equivalently, T−1 is continuous. �

The main theorem of this section follows.

Theorem 13.5 (Closed Graph Theorem) Let X and Y be Banach spaces and
T : X → Y a linear and closed graph operator. Then T is continuous.

Proof. Let ‖ · ‖ be the original norm on X, and ||| · ||| the graph norm on X.
Since ‖ · ‖ ≤ ||| · ||| on X and X endowed with each of the two norms is a Banach
space, the two norms are equivalent. However, according to Lemma 13.3, T is
continuous with respect to ||| · |||, thus T is continuous with respect to ‖ · ‖, too.
�
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14 The Closed Range Theorem

We introduced in Corollary 9.7 a criterion which characterizes the solvability of
operator equations governed by continuous linear operators with closed range.
In this section we will provide useful necessary and sufficient conditions for an
operator to have a closed range.

We start with two preparatory lemmas.

Lemma 14.1 Let X and Y be Banach spaces and T ∈ L(X, Y ) an operator with
closed range. Then there exists K ≥ 0 such that

∀y ∈ ranT ∃x ∈ X with Tx = y and ‖x‖ ≤ K‖y‖.

Proof. Notice that kerT is a closed linear subspace, thus X/ kerT and ranT

are Banach spaces. Consider the operator T̂ : X/ kerT → ranT, T̂ [x] := Tx.

Then T̂ is well-defined, linear, continuous and bijective. According to Corollary
12.5, T̂−1 is continuous, thus,

‖T̂−1y‖ ≤ ‖T̂−1‖‖y‖ ∀y ∈ ranT.

Let K > ‖T̂−1‖ and y ∈ ranT, y 6= 0. Then there exists x′ ∈ X such that
Tx′ = y and ‖[x′]‖ < K‖y‖. Consequently, there exists m ∈ kerT such that
x := x′ −m ∈ X fulfills ‖x‖ ≤ K‖y‖ and Tx = T (x′ −m) = Tx′ = y. �

Lemma 14.2 Let X and Y be Banach spaces and T ∈ L(X, Y ). If there exists
c > 0 such that

c‖y∗‖ ≤ ‖T ∗y∗‖ ∀y∗ ∈ Y ∗,

then T is open and surjective.

Proof. We will prove that {y ∈ Y | ‖y‖ < c} = Vc ⊆ T (U1) = T ({x ∈
X | ‖x‖ < 1}). To this end it is enough to prove that Vc ⊆ T (U1) and further to
argue similarly as in Step 2 of the proof of Theorem 12.4.

Let y0 ∈ Vc and assume that y0 /∈ T (U1). According to the Hahn-Banach
Strong Separation Theorem, there exist y∗ ∈ Y ∗ and γ ∈ R such that

Re y∗(y) ≤ γ < Re y∗(y0) ∀y ∈ T (U1).

For all x ∈ U1 it holds Re(T ∗y∗)(x) = Re y∗(Tx) ≤ γ < Re y∗(y0) and, conse-
quently,

‖T ∗y∗‖ = ‖ReT ∗y∗‖ = sup
x∈U1

Re(T ∗y∗)(x) < Re y∗(y0)

≤ |y∗(y0)| ≤ ‖y∗‖‖y0‖ < c‖y∗‖.

Contradiction. �
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The main theorem of this section follows.

Theorem 14.3 (Closed Range Theorem) Let X and Y be Banach spaces and
T ∈ L(X, Y ). The following statements are equivalent:

(i) ranT is closed.

(ii) ranT = (kerT ∗)⊥.

(iii) ranT ∗ is closed.

(iv) ranT ∗ = (kerT )⊥.

Proof. “(i)⇒ (ii)” This is Theorem 9.6.
“(ii)⇒ (i)” Follows since the annihilator is closed.
“(i)⇒ (iv)” For all y∗ ∈ Y ∗ and all x ∈ kerT it holds (T ∗y∗)(x) = y∗(Tx) = 0,

thus ranT ∗ ⊆ (kerT )⊥. Let x∗ ∈ (kerT )⊥ and define

z∗ : ranT → K, z∗(y) := x∗(x), where y = Tx.

z∗ is well-defined. Indeed, let y = Tx = Tu. Then x − u ∈ kerT and, so,
x∗(x− u) = 0. It is easy to see that z∗ is linear. Since ranT is closed, according
to Lemma 14.1, there exists K ≥ 0 such that

∀y ∈ ranT ∃x ∈ X with Tx = y and ‖x‖ ≤ K‖y‖.

Then for all y ∈ ranT and such an element x ∈ X it holds

|z∗(y)| = |x∗(x)| ≤ ‖x∗‖‖x‖ ≤ ‖x∗‖K‖y‖,

which proves that z∗ is continuous. Let y∗ ∈ Y ∗ be a Hahn-Banach extension of
z∗. For all x ∈ X we have

x∗(x) = z∗(Tx) = y∗(Tx) = (T ∗y∗)(x),

which proves that x∗ = T ∗y∗ ∈ ranT ∗.
“(iv)⇒ (iii)” Follows since the annihilator is closed.
“(iii) ⇒ (i)” Let Z := ranT and S ∈ L(X,Z), Sx := Tx for all x ∈ X.

Notice that Z is a closed linear subspace of Y , thus a Banach space. For all
y∗ ∈ Y ∗ and all x ∈ X it holds

(T ∗y∗)(x) = y∗(Tx) = y∗|Z(Sx) = (S∗y∗|Z)(x),

thus T ∗y∗ = S∗y∗|Z , which proves that ranT ∗ ⊆ ranS∗. Let now S∗z∗ ∈ ranS∗

for z∗ ∈ Z∗ and let y∗ ∈ Y ∗ be a Hahn-Banach extension of z∗. Then T ∗y∗ = S∗z∗,
which proves that S∗z∗ ∈ ranT ∗. From here we conclude that ranT ∗ = ranS∗,
and this is by assumption a closed set.
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Since ranS is dense in Z, by Theorem 9.6 we have that (kerS∗)⊥ = Z. This
means that kerS∗ = {0}, which implies that S∗ is injective. Consequently, S∗ is
a continuous linear bijective operator from Z∗ to ranS∗. Corollary 12.5 implies
that (S∗)−1 is continuous, which means that there exists c > 0 with

c‖z∗‖ ≤ ‖S∗z∗‖ ∀z∗ ∈ Z∗.

Lemma 14.2 guarantees that S is surjective, thus ranS = Z or, equivalently,
ranT = ranT , which leads to the desired conclusion. �
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Chapter V

Hilbert spaces

15 Definitions and examples

Definition 15.1 (inner product) Let X be a vector space over K. A mapping
〈·, ·〉 : X ×X → K is called inner product (scalar product) if

(a) 〈x1 + x2, y〉 = 〈x1, y〉+ 〈x2, y〉 ∀x1, x2, y ∈ X;

(b) 〈λx, y〉 = λ〈x, y〉 ∀x, y ∈ X ∀λ ∈ K;

(c) 〈x, y〉 = 〈y, x〉 ∀x, y ∈ X;

(d) 〈x, x〉 ≥ 0 ∀x ∈ X;

(e) 〈x, x〉 = 0⇔ x = 0.

The properties (a)-(c) imply

(a’) 〈x, y1 + y2〉 = 〈x, y1〉+ 〈x, y2〉 ∀x, y1, y2 ∈ X;

(b’) 〈x, λy〉 = λ〈x, y〉 ∀x, y ∈ X ∀λ ∈ K.

Notice that the mapping 〈·, ·〉 is bilinear for K = R, and it is sesquilinear for
K = C. A mapping 〈·, ·〉 fulfilling (d) and (e) is called positive definite.

Theorem 15.2 (Cauchy-Schwarz inequality) Let X be a vector space endowed
with a scalar product 〈·, ·〉. It holds

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉 ∀x, y ∈ X.

The equality holds if and only if x and y are linearly dependent.

71
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Proof. Take x, y ∈ X. For all λ ∈ K it holds

0 ≤ 〈x+ λy, x+ λy〉 = 〈x, x〉+ λ〈x, y〉+ λ〈x, y〉+ |λ|2〈y, y〉.

If y = 0, then the inequality holds. Assume that y 6= 0 and choose λ := − 〈x,y〉〈y,y〉 .
Then

0 ≤
〈
x− 〈x, y〉
〈y, y〉

y, x− 〈x, y〉
〈y, y〉

y

〉
= 〈x, x〉 − |〈x, y〉|

2

〈y, y〉
− |〈x, y〉|

2

〈y, y〉
+
|〈x, y〉|2

〈y, y〉
,

which gives the desired inequality.
If x and y are linearly dependent, then obviously the equality holds. Viceversa,

if y 6= 0 and the equality holds, then x = 〈x,y〉
〈y,y〉y. �

Defining
‖x‖ :=

√
〈x, x〉 ∀x ∈ X,

we have, according to Theorem 15.2,

|〈x, y〉| ≤ ‖x‖‖y‖ ∀x, y ∈ X.

Lemma 15.3 The mapping x 7→ ‖x‖ :=
√
〈x, x〉 defines a norm on X.

Proof. According to (b) and (c) in Definition 15.1, it holds ‖λx‖ = |λ|‖x‖
for all λ ∈ K and all x ∈ X. According to (e) in Definition 15.1 we have that
‖x‖ = 0 if and only if x = 0. The triangle inequality is a consequence of the
Cauchy-Schwarz inequality:

‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + 2 Re〈x, y〉+ ‖y‖2 ≤ ‖x‖2 + 2|〈x, y〉|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2 ∀x, y ∈ X.

�

Definition 15.4 (pre-Hilbert space) A normed space X is called pre-Hilbert
space (inner product space) if there exists an inner product 〈·, ·〉 on X such that√
〈x, x〉 = ‖x‖ for all x ∈ X. A complete pre-Hilbert space is called Hilbert

space.

The Cauchy-Schwarz inequality guarantees that in a pre-Hilbert space X the
mappings x 7→ 〈x, y〉, for y ∈ X, and y 7→ 〈x, y〉, for x ∈ X, are continuous. If
U is a dense linear subspace of a pre-Hilbert space X such that 〈x, u〉 = 0 for all
u ∈ U , then x = 0.

One can express the inner product of a pre-Hilbert space in terms of the norm
as follows:
• for K = R:

〈x, y〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2) ∀x, y ∈ X;

• for K = C:

〈x, y〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2) ∀x, y ∈ X.
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Lemma 15.5 The inner product 〈·, ·〉 : X ×X → K of a pre-Hilbert space X is
a continuous mapping.

Proof. The statement follows from the following inequality, which holds for all
x1, x2, y1, y2 ∈ X:

|〈x1, y1〉 − 〈x2, y2〉| = |〈x1 − x2, y1〉+ 〈x2, y1 − y2〉|
≤ ‖x1 − x2‖‖y1‖+ ‖x2‖‖y1 − y2‖.

�

Theorem 15.6 (parallelogram law) A normed space X is a pre-Hilbert space if
and only if

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 ∀x, y ∈ X.

Proof. “⇒” Easy.
“⇐” We consider the case K = R. Define

〈x, y〉 :=
1

4
(‖x+ y‖2 − ‖x− y‖2) ∀x, y ∈ X.

Notice that ‖x‖ =
√
〈x, x〉 for all x ∈ X.

We will show that the mapping 〈·, ·〉 fulfills the statements (a)-(e) in Definition
15.1.

(a) Let x1, x2, y ∈ X. We have

‖x1 + x2 + y‖2 = 2‖x1 + y‖2 + 2‖x2‖2 − ‖x1 − x2 + y‖2

‖x1 + x2 + y‖2 = 2‖x2 + y‖2 + 2‖x1‖2 − ‖x2 − x1 + y‖2,

thus,

‖x1 + x2 + y‖2 = ‖x1 + y‖2 + ‖x1‖2 + ‖x2 + y‖2 + ‖x2‖2

− 1

2
(‖x1 − x2 + y‖2 + ‖x2 − x1 + y‖2).

Similarly,

‖x1 + x2 − y‖2 = ‖x1 − y‖2 + ‖x1‖2 + ‖x2 − y‖2 + ‖x2‖2

− 1

2
(‖x1 − x2 − y‖2 + ‖x2 − x1 − y‖2).

Consequently,

〈x1 + x2, y〉 =
1

4
(‖x1 + x2 + y‖2 − ‖x1 + x2 − y‖2)

=
1

4
(‖x1 + y‖2 + ‖x2 + y‖2 − ‖x1 − y‖2 − ‖x2 − y‖2)

= 〈x1, y〉+ 〈x2, y〉.
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(b) Let x, y ∈ X. Statement (a) implies that (b) holds for all λ ∈ N. By
definition, (b) holds also for λ = 0 and λ = −1, thus for λ ∈ Z. For λ = m

n
∈ Q

we have
n〈λx, y〉 = n

〈
m
x

n
, y
〉

= m〈x, y〉 = nλ〈x, y〉,

which shows that (b) holds for all λ ∈ Q. The continuous functions λ 7→ 〈λx, y〉
and λ 7→ λ〈x, y〉 from R to R are equal on Q, which shows that they are also equal
on R.

(c), (d) and (e) are clear.
In case K = C, one only has to repeat the above arguments for

〈x, y〉 :=
1

4
(‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2) ∀x, y ∈ X.

�

Theorem 15.7 (a) Every linear subspace of a pre-Hilbert space is a pre-Hilbert
space.

(b) A normed space is a pre-Hilbert space if and only if every two-dimensional
linear subspace is a pre-Hilbert space.

(c) The completion (the Banach space which contains the original space as a
dense linear subspace) of a pre-Hilbert space is a Hilbert space.

Proof. (a) It follows by restricting the inner product to the linear subspace.
(b) Clear.

(c) Let X be a pre-Hilbert space and X̂ its completion (see Übungsbeispiel
4, Gruppe 1 or Section 8). Using the continuity of the norm, we have that the

parallelogram law holds on X̂. This means that X̂ is a complete pre-Hilbert
space, thus it is a Hilbert space. �

Example 15.8 (a) Cn endowed with the scalar product

〈(t1, ..., tn), (s1, ..., sn)〉 :=
n∑
i=1

tisi,

for (t1, ..., tn), (s1, ..., sn) ∈ Cn, is a Hilbert space.

(b) `2 endowed with the scalar product

〈(tk)k∈N, (sk)k∈N〉 :=
+∞∑
k=1

tksk,

for (tk)k∈N, (sk)k∈N ∈ `2, is a Hilbert space. The Hölder inequality guaran-
tees that the inner product is well-defined.
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(c) L2(I), for I ⊆ R an interval, is a Hilbert space. The inner product is defined
by

〈f, g〉 =

∫
I

fgdλ,

for f, g ∈ L2(I). L2(Ω,Σ, µ), for (Ω,Σ, µ) a measure space, is a Hilbert
space.

(d) Let I be an index set and

`2(I) :=

{
f : I → K | f(s) 6= 0 for at most countable many s,

∑
s∈I
|f(s)|2 < +∞

}
.

The sum over all s ∈ I is to be understand as follows: let {s1, s2, ...} be an
enumeration of the set {s | f(s) 6= 0}. We set∑

s∈I

|f(s)|2 :=
+∞∑
i=1

|f(si)|2

and notice that, due to the absolute convergence of the series, the summa-
tion order does not affect its convergence. Obviously, `2(N) = `2.

For f, g ∈ `2(I),

〈f, g〉 =
∑
s∈I

f(s)g(s),

defines an inner product with induced norm

‖f‖ =

(∑
s∈I

|f(s)|2
) 1

2

.

In order to see that `2(I) is complete one has to repeat the arguments used
in Example 1.10.

(e) For λ ∈ R, define fλ : R→ C, fλ(t) = eiλt. Define X := lin{fλ | λ ∈ R}. We
define on X the scalar product

〈f, g〉 = lim
T→+∞

1

2T

∫ T

−T
f(s)g(s)ds,

for f, g ∈ X. The completion of X with respect to the norm ‖ · ‖ :=
√
〈·, ·〉

is a Hilbert space, which we denote by AP 2(R) (“AP” stands for almost
periodic).

Since
‖fλ − fµ‖ =

√
2 ∀λ 6= µ,

one can show in a similar way as we did it for `∞ the AP 2(R) is not sepa-
rable.
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16 Orthogonality

Definition 16.1 Let X be a pre-Hilbert space. Two vectors x, y ∈ X are called
orthogonal if 〈x, y〉 = 0. In this case we write x ⊥ y. Two sets A,B ⊆ X are
called orthogonal (we write A ⊥ B) if x ⊥ y for all x ∈ A and all y ∈ B. The set
A⊥ := {y ∈ X | x ⊥ y ∀x ∈ A} is called the orthogonal complement of the set A.

We will see later that the notation A⊥ is consistent with the one we used for
the anihilator of a linear subspace. It is clear that A⊥ is a closed linear subspace,
A ⊆ (A⊥)⊥ and A⊥ = (linA)⊥. Furthermore, we have the Pythagoras Theorem

x ⊥ y ⇒ ‖x‖2 + ‖y‖2 = ‖x+ y‖2.

Theorem 16.2 (projection operator) Let H be a Hilbert space, K ⊆ H a non-
empty convex and closed set and x0 ∈ H. Then there exists a unique element
x ∈ K such that

‖x0 − x‖ = inf
k∈K
‖x0 − k‖.

This defines a mapping PK : H → K,PK(x0) := x, which is the so-called projec-
tion operator onto the set K.

Proof. Let d := infk∈K ‖x0−k‖ ≥ 0. Then there exists a sequence (kn)n∈N such
that ‖x0 − kn‖ → d as n → +∞. According to the parallelogram law, we have
for all m,n ∈ N

0 ≤
∥∥∥∥kn − km2

∥∥∥∥2

=
1

2
(‖x0 − kn‖2 + ‖x0 − km‖2)−

∥∥∥∥x0 −
kn + km

2

∥∥∥∥2

≤ 1

2
(‖x0 − kn‖2 + ‖x0 − km‖2)− ‖d‖2,

where we used that kn+km
2
∈ K. This implies that limm,n→+∞ ‖kn − km‖ = 0,

therefore, (kn)n∈N is a Cauchy sequence. Since H is complete and K closed, there
exists x ∈ K such that kn → x as n→ +∞. The continuity of the norm implies
that ‖x0 − x‖ = d.

Assuming that there exist x′ ∈ K, x 6= x′, with ‖x0 − x‖ = ‖x0 − x′‖ = d, by
using again the parallelogram law, we get∥∥∥∥x0 −

x+ x′

2

∥∥∥∥2

=
1

2
(d2 + d2)−

∥∥∥∥x′ − x′′2

∥∥∥∥2

< d2.

Contradiction. This proves the uniqueness of x. �

Lemma 16.3 Let H be a Hilbert space, K ⊆ H a nonempty, convex and closed
set, x0 ∈ H and x ∈ K. The following statements are equivalent:
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(i) x = PK(x0);

(ii) Re〈x0 − x, k − x〉 ≤ 0 ∀k ∈ K.

Proof. “(ii)⇒ (i)” For every k ∈ K it holds

‖x0 − k‖2 = ‖x0 − x+ x− k‖2 = ‖x0 − x‖2 + 2 Re〈x0 − x, x− k〉+ ‖x− k‖2

≥ ‖x0 − x‖2.

“(i)⇒ (ii)” Let k ∈ K and kt := (1− t)x+ tk ∈ K, for t ∈ [0, 1]. According
to (i), for all t ∈ [0, 1] it holds

‖x0 − x‖2 ≤ ‖x0 − kt‖2 = 〈x0 − x+ t(x− k), x0 − x+ t(x− k)〉
= ‖x0 − x‖2 + 2 Re〈x0 − x, t(x− k)〉+ t2‖x− k‖2.

From here we have

Re〈x0 − x, k − x〉 ≤
t

2
‖x− k‖2 ∀t ∈ (0, 1],

which provides (by letting t→ 0) (ii). �

Theorem 16.4 (orthogonal projection) Let M 6= {0} be a closed linear subspace
of a Hilbert space H. The projection operator PM : H → M onto the set M is
linear and continuous, and it fulfills ‖PM‖ = 1, kerPM = M⊥ and Id−PM =
PM⊥. It is also called the orthogonal projection onto M . It holds H = M ⊕2M

⊥.

Proof. Let x0 ∈ H and x ∈ M . According to Lemma 16.3, x = PM(x0) if and
only if

Re〈x0 − PM(x0),m− PM(x0)〉 ≤ 0 ∀m ∈M.

This is equivalent to (since m ∈M ⇔ m− PM(x0) ∈M)

Re〈x0 − PM(x0),m〉 ≤ 0 ∀m ∈M

and further to (since y ∈M ⇔ −y ∈M ⇔ iy ∈M)

〈x0 − PM(x0),m〉 = 0 ∀m ∈M.

This shows that PM(x0) is the uniquely determined element x ∈M which fulfills

x0 − x ∈M⊥.

Let x1, x2 ∈ H and λ1, λ2 ∈ K. Since M⊥ is a linear subspace, it holds

λ1x1 + λ2x2 − (λ1PM(x1) + λ2PM(x2)) ∈M⊥.

Thus PM(λ1x1 + λ2x2) = λ1PM(x1) + λ2PM(x2), which means that PM is linear.
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In the light of the above characterization we have that PM(x0) = 0 if and only
if x0 ∈M⊥, which shows that kerPM = M⊥.

For x0 ∈ H, we have seen that x0 − PM(x0) ∈ M⊥. In addition, for all
m ∈M⊥ it holds (according to Lemma 16.3)

Re〈x0 − (x0 − PM(x0)),m− (x0 − PM(x0))〉 = Re〈PM(x0),m− x0 + PM(x0)〉
= Re〈−PM(x0), x0 − PM(x0)〉 ≤ 0.

By using again Lemma 16.3 it follows that x0 − PM(x0) = PM⊥(x0).
Since, for every x0 ∈ H, PM(x0) ⊥ (x0 − PM(x0)), the Pythagoras Theorem

leads to
‖PM(x0)‖2 + ‖x0 − PM(x0)‖2 = ‖x0‖2,

which shows that ‖PM‖ ≤ 1. On the other hand, since PM = P 2
M , it yields

‖PM‖ = ‖P 2
M‖ ≤ ‖PM‖2, thus 1 ≤ ‖PM‖. This proves that ‖PM‖ = 1.

Pythagoras Theorem proves that H = M ⊕2 M
⊥. �

Corollary 16.5 Let M be a linear subspace of a Hilbert space H. It holds M =
M⊥⊥.

Proof. Let N := M , which is a closed linear subspace. Then PN = Id−PN⊥ =

P(N⊥)⊥ , which proves that M = N = (N⊥)⊥ = M
⊥⊥

= M⊥⊥. �

Theorem 16.6 (Fréchet-Riesz Representation Theorem) Let H be a Hilbert space.
The mapping

Φ : H → H∗, y 7→ 〈·, y〉,

is bijective, isometric and conjugate linear. This means that for every element
x∗ ∈ H∗ there exists an unique element u ∈ H such that x∗(x) = 〈x, u〉 for all
x ∈ H, and ‖x∗‖ = ‖u‖.

Proof. It is easy to see that Φ(y) ∈ H∗ for all y ∈ H. Obviously, Φ(λ1y1 +
λ2y2) = λ1Φ(y1) + λ2Φ(y2) for all λ1, λ2 ∈ K and y1, y2 ∈ H. According to the
Cauchy-Schwarz inequality we have ‖Φ(y)‖ ≤ ‖y‖ for all y ∈ H. For y ∈ H, y 6= 0,
it holds Φ(y)(y/‖y‖) = 〈y, y〉/‖y‖ = ‖y‖, thus ‖Φ(y)‖ = ‖y‖, which shows that
Φ is a isometry. Consequently, Φ is injective.

We will show that Φ is surjective. Let x∗ ∈ H∗, x∗ 6= 0. Then M := kerx∗

is a proper closed linear subspace of H. Let y ∈ M⊥, y 6= 0 (see Theorem 16.4)
be such that x∗(y) = 1. Then H = M ⊕2 lin{y} (which actually shows that
M⊥ = lin{y}). Indeed, for x ∈ H and λ := x∗(x) we have x − λy ∈ M . Every
x ∈ H can be represented as x = m + λy, for m ∈ M and λ ∈ K. Then
x∗(x) = λ = 〈x, y〉/‖y‖2, thus Φ(y/‖y‖2) = x∗. This shows that Φ is surjective.

If for u ∈ H, x∗(x) = 〈x, u〉 = Φ(u)(x) for all x ∈ H, we obviously have that
‖x∗‖ = ‖Φ(u)‖ = ‖u‖. �
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Corollary 16.7 Let H be a Hilbert space. The following statements are true:

(a) A sequence (xn)n∈N ⊆ H converges weakly to x ∈ H if and only of

〈xn − x, y〉 → 0 (n→ +∞) ∀y ∈ H.

(b) H is reflexive.

(c) Every bounded sequence in H has a weakly convergent subsequence.

Proof. (a) Follows from the Fréchet-Riesz Representation Theorem.
(b) Let Φ : H → H∗ be the mapping in the Fréchet-Riesz Representation

Theorem. Then
〈Φ(x),Φ(y)〉H∗ := 〈y, x〉H

defines an inner product on H∗, which is a Hilbert space. Let Ψ : H∗ → H∗∗ be
the mapping in the Fréchet-Riesz Representation Theorem, this time from H∗ to
its bidual. It is easy to see that Ψ ◦ Φ = iH : H → H∗∗, which shows that the
canonical embedding is surjective.

(c) Follows from (b) and Theorem 8.8. �

The following results strenghtens statement (c) of the above corollary.

Theorem 16.8 (Banach-Saks Theorem) Let H be a Hilbert space and (xn)n∈N ⊆
H a bounded sequence. Then it has a weakly convergent subsequence (xnk)k∈N such
that the sequence of arithmetic means(

1

n

n∑
k=1

xnk

)
n∈N

converges in norm.

Proof. Without loss of generality we can that assume that (xn)n∈N is weakly
convergent and that its weak limit is equal to 0. Let M ≥ 0 such that ‖xn‖ ≤M
for all n ∈ N. Choose xn1 := x1. Since 〈xn, xn1〉 converges to 0 as n → +∞,
there exists n2 > 1 such that

|〈xn2 , xn1〉| ≤ 1.

Further, there exists n3 > n2 such that

|〈xn3 , xn1〉| ≤
1

2
and |〈xn3 , xn2〉| ≤

1

2
.

In this way we can inductively construct a sequence (xnk)k∈N such that

|〈xnk+1
, xni〉| ≤

1

k
∀i = 1, ..., k.
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This implies that
∑k

i=1 |〈xnk+1
, xni〉| ≤ 1 for all k ∈ N and

∑n
k=2

∑k−1
i=1 |〈xnk , xni〉| ≤

n− 1 for all n ∈ N. From here we have∥∥∥∥∥ 1

n

n∑
k=1

xnk

∥∥∥∥∥
2

≤ 1

n2

n∑
k=1

n∑
i=1

|〈xnk , xni〉| =
1

n2

(
n∑
k=1

‖xnk‖2 + 2
n∑
k=2

k−1∑
i=1

|〈xnk , xni〉|

)

≤ nM2 + 2n− 2

n2
−→ 0 (n→ +∞).

�

17 Orthonormal bases

Definition 17.1 A subset S of a Hilbert space H is called orthonormal system
if ‖e‖ = 1 for all e ∈ S and 〈e, f〉 = 0 for all e, f ∈ S, e 6= f . An orthonormal
system S is called orthonormal basis if

S ⊆ T, T is an orthonormal system ⇒ S = T.

Example 17.2 (a) For H = `2, S = {en | n ∈ N} is an orthonormal system.

(b) For H = L2[0, 2π],

S =

{
1√
2π

1

}⋃{
1√
π

cos(n·) | n ∈ N

}⋃{
1√
π

sin(n·) | n ∈ N

}
is an orthonormal system.

(c) For H = L2([0, 2π]; C) (which denotes the normed space L2[0, 2π] over C),

S =
{

1√
2π
ei(n·) | n ∈ Z

}
is an orthonormal system.

(d) For H = AP 2(R), S = {fλ | λ ∈ R} is an orthonormal system.

Later we will show that the orthonormal systems in the above example are in
fact orthonormal bases.

Theorem 17.3 (Gram-Schmidt Algorithm) Let (xn)n∈N be a linearly indepen-
dent subset of a Hilbert space H. Then there exists an orthonormal system S
with linS = lin{xn | n ∈ N}.

Proof. Set e1 := x1
‖x1‖ . Define f2 := x2 − 〈x2, e1〉e1. Since {x1, x2} is linearly

independent, f2 6= 0. Set e2 := f2
‖f2‖ . Then e1 ⊥ e2.

We define the sequence (en)n∈N by means of the following iterative scheme

fn+1 := xn+1 −
n∑
i=1

〈xn+1, ei〉ei 6= 0 and en+1 :=
fn+1

‖fn+1‖
∀n ≥ 2.

Then S := {e1, e2, ...} is an orthonormal system and for all n ∈ N it holds
xn ∈ linS and en ∈ lin{x1, x2, ..., xn}. Consequently, linS = lin{xn | n ∈ N}. �
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Example 17.4 For H = L2[−1, 1] and the linearly independent set {xn | n ≥ 0},
where xn(t) = tn, n ≥ 0, the Gram-Schmidt Algorithm furnishes the orthonormal
system

en(t) =

√
n+

1

2
Pn(t), n ≥ 0,

where Pn(t) = 1
2nn!

(
d
dt

)n
(t2 − 1)n denotes the Legendre polynomial of order n.

Theorem 17.5 (Bessel’s inequality) Let {en | n ∈ N} be an orthonormal system
of a Hilbert space H and x ∈ H. It holds

+∞∑
n=1

|〈x, en〉|2 ≤ ‖x‖2.

Proof. Let N ∈ N be fixed. Set xN := x −
∑N

n=1〈x, en〉en. Then xN ⊥ en for
all n = 1, ..., N . Pythagoras Theorem leads to

‖x‖2 = ‖xN‖2 +

∥∥∥∥∥
N∑
n=1

〈x, en〉en

∥∥∥∥∥
2

= ‖xN‖2 +
N∑
n=1

|〈x, en〉|2 ≥
N∑
n=1

|〈x, en〉|2.

The statement follows by letting N → +∞. �

The following corollary follows by combining Theorem 17.5 with the Hölder
inequality.

Corollary 17.6 Let {en | n ∈ N} be an orthonormal system of a Hilbert space
H and x, y ∈ H. It holds

+∞∑
n=1

|〈x, en〉〈en, y〉| < +∞.

Lemma 17.7 Let S be an orthonormal system of a Hilbert space H and x ∈ H.
The set Sx := {e ∈ S | 〈x, e〉 6= 0} is countable.

Proof. According to Bessel’s inequality, the set Sx,n := {e ∈ S | |〈x, e〉| ≥ 1
n
} is

finite for all n ∈ N. It holds Sx = ∪n∈NSx,n. �

The following notion is needed in order to handle non-separable Hilbert spaces.

Definition 17.8 (unconditional convergence) Let X be a normed space, I an
infinite index set and xi ∈ X for all i ∈ I. The series

∑
i∈I xi is called uncondi-

tionally convergent to x ∈ X if

(a) I0 = {i ∈ I | xi 6= 0} is countable;
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(b) For every enumeration {i1, i2, ...} of I0 it holds
∑+∞

n=i xin = x.

Since
∑+∞

n=1 xin does not depend on the order of the summands, we will write∑
i∈I xi = x. Even if I = N, we will differentiate between

∑
n∈N and

∑+∞
n=1. If

X is a Banach space, then every absolutely convergent series is unconditionally
convergent. For X = Kn, according to the Riemann Rearrangement Theorem, a
series is unconditionally convergent if and only if it is absolutely convergent. On
the other hand, in infinite-dimensional Banach spaces there exist unconditionally
convergent series that are not absolutely convergent (Theorem of Dvoretzky-
Rogers).

Bessel’s inequality and Lemma 17.7 lead to the following result.

Corollary 17.9 (Bessel’s inequality for orthonormal systems) If S is an or-
thonormal system of a Hilbert space H and x ∈ H, then∑

e∈S

|〈x, e〉|2 ≤ ‖x‖2.

Theorem 17.10 Let S be an orthonormal system of a Hilbert space H.

(a) For every x ∈ H, the series
∑

e∈S〈x, e〉e is unconditionally convergent.

(b) The mapping P : x 7→
∑

e∈S〈x, e〉e is the orthogonal projection onto linS.

Proof. (a) Let {e1, e2, ...} be an enumeration of {e ∈ S | 〈x, e〉 6= 0}. Let
N,M ∈ N,M > N . According to the Pythagoras Theorem we have∥∥∥∥∥

M∑
n=N

〈x, en〉en

∥∥∥∥∥
2

=
M∑
n=N

‖〈x, en〉‖2 → 0 (N,M → +∞).

This shows that
∑+∞

n=1〈x, en〉en is a Cauchy series, thus there exists y ∈ H such
that y =

∑+∞
n=1〈x, en〉en. Let π : N→ N be a permutation and yπ ∈ H such that

yπ =
∑+∞

n=1〈x, eπ(n)〉eπ(n). We will prove that y = yπ.
For all z ∈ H it holds (we use Corollary 17.6 and the fact that absolute

convergence implies unconditional convergence)

〈y, z〉 =
+∞∑
n=1

〈x, en〉〈en, z〉 =
+∞∑
n=1

〈x, eπ(n)〉〈eπ(n), z〉 = 〈yπ, z〉.

Consequently, y − yπ ∈ H⊥ = {0}.
(b) Let x ∈ H and {e1, e2, ...} be an enumeration of {e ∈ S | 〈x, e〉 6= 0}.

According to Theorem 16.4 it suffices to prove that x − Px ∈ (linS)⊥ = S⊥ or,
in other words, that 〈

x−
+∞∑
n=1

〈x, en〉en, e

〉
= 0 ∀e ∈ S.
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This is clear, both when 〈x, e〉 = 0 and when e is an element of the enumeration
{e1, e2, ...}. �

The following theorem provides a helpful characterization of the orthonormal
bases.

Theorem 17.11 If S is an orthonormal system of a Hilbert space H, then there
exists an orthonormal base S ′ such that S ⊆ S ′. In addition, the following state-
ments are equivalent:

(i) S is an orthonormal base.

(ii) If x ∈ H and x ⊥ S, then x = 0.

(iii) It holds H = linS.

(iv) x =
∑

e∈S〈x, e〉e for all x ∈ H.

(v) 〈x, y〉 =
∑

e∈S〈x, e〉〈e, y〉 for all x, y ∈ H.

(vi) (Parseval’s identity)

‖x‖2 =
∑
e∈S

|〈x, e〉|2 ∀x ∈ H.

Proof. The existence is a consequence of the Zorn Lemma applied to the set
A := {S ′ | S ⊆ S ′, S ′ is an orthonormal system in H} and the partial order
S1 ≤ S2 ⇔ S1 ⊆ S2.

“(i)⇒ (ii)” If x 6= 0, then S ∪ { x
‖x‖} is an orthonormal system.

“(ii)⇒ (iii)” Follows from Corollary 16.5.
“(iii)⇒ (iv)” Follows from Theorem 17.10(b).
“(iv)⇒ (v)” Follows by direct verification (see also Corollary 17.6).
“(v)⇒ (vi)” Just set x = y.
“(vi)⇒ (i)” If S is not an orthonormal base, then there exists x ∈ H, ‖x‖ = 1,

such that S ∪ {x} is an orthonormal system. This gives
∑

e∈S |〈x, e〉|2 = 0.
Contradiction. �

Example 17.12 (a) For H = `2, S = {en | n ∈ N} is an orthonormal basis,
since `2 = linS.

(b) For H = L2[0, 2π], the orthonormal system S in Example 17.2(b) is an
orthonormal basis, since L2[0, 2π] = linS. We have that linS is dense in
M = {f ∈ C[0, 2π] | f(0) = f(2π)} with respect to ‖·‖∞ and, consequently,
with respect to ‖ · ‖L2 and that M is dense in L2[0, 2π].
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(c) For H = L2([0, 2π]; C), the orthonormal system S in Example 17.2(c)
is an orthonormal basis. Indeed, eint = cosnt + i sinnt, thus linS =
{f | f is a complex-valued trigonometric polynom}. It follows from (b)
that linS is dense in H.

(d) For H = AP 2(R), the orthonormal system S in Example 17.2(d) is an
orthonormal basis, since, H = linS.

(e) For H = L2[−1, 1], the orthonormal system {en | n ∈ N} in Example
17.4 is an orthonormal basis, since (see Example 2.12 (a), (b)) L2[−1, 1] =
lin{xn | n ∈ N} = lin{en | n ∈ N}.

Corollary 17.13 Let H be an infinite-dimensional Hilbert space. The following
statements are equivalent:

(i) H is separable.

(ii) All orthonormal bases of H are countable.

(iii) H has a countable orthonormal basis.

Proof. “(i) ⇒ (ii)” Let S be an orthonormal basis of H. Since ‖e − f‖ =
√

2
for all e, f ∈ S, e 6= f , we have that S cannot be uncountable (see the proof of
the statement that `∞ is not separable in Example 2.11(c)).

“(ii)⇒ (iii)” Clear (see also Theorem 17.11).
“(iii)⇒ (i)” According to Theorem 17.11 we have that H = linS, where S is

a countable orthonormal basis. Lemma 2.10 guarantees that H is separable. �

Lemma 17.14 If S and T are orthonormal bases of the Hilbert space H, then
|S| = |T |.

Proof. For S finite, this is known from the linear algebra. Let |S| ≥ |N|. For
x ∈ S, let Tx := {y ∈ T | 〈x, y〉 6= 0}. According to Lemma 17.7 we have that
|Tx| ≤ |N|. According to Theorem 17.11 ((i)⇔ (ii)), we have that T ⊆ ∪x∈STx,
thus |T | ≤ |S||N| = |S|. Similary, |S| ≤ |T |, which implies that |S| = |T |
(Schröder-Bernstein Theorem). �

The cardinal number of a orthonormal basis of a Hilbert space is called the
dimension of the Hilbert space.

Theorem 17.15 If S is an orthonormal basis of a Hilbert space H, then H ∼=
`2(S).

Proof. Let x ∈ H and define Tx : S → K, (Tx)(e) = 〈x, e〉. The Bessel
inequality guarantees that Tx ∈ `2(S). The operator T : H → `2(S), x 7→ Tx, is
linear and, due to Parseval’s identity, isometric. Let (fe)e∈S ∈ `2(S). As in the
proof of Theorem 17.10, one can see that x :=

∑
e∈S fee is an element of H and,

obviously, Tx = (fe)e∈S. This shows that T is an isometric isomorphism. �
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Corollary 17.16 If H is a separable infinite-dimensional Hilbert space, then
H ∼= `2.

Theorem 17.17 (Fischer-Riesz Theorem)

L2[0, 1] ∼= `2.

18 Operators on Hilbert spaces

Definition 18.1 Let H and G be two Hilbert spaces and T ∈ L(H,G). The
adjoint operator (in Hilbert space sense) of T is defined as

T ∗ : G→ H, 〈x, T ∗y〉H = 〈Tx, y〉G ∀x ∈ H ∀y ∈ G.

If ΦH : H → H∗ and ΦG : G → G∗, are the conjugate linear isometric iso-
morphism introduced in the Fréchet-Riesz Representation Theorem and T̃ ∗ ∈
L(G∗, H∗) is the “adjoint operator” of T introduced in Section 9, then T ∗ =

Φ−1
H ◦ T̃ ∗ ◦ ΦG.

Theorem 18.2 Let H,G and K be Hilbert spaces, S, T ∈ L(H,G), R ∈ L(G,K),
and λ ∈ K. It holds:

(a) (S + T )∗ = S∗ + T ∗.

(b) (λS)∗ = λS∗.

(c) (RS)∗ = S∗R∗.

(d) S∗ ∈ L(G,H) and ‖S‖ = ‖S∗‖.

(e) S∗∗ = S.

(f) ‖SS∗‖ = ‖S∗S‖ = ‖S‖2.

(g) kerS = (ranS∗)⊥, kerS∗ = (ranS)⊥, thus, S is injective if and only if
ranS∗ is dense in H.

The mapping S 7→ S∗ is a conjugate linear isometric isomorphism between L(H,G)
and L(G,H).

Proof. (a)-(e) The statements follow directly from the definition.
(f) For all x ∈ H it holds

‖Sx‖2 = 〈Sx, Sx〉 = 〈x, S∗Sx〉 ≤ ‖x‖‖S∗Sx‖,



86 Hilbert spaces

thus

‖S‖2 = sup
‖x‖≤1

‖Sx‖2 ≤ sup
‖x‖≤1

‖x‖‖S∗Sx‖ ≤ ‖S∗S‖ ≤ ‖S∗‖‖S‖ = ‖S‖2.

We get ‖S‖2 = ‖S∗S‖ and, from here,

‖S‖2 = ‖S∗‖2 = ‖S∗∗S∗‖ = ‖SS∗‖.

(g) We have

Sx = 0⇔ 〈Sx, y〉 = 0 ∀y ∈ G⇔ 〈x, S∗y〉 = 0 ∀y ∈ G⇔ x ∈ (ranS∗)⊥,

thus kerS = (ranS∗)⊥ and, from here, kerS∗ = (ranS∗∗)⊥ = (ranS)⊥. �

The following definition introduces some important classes of operators de-
fined on Hilbert spaces.

Definition 18.3 Let T ∈ L(H,G).

(a) T is called unitary if T ∗T = IdH and TT ∗ = IdG, in other words, if T is
invertible with T−1 = T ∗.

(b) Let H = G. T is called self-adjoint if T = T ∗.

(c) Let H = G. T is called normal if TT ∗ = T ∗T .

It is easy to see that T is unitary if and only if it is surjective and 〈Tx, Ty〉 = 〈x, y〉
for all x, y ∈ H. Let H = G. Then T is self-adjoint if and only if 〈Tx, y〉 = 〈x, Ty〉
for all x, y ∈ H. Furthermore, T is normal if and only if 〈Tx, Ty〉 = 〈T ∗x, T ∗y〉
for all x, y ∈ H. Consequently, for a normal operator we have ‖Tx‖ = ‖T ∗x‖ for
all x ∈ H, which implies that kerT = kerT ∗.

Example 18.4 (a) Let H = Kn. If T ∈ L(H) is represented by a matrix
(aij)i,j, then T ∗ is represented by its complex-conjugate transpose (aji)i,j.

(b) Let k ∈ L2([0, 1]2). The operator

Tk : L2[0, 1]→ L2[0, 1], (Tkx)(s) =

∫ 1

0

k(s, t)x(t)dt,

is linear and continuous with ‖Tk‖ ≤ ‖k‖L2 . Then T ∗k = Tk, where k(s, t) =

k(s, t) for all (s, t) ∈ [0, 1]2. Tk is self-adjoint if and only if k(s, t) = k(s, t)
almost everywhere; in this case k is called symmetric kernel.

(c) The left shift operator T : `2 → `2, T (s1, s2, ...) = (s2, s3, ...), is not normal
(see Example 9.2).
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(d) T ∗T and TT ∗ are always self-adjoint.

Lemma 18.5 Let H and G be Hilbert spaces and T ∈ L(H,G). Then T is an
isometry if and only if

〈Tx, Ty〉 = 〈x, y〉 ∀x, y ∈ H.

In the last part of this section we will provide some characterizations of self-
adjoint operators.

Theorem 18.6 (Hellinger-Toeplitz Theorem) Let H be a Hilbert space and T :
H → H a linear mapping which fulfills the symmetry condition

〈Tx, y〉 = 〈x, Ty〉 ∀x, y ∈ H.

Then T is continuous and, consequentely, self-adjoint.

Proof. We will show that T is graphclosed and the Closed Graph Theorem will
imply that T is continuous, consequently, self-adjoint.

Let (xn)n∈N ⊆ H such that xn → 0 and Txn → y ∈ H as n→ +∞. From

‖y2‖ = 〈 lim
n→+∞

Txn, y〉 = lim
n→+∞

〈Txn, y〉 = lim
n→+∞

〈xn, T y〉 = 0

we have y = 0, and the conclusion follows. �

Theorem 18.7 Let H be a Hilbert space over K = C and T ∈ L(H). The
following statements are equivalent:

(i) T is self-adjoint.

(ii) 〈Tx, x〉 ∈ R for all x ∈ H.

Proof. “(i)⇒ (ii)” For all x ∈ H it holds

〈Tx, x〉 = 〈x, T ∗x〉 = 〈x, Tx〉 = 〈Tx, x〉.

“(ii)⇒ (i)” Let λ ∈ C. Then

〈T (x+ λy), x+ λy〉 = 〈Tx, x〉+ λ〈Tx, y〉+ λ〈Ty, x〉+ |λ|2〈Ty, y〉 ∈ R,

thus, by taking the complex conjugate,

〈T (x+ λy), x+ λy〉 = 〈Tx, x〉+ λ〈y, Tx〉+ λ〈x, Ty〉+ |λ|2〈Ty, y〉.

This yields
λ〈Tx, y〉+ λ〈Ty, x〉 = λ〈y, Tx〉+ λ〈x, Ty〉.

This gives for λ = 1

〈Tx, y〉+ 〈Ty, x〉 = 〈y, Tx〉+ 〈x, Ty〉

and for λ = −i
〈Tx, y〉 − 〈Ty, x〉 = −〈y, Tx〉+ 〈x, Ty〉.

Consequently, 〈Tx, y〉 = 〈x, Ty〉. �
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Theorem 18.8 Let H be a Hilbert space and T ∈ L(H) self-adjoint. Then

‖T‖ = sup
‖x‖≤1

|〈Tx, x〉|.

Proof. We have

sup
‖x‖≤1

|〈Tx, x〉| ≤ sup
‖x‖≤1

‖Tx‖‖x‖ ≤ sup
‖x‖≤1

‖T‖‖x‖2 = ‖T‖.

In order to prove the reverse inequality we denote M := sup‖x‖≤1 |〈Tx, x〉|. For
all x, y ∈ H it holds

〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉 =2〈Tx, y〉+ 2〈Ty, x〉
=2〈Tx, y〉+ 2〈Tx, y〉 = 4 Re〈Tx, y〉.

The parallelogram law gives

4 Re〈Tx, y〉 ≤M(‖x+ y‖2 + ‖x− y‖2) = 2M(‖x‖2 + ‖y‖2),

thus
Re〈Tx, y〉 ≤M ∀‖x‖, ‖y‖ ≤ 1.

Let ‖x‖, ‖y‖ ≤ 1 and λ ∈ K, |λ| = 1, be such that λ|〈Tx, y〉| = 〈Tx, y〉. Then

|〈Tx, y〉| = λ−1〈Tx, y〉 = 〈T (λ−1x), y〉 ≤M.

This implies that ‖T‖ ≤M . �

Corollary 18.9 If H ia a Hilbert space and T ∈ L(H) a self-adjoint operator
such that 〈Tx, x〉 = 0 for all x ∈ H, then T = 0.

For K = C, if 〈Tx, x〉 = 0 for all x ∈ H, then T is self-adjoint. This is in
general not the case for K = R. Indeed, for H = R2,

T =

(
0 −1
1 0

)
fulfills 〈Tx, x〉 = 0 for all x ∈ H, while T 6= T ∗.

Theorem 18.10 Let H be a Hilbert space and P ∈ L(H), P 6= 0, a projection,
namely, an operator such that P 2 = P . The following statements are equivalent:

(i) P : H → ranP is an orthogonal projection, namely, kerP ⊥ ranP .

(ii) ‖P‖ = 1.

(iii) P is self-adjoint.
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(iv) P is normal.

(v) P is positive, this means, 〈Px, x〉 ≥ 0 for all x ∈ H.

Proof. Notice that Id−P is also a projection and ranP = ker(Id−P ), which
means that P has closed range. In addition, kerP = {x− Px | x ∈ H}.

“(i)⇒ (ii)” Follows from Theorem 16.4.
“(ii)⇒ (i)” It is enough to prove that x− Px ∈ (ranP )⊥ for all x ∈ H (see

the proof of Theorem 16.4) or, equivalently, that kerP ⊥ ranP .
Let x ∈ kerP, y ∈ ranP and λ ∈ K. Then P (x+ λy) = λy, thus

‖λy‖2 ≤ ‖x+ λy‖2 = ‖x‖2 + 2 Reλ〈x, y〉+ ‖λy‖2,

so,
−2 Reλ〈x, y〉 ≤ ‖x‖2.

Since this inequality holds for every λ ∈ R and every λ ∈ iR, it yields Re〈x, y〉 = 0
and Im〈x, y〉 = 0, thus 〈x, y〉 = 0.

“(i)⇒ (iii)” For all x, y ∈ H it holds

〈Px, y〉 = 〈Px, Py + (y − Py)〉 = 〈Px, Py〉 = 〈Px+ (x− Px), Py〉 = 〈x, Py〉.

“(iii)⇒ (iv)” Clear.
“(iv)⇒ (i)” Since 0 = 〈(P ∗P − PP ∗)x, x〉 = ‖Px‖2 − ‖P ∗x‖2 for all x ∈ H,

we get that kerP = kerP ∗ = (ranP )⊥ (see Theorem 18.2(g)).
“(iii) ⇒ (v)” For all x ∈ H we have 〈Px, x〉 = 〈P 2x, x〉 = 〈Px, Px〉 =

‖Px‖2 ≥ 0.
“(v)⇒ (i)” For x ∈ kerP, y ∈ ranP and λ ∈ R it holds

0 ≤ 〈P (x+ λy), x+ λy〉 = 〈λy, x+ λy〉 = λ2‖y‖+ λ〈y, x〉,

which implies that

〈y, x〉 ≥ −λ‖y‖2 ∀λ > 0 and 〈y, x〉 ≤ −λ‖y‖2 ∀λ < 0.

Thus 〈x, y〉 = 0. �
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Chapter VI

Spectral theory

19 The spectrum of a bounded operator

The spectral theory generalizes the eigenvalue theory for matrices to bounded
operators on infinite-dimensional Banach spaces. An eigenvalue λ of a linear op-
erator T defined on a finite-dimensional space (which can be identified with a
matrix) is characterized through the fact that λ Id−T is not injective or, equiva-
lently, λ Id−T is not surjective. This equivalence is in infinite-dimensional spaces
in general not true, which means that a more general concept is needed.

In the following we assume that X is a Banach space and T ∈ L(X) is a
continuous linear operator. We write λ− T instead of λ Id−T .

Definition 19.1 Let T ∈ L(X).

(a) The resolvent set of T is defined as

ρ(T ) := {λ ∈ K | (λ− T )−1 exists in L(X)}.

(b) The mapping

ρ(T ) 7→ L(X), λ 7→ Rλ := Rλ(T ) := (λ− T )−1,

is called resolvent mapping.

(c) The spectrum of T is defined as

σ(T ) := K \ ρ(T ).

The spectrum is decomposed into:

• point spectrum: σp(T ) := {λ | λ− T is not injective};

91
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• continuous spectrum:

σc(T ) := {λ | λ− T is injective, not surjective,

and has dense range};

• residual spectrum: σr(T ) := {λ | λ−T is injective and has no dense range}.

Notice that according to Corollary 12.5, if λ−T is bijective, then (λ−T )−1 is
continuous, consequently, σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T ). The elements of σp(T )
are called eigenvalues; an element x 6= 0 with the property that Tx = λx is called
eigenvector.

Theorem 19.2 It holds σ(T ) = σ(T ∗). If X is a Hilbert space, then σ(T ∗) =
{λ : λ ∈ σ(T )}, whereby T ∗ is the adjoint operator of T in Hilbert space sense
(see Definition 19.1).

Proof. The first statement follows from the fact that a continuous linear oper-
ator between Banach spaces is an isomorphism if and only if its adjoint operator
is an isomorphism (see Übungsbeispiel 38(a)). If X is an Hilbert space, then(

(λ− T )−1
)∗

= ((λ− T )∗)−1 =
(
λ− T ∗

)−1
.

�

Example 19.3 (a) If X is finite-dimensional, then σ(T ) = σp(T ). For K = R
this set can be empty.

(b) Let X = C[0, 1] and (Tx)(s) =
∫ s

0
x(t)dt. Then σ(T ) = σr(T ) = {0}. It is

easy to see hat 0 ∈ σr(T ), since T is injective (the fundamental theorem of
calculus) and it has no dense range, since (Tx)(0) = 0 for all x ∈ C[0, 1].

Let λ 6= 0. We will prove that the equation

λx− Tx = y

has a unique solution, which will imply that λ − T is bijective. The con-
tinuity of its inverse will follow as a consequence of the Open Mapping
Theorem.

Denoting z := Tx, the equation gives rise to the following ordinary differ-
ential equation

ż(t)− 1

λ
z(t) =

1

λ
y(t), z(0) = 0.

Its unique solution reads

z(t) = e
t
λ

1

λ

∫ t

0

e−
s
λy(s)ds,
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thus

x(t) = ż(t) =
1

λ
(z(t) + y(t)) =

1

λ2

∫ t

0

e
t−s
λ y(s)ds+

1

λ
y(t).

This proves that λ− T is bijective.

(c) Let X = {x ∈ C[0, 1] | x(0) = 0} and (Tx)(s) =
∫ s

0
x(t)dt. Then σ(T ) =

σc(T ) = {0}. One can prove as in (b) that λ ∈ ρ(T ) for all λ 6= 0. On
the other hand, T is injective and, since ranT = {y ∈ C1[0, 1] | y(0) =
0, ẏ(0) = 0}, it has a dense range in X.

Theorem 19.4 (a) ρ(T ) is open.

(b) The resolvent mapping is analytic, which means that it can be locally rep-
resented by a power series with coefficients in L(X).

(c) σ(T ) is compact, more precisely, |λ| ≤ ‖T‖ for all λ ∈ σ(T ).

(d) If K = C, then σ(T ) 6= ∅.

Proof. (a) Let λ0 ∈ ρ(T ) and |λ− λ0| < ‖(λ0 − T )−1‖−1. Then

λ− T = (λ0 − T ) + (λ− λ0) = (λ0 − T )
(
Id−(λ0 − λ)(λ0 − T )−1

)
.

According to Theorem 3.17, the Neumann series
∑+∞

n=0 ((λ0 − λ)(λ0 − T )−1)
n

con-
verges and Id−(λ0 − λ)(λ0 − T )−1 is invertible. Consequently, λ − T is also
invertible.

(b) As we have seen above, we can represent the resolvent mapping for |λ −
λ0| < ‖(λ0 − T )−1‖−1 as

Rλ =
(
Id−(λ0 − λ)(λ0 − T )−1

)−1
(λ0 − T )−1 =

+∞∑
n=0

(λ0 − λ)n
(
(λ0 − T )−1

)n+1
,

which gives the desired local representation as power series with coefficients
((λ0 − T )−1)

n+1
.

(c) According to (a), σ(T ) is closed. Let |λ| > ‖T‖. The series

(λ− T )−1 = λ−1

(
Id−1

λ
T

)−1

= λ−1

+∞∑
n=0

λ−nT n

is convergent. This implies σ(T ) ⊆ {λ ∈ K | |λ| ≤ ‖T‖}, which shows that σ(T )
is bounded, consequently, compact.
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(d) Assume that σ(T ) = ∅. The resolvent mapping is defined on the whole
space C and is analytic. Let ` ∈ (L(X))∗. The mapping λ 7→ `(Rλ) can for every
λ0 ∈ C be locally represented as

`(Rλ) =
+∞∑
n=0

(−1)n(λ− λ0)n`(Rn+1
λ0

),

which means that it is analytic. For |λ| > 2‖T‖ it holds

|`(Rλ)| ≤ ‖`‖|λ−1|
+∞∑
n=0

∥∥∥∥Tλ
∥∥∥∥n ≤ ‖`‖ 1

2‖T‖
2 =

‖`‖
‖T‖

.

On the other hand, the continuous mapping λ 7→ `(Rλ) is bounded on the com-
pact set {λ | |λ| ≤ 2‖T‖}, thus it is bounded on C. According to the Liouville
Theorem, an analytic function which is bounded on C must be constant. We
take λ0 := 0 and notice that `(Rn+1

0 ) must be equal to zero for all n ≥ 1. In
particular, `(R2

0) = `(T−2) = 0. Since this is true for all ` ∈ (L(X))∗, according
to the Hahn-Banach Theorem, we must have T−2 = 0, which is a contradiction
to the fact that this operator is the inverse of T 2. This shows that σ(T ) cannot
be empty. �

The estimation in statement (c) of the above theorem can be strengthen. To
this end we will use the following convergence statement for sequences of real
numbers.

Lemma 19.5 Let (tn)n∈N a sequence of real numbers such that 0 ≤ tn+m ≤ tntm
for all n,m ∈ N. Then ( n

√
tn)n∈N converges to t := infn∈N

n
√
tn.

Proof. Let ε > 0 andN ∈ N be such that N
√
tN < t+ε. SetM := max{t1, ..., tN}.

Every n ≥ N can be written as n = kN + r for 1 ≤ r ≤ N . We have

n
√
tn = t

1
n
kN+r ≤ (tkN tr)

1
n ≤ (t+ ε)

kN
n M

1
n = (t+ ε)(t+ ε)−

r
nM

1
n < t+ 2ε

for n big enough. This proves the statement. �

Lemma 19.5 shows that the limit in the following definition exists and that it
coincides with the infimum of the sequence.

Definition 19.6 The spectral radius of T ∈ L(X) is defined as

r(T ) := inf ‖T n‖
1
n = lim

n→+∞
‖T n‖

1
n .

Theorem 19.7 It holds
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(a) |λ| ≤ r(T ) for all λ ∈ σ(T );

(b) if K = C, then there exists λ ∈ σ(T ) such that |λ| = r(T ).

Thus, for K = C we have

r(T ) = max{|λ| | λ ∈ σ(T )},

which explains the name of spectral radius of the operator T .

Proof. (a) The statement follows if we prove that for |λ| > r(T ) the series

λ−1
∑+∞

n=0(T/λ)n converges. This is indeed the case if lim supn→+∞ ‖(T/λ)n‖ 1
n <

1, which is true, since

lim sup
n→+∞

‖(T/λ)n‖
1
n = lim

n→+∞
|λ−1|‖T n‖

1
n =

r(T )

|λ|
< 1.

(b) Let r0 := sup{|λ| | λ ∈ σ(T )}. According to (a), r0 ≤ r(T ). Let |µ| > r0.
We will show that |µ| ≥ r(T ), which will imply that r0 = r(T ). The statement
will follow by using that the spectrum is compact.

Let ` ∈ L(X)∗. On {λ | |λ| > r0} ⊆ ρ(T ) we consider the analytic function
f`(λ) = `((λ− T )−1). As seen in the proof of statement (a), this function can be
represented for |λ| > r(T ) by the convergent series

f`(λ) =
+∞∑
n=0

`(T n)λ−(n+1).

The series converges in the largest open annulus on which f` is analytic. In
particular, it converges at µ, which implies that limn→+∞ `(T

n/µn+1) = 0. This
shows that (T n/µn+1)n∈N converges weakly to 0, consequently, it is bounded.

Then there exists K > 0 such that ‖T n‖ 1
n ≤ K

1
n |µ|n+1

n for all n ∈ N. Letting
n→ +∞, it yields r(T ) ≤ |µ|. �

We have in general that r(T ) < ‖T‖ (see Example 19.3(b), where r(T ) = 0).
However, for normal operators defined on Hilbert spaces equality holds.

Theorem 19.8 Let H be a Hilbert space and T ∈ L(H) a normal operator. It
holds r(T ) = ‖T‖.

Proof. According to Theorem 18.2 we have

‖T 2‖2 = ‖T 2(T 2)∗‖ = ‖(TT ∗)2‖ = ‖TT ∗‖2 = ‖T‖4,

thus ‖T 2‖ = ‖T‖2. Since T n is also normal for all n ∈ N, it yields by induction
that ‖T 2k‖ = ‖T‖2k for all k ∈ N, so

r(T ) = lim
k→+∞

‖T 2k‖
1

2k = ‖T‖.

�
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20 The Riesz theory

In this section we will provide a complete description of the spectrum of a compact
operator defined on a Banach space X.

Theorem 20.1 (Riesz-Schauder Theorem) Let X be a Banach space, T ∈ K(X)
and S = Id−T .

(a) The kernel of S has finite dimension.

(b) S has closed range and X/ ranS has finite dimension.

(c) dim(X/ ranS) = dim(kerS) = dim(X∗/ ranS∗) = dim(kerS∗).

An operator fulfilling (a) and (b) is called Fredholm operator and the number

ind(T ) := dim(kerS)− dim(X/ ranS)

is called its index. According to the Riesz-Schauder Theorem, operators of the
form S = Id−T , where T is a compact operator, are Fredholm operators with
index 0. Such operators are in particular surjective if and only if they are injective.
This also means that the integral equation Sx = y is for every right-hand side y
solvable if and only if the equation Sx = 0 has only the trivial solution x = 0,
which is much easier to verify. If so, then Sx = y has a unique solution.

Proof. (a) Let (xn)n∈N be a bounded sequence in kerS. Then there exists a
convergent subsequence (Txnk)k∈N. Since 0 = Sxnk = xnk − Txnk for all k ∈ N,
(xnk)k∈N is convergent in X. Using that kerS is closed we have that (xnk)k∈N

is convergent also in kerS. According to Theorem 2.8 we obtain that kerS is
finite-dimensional.

(b) Consider Ŝ : X/ kerS → ranS, Ŝ([x]) = Sx. It is easy to see that Ŝ is

linear, continuous and bijective. We will prove that Ŝ−1 is continuous. Assuming
that this is not true, by Theorem 3.12 we obtain a sequence (xn)n∈N ⊆ X such
that

dist(xn, kerS) = ‖[xn]‖X/ kerS = 1 ∀n ∈ N and Sxn → 0 (n→ +∞).

This gives a sequence (yn)n∈N ⊆ X such that ‖yn‖ < 2 for all n ∈ N and Syn → 0
as n → +∞. Then there exists a subsequence (ynk)k∈N such that (Tynk)k∈N is
convergent, which implies that (ynk)k∈N = (Tynk + Synk)k∈N is convergent. We
denote its limit by x. Thus Sx = 0 and ‖[x]‖X/ kerS = 0, which is a contradiction.

This shows that Ŝ−1 is an isomorphismus from X/ kerS to ranS and, since
X/ kerS is complete, it follows that ranS is complete. According to Lemma
1.6(b), ranS is closed.
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According to Theorem 6.11 we have that (X/ ranS)∗ ∼= (ranS)⊥. Obviously,
(ranS)⊥ = kerS∗, which gives (X/ ranS)∗ ∼= kerS∗. Thus dim(X/ ranS)∗ =
dim(kerS∗) < +∞, since, according to (a), the kernel of S∗ is finite-dimensional
(we use here that T ∗ = Id−S∗ is also compact; see Schauder Theorem). Conse-
quently, dim(X/ ranS) = dim(X/ ranS)∗ < +∞.

(c) From Theorem 6.11 and Theorem 14.3 we have that (kerS)∗ ∼= X∗/(kerS)⊥

= X∗/ ranS∗, thus

dim(X∗/ ranS∗) = dim(kerS)∗ < +∞.

It remains to prove that

dim(X/ ranS) = dim(kerS)

and from here, taking also into account the proof of (b), the conclusion will follow.
In order to prove this statement we will need some intermediate results. �

For m ∈ N we set

Nm := kerSm, N0 := {0}, Rm := ranSm, R0 := X.

We have

N0 ⊆ N1 ⊆ N2 ⊆ ... and R0 ⊇ R1 ⊇ R2 ⊇ ....

Since for every m ∈ N it holds

Sm = (Id−T )m = Id−
m∑
k=1

(
m

k

)
(−1)k+1T k := Id−T̃ ,

where T̃ is compact, Nm is finite-dimensional, Rm is closed and dimX/Rm < +∞.

Lemma 20.2 (a) There exists a minimal number p ∈ N ∪ {0} such that Np =
Np+1.

(b) It holds Np = Np+r for all r > 0.

(c) Np ∩Rp = {0}.

(d) There exists a minimal number q ∈ N ∪ {0} such that Rq = Rq+1.

(e) It holds Rq = Rq+r for all r > 0.

(f) Nq +Rq = X.

(g) p=q.
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Proof. (a) Assume that such a number p does not exist, namely,

N0 ( N1 ( N2 ( ....

Since Nn is closed, for every n ∈ N there exists due to the Riesz Lemma (Lemma
2.6) an element xn ∈ Nn such that dist(xn, Nn−1) > 1

2
and ‖xn‖ = 1. For every

n > m ≥ 1 it holds

‖Txn − Txm‖ = ‖xn − (Sxn + xm − Sxm)‖ > 1

2
,

since S(Nn) ⊆ Nn−1, which means that Sxn + xm − Sxm ∈ Nn−1. This implies
that (Txn)n∈N does not have a convergent subsequence. This is a contradiction
to T ∈ K(X).

(b) Let r > 0. We will show that Np+r ⊆ Np. Let x ∈ Np+r. Then Sr−1(x) ∈
Np+1 = Np, consequently, x ∈ Np+r−1. By repeating this argument we finally get
that x ∈ Np.

(c) Let x ∈ Np ∩ Rp. It holds Spx = 0 and x = Spy, for y ∈ X. This yields
S2py = 0, thus y ∈ N2p = Np. Consequently, Spy = 0, thus x = 0.

(d) Assume that such a number q does not exist, namely,

R0 ) R1 ) R2 ) ....

Since Rn is closed, for every n ∈ N there exists due to the Riesz Lemma (Lemma
2.6) an element xn ∈ Rn such that dist(xn, Rn+1) > 1

2
and ‖xn‖ = 1. For every

m > n ≥ 1 it holds

‖Txn − Txm‖ = ‖xn − (Sxn + xm − Sxm)‖ > 1

2
,

since S(Rn) = Rn+1, which means that Sxn + xm − Sxm ∈ Rn+1. This implies
that (Txn)n∈N does not have a convergent subsequence. This is a contradiction
to T ∈ K(X).

(e) Let r > 0. We will show that Rq+r ⊇ Rq. Let x ∈ Rq, which means that
x = Sqy, for y ∈ X. Since Sqy ∈ Rq = Rq+1, it yields x = Sqy = Rq+1. By
repeating this argument we finally get that x ∈ Rq+r.

(f) Let x ∈ X. According to (e) we have Sqx ∈ Rq = R2q, which means that
Sqx = S2qy, for y ∈ X. Then we can write x as x = (x− Sqy) + Sqy ∈ Nq +Rq.

(g) Assume that p > q. Then Rp = Rq and there exists x ∈ Np \ Nq. We
represent x as x = y + z ∈ Nq + Rq. Then z = x − y ∈ Np + Nq = Np and
z ∈ Rq = Rp. Consequently, z = 0, and so x ∈ Nq. Contradiction.

Assume that p < q. Then Np = Nq and there exists x ∈ Rp\Rq. We represent
x as x = y + z ∈ Nq + Rq. Then y = x − z ∈ Rp + Rq = Rp and y ∈ Nq = Np.
Consequently, y = 0, and so x ∈ Rq. Contradiction.

�
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Corollary 20.3 Let X be a Banach space, T ∈ K(X) and S = Id−T . Then

there exist closed linear subspaces N̂ and R̂ such that

(a) dim N̂ < +∞.

(b) X = N̂ ⊕ R̂ is a topological direct sum, which means that X is the algebraic

direct sum of N̂ and R̂ and that X is isomorphic to the space N̂ ⊕ R̂
(endowed with one of the norms introduced in Übungsbeispiel 6).

(c) S(N̂) ⊆ N̂ , S(R̂) ⊆ R̂.

(d) S|R̂ : R̂→ R̂ is an isomorphism.

Proof. Choose p and q as in the above lemma and set N̂ := Np and R̂ := Rq.

Then N̂ is finite-dimensional and R̂ is closed. Lemma 20.2(c) and (b) guarantees

that X = N̂ ⊕ R̂ is an algebraic direct sum. Since N̂ and R̂ are closed, they
are Banach spaces, thus N̂ ⊕ R̂ is a Banach space. The mapping N̂ ⊕ R̂ 7→
X, (x1, x2) 7→ x1 + x2, is linear, continuous and bijective, thus, according to
Corollary 12.5, it is an isomorphism. This proves (b).

On the one hand we have S(N̂) = S(Np) ⊆ Np−1 ⊆ Np = N̂ , for p ≥ 1, and

S(N̂) = S(N0) = N0 = N̂ , for p = 0. On the other hand, S(R̂) = S(Rp) ⊆
Rp+1 = Rp = R̂, which proves (c).

We have seen above that the mapping x 7→ Sx from R̂ to R̂ is surjective. If
Sy = 0 for y ∈ R̂, where y = Spx, then Sp+1x = 0, which means that x ∈ Np+1 =

Np = N̂ . This proves that y = Spx = 0, consequently, the mapping is bijective.
It is also continuous and, according to Corollary 12.5, it is an isomorphism. This
proves statement (d). �

We will continue with the proof of the Riesz-Schauder Theorem.

Proof. (Continuation of the proof of Theorem 20.1)

We consider the decomposition X = N̂ ⊕ R̂ in Corollary 20.3 and set Ŝ :=
S|N̂ : N̂ → N̂ . Let Φ : N̂/ ran Ŝ → X/ ranS, x + ran Ŝ 7→ x + ranS. Since

ran Ŝ ⊆ ranS, Φ is well-defined and linear.
We will prove that Φ is bijective and this will lead to dim(X/ ranS) =

dim(kerS), since dim(N̂/ ran Ŝ) = dim(ker Ŝ), which is known from the linear

algebra (notice that N̂ is finite-dimensional), and kerS = ker Ŝ, which follows
from the following equivalence:

x ∈ kerS ⇔ x = x1 + x2 ∈ N̂ ⊕ Ŝ and Sx = 0

⇔ x = x1 + x2 and Sx2 = −Sx1 ∈ N̂ ∩ R̂
⇔ x = x1 + x2 and Sx2 = Sx1 = 0

⇔ x = x1 + x2 and x2 = Sx1 = 0⇔ x ∈ N̂ and Sx = 0⇔ x ∈ ker Ŝ.
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In order to prove that Φ is injective, let x ∈ N̂ with Φ([x]) = 0, in other

words, x ∈ ranS. We will prove that x ∈ ran Ŝ. Let y ∈ X, y = y1 + y2 ∈ N̂ ⊕ R̂,
such that x = Sy. We have Sy2 = Sy − Sy1 = x − Sy1 ∈ N̂ . On the other
hand, Sy2 ∈ R̂ and so Sy2 = 0. Since y2 ∈ R̂, it holds y2 = 0, consequently,
x = Sy1 ∈ S(N̂) = ran Ŝ.

In order to prove that Φ is surjective, let x = x1+x2 ∈ X = N̂⊕R̂ = N̂⊕S(R̂).

It holds x+ ranS = x1 + ran Ŝ, thus Φ(x1 + ran Ŝ) = x+ ranS. �

The following result is an important consequence of the Riesz-Schauder The-
orem.

Theorem 20.4 (The Fredholm Alternative) Let X be a Banach space, T ∈
K(X) and λ ∈ K, λ 6= 0. Either the equation

λx− Tx = 0

has only the trivial solution; in this case the inhomogeneous equation

λx− Tx = y

is uniquely solvable for every y ∈ X; or there exists n := dim ker(λ − T ) <
+∞ linearly independent solutions of the homogeneous equation, and the adjoint
equation

λx∗ − T ∗x∗ = 0

has precisely n linearly independent solutions; in this case, the inhomogeneous
equation is solvable if and only if y ∈ (ker(λ− T ∗))⊥.

Proof. We only have to use Theorem 20.1 and also Theorem 9.6; notice that
λ− T = λ(Id−T/λ). �

Example 20.5 Let T : C[0, 1] → C[0, 1], (Tx)(s) =
∫ s

0
k(s, t)x(t)dt, be the

Volterra integral operator with continuous kernel k : [0, 1] × [0, 1] → K. We
have seen in Übungsbeispel 28 that T is compact. For λ 6= 0 we consider the
operator equation

λx− Tx = 0.

We will prove that λ− T is injective. Without loss of generality we assume that
λ = 1. Let x ∈ C[0, 1] such that Tx = x. For every s ∈ [0, 1] it holds

|x(s)| = |Tx(s)| ≤
∫ s

0

|k(s, t)||x(t)|dt ≤ s‖k‖∞‖x‖∞

and, from here,

|x(s)| = |Tx(s)| ≤
∫ s

0

|k(s, t)|t‖k‖∞‖x‖∞dt ≤
s2

2
‖k‖∞‖x‖∞.
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By repeating this approach it yields for every s ∈ [0, 1]

|x(s)| ≤ sn‖k‖n∞
n!

‖x‖∞ → 0 (n→ +∞),

thus x = 0.
The uniqueness of the solution of the homogeneous equation λx − Tx = 0

yields via the Fredholm Alternative the existence of the solution of the inhomo-
geneous equation

λx− Tx = y

for every y ∈ C[0, 1].

We state now the main theorem of the spectral theory of compact operators
on Banach spaces.

Theorem 20.6 Let X be a Banach space and T ∈ K(X).

(a) If X is infinite-dimensional, then 0 ∈ σ(T ).

(b) The (possibly empty) set σ(T ) \ {0} is at most countable.

(c) Every λ ∈ σ(T )\{0} is an eigenvalue of T and the corresponding eigenspace
ker(λ−T ) is finite-dimensional. In addition, there exists a topological direct
sum X = N(λ)⊕ R(λ) with T (N(λ)) ⊆ N(λ) and T (R(λ)) ⊆ R(λ), N(λ)
finite-dimensional, ker(λ − T ) ⊆ N(λ), and (λ − T )|R(λ) an isomorphism
from R(λ) to R(λ).

(d) σ(T ) has no nonzero accumulation points.

Proof. (a) If 0 ∈ ρ(T ), then T is invertible with continuous inverse and, so,
Id = TT−1 is compact. According to Theorem 2.8 we obtain that dimX < +∞.
Contradiction.

(c) The statement follows from Theorem 20.1, Corollary 20.3 and Theorem
20.4.

(b) + (d) The statement follows by proving that for every ε > 0 the set
{λ ∈ σ(T ) | |λ| ≥ ε} is finite.

Assume that there exist ε > 0, a sequence (λn)n∈N ⊆ K and a sequence
(xn)n∈N ⊆ X such that |λn| ≥ ε, xn 6= 0, Txn = λnxn for all n ∈ N and λn 6= λm
for all n 6= m.

The set {xn | n ∈ N} is linear independent. Assuming that there exists N ∈ N,
linearly independent vectors x1, ..., xN and scalars α1, ..., αN , not all equal to zero,
with xN+1 =

∑N
i=1 αixi, it yields

TxN+1 =
N∑
i=1

αiTxi =
N∑
i=1

λiαixi = λN+1xN+1 =
N∑
i=1

λN+1αixi.
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This means that for at least one i it must hold λi = λN+1. Contradiction.
We define En := lin{x1, ..., xn} for all n ∈ N. Consequently,

E1 ( E2 ( E3 ( ....

For every n ∈ N it holds T (En) ⊆ En. Let n ≥ 2. According to the Riesz Lemma

(Lemma 2.6) there exists yn =
∑n

i=1 α
(n)
i xi ∈ En such that dist(yn, En−1) > 1

2

and ‖xn‖ = 1. For every n > m > 1 it holds

‖Tyn − Tym‖ = ‖λnyn − (Tym + λnyn − Tyn)‖

= |λn|
∥∥yn − λ−1

n (ym + λnyn − Tyn)
∥∥ ≥ |λn| dist(yn, En−1) ≥ ε

2
,

since Tym ∈ Em ⊆ En−1 and λnyn − Tyn =
∑n

i=1(λn − λi)α(n)
i xi ∈ En−1.

This means that (Tyn)n∈N cannot be a Cauchy sequence, which contradicts
the compactness of the operator T . �

Theorem 20.6 states that the spectrum of a compact operator T consists,
excepting 0, of a zero sequence (or a finite set) of eigenvalues λ. The operator λ−T
can be decomposed in a finite-dimensional component (which can be represented
by a matrix) and an isomorphism. However, as seen in Example 19.3 (c) and (d),
not every compact operators has nonzero spectral values.
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