

Univ.-Prof. Dr. Radu Ioan Bot

Vienna, December 13, 2019 To be discussed on January 10, 2020

Nonlinear Optimization

Exercise session 6

- 38. (Frobenius norm) Let be $A = (a_{ij}) \in \mathbb{R}^{n \times n}$.
 - (a) Prove that

$$\|A\|_F := \left(\sum_{i,j=1}^n a_{ij}^2\right)^{1/2}$$

defines a matrix norm and that this matrix norm is not induced by a vector norm.

(b) We denote by

$$\operatorname{Spur}(A) := \sum_{i=1}^{n} a_{ii}$$

the trace of the matrix A. Prove that

$$\operatorname{Spur}(AB) = \operatorname{Spur}(BA) \ \forall B \in \mathbb{R}^{n \times n},$$

 $\operatorname{Spur}(S^{-1}AS) = \operatorname{Spur}(A) \; \forall S \in \mathbb{R}^{n \times n}$ with S regular,

and

$$||A||_F^2 = \operatorname{Spur}(A^T A).$$

(c) If $\{v^1, ..., v^n\}$ is an orthonormal basis of \mathbb{R}^n , then it holds

$$||A||_F^2 = \sum_{i=1}^n ||Av^i||^2.$$

(4 points)

39. Let be $u, v \in \mathbb{R}^n$. Show that the following statements are true:

(a)
$$||uv^T|| = ||uv^T||_F = ||u|| ||v||.$$

(b) $det(I + uv^T) = 1 + u^T v$.

(4 points)

40. (Lemma 9.10 in the lecture course)

Let be $s, y \in \mathbb{R}^n$ with $s \neq 0$. Prove that $s^T y > 0$ if and only if there exists a symmetric and positive definite matrix $Q \in \mathbb{R}^{n \times n}$ such that Qs = y.

Hint. " \Rightarrow " For $v := \sqrt{\frac{y^T s}{s^T s}}s$, prove that the matrix

$$Q := \left(I + \frac{1}{v^T v} (y - v) v^T\right) \left(I + \frac{1}{v^T v} (y - v) v^T\right)^T$$

has the desired properties.

41. Let $H \in \mathbb{R}^{n \times n}$ be a regular matrix and $u, v \in \mathbb{R}^n$. Prove that the matrix $H + uv^T$ is regular if and only if $1 + v^T H^{-1}u \neq 0$. Show that under these assumptions the so-called *Sherman-Morrison formula* holds:

$$(H + uv^{T})^{-1} = \left(I - \frac{1}{1 + v^{T}H^{-1}u}H^{-1}uv^{T}\right)H^{-1}.$$

Hint. Use Exercise 39(b).

42. Let be $s, y \in \mathbb{R}^n$ with $s^T y > 0$ and $H \in \mathbb{R}^{n \times n}$ a symmetric and positive definite matrix. The direct BFGS update formula reads

$$H_+^{BFGS} := H + \frac{1}{s^T y} yy^T - \frac{1}{s^T Hs} Hss^T H.$$

Show that $B = H^{-1}$ implies $B_+^{BFGS} = (H_+^{BFGS})^{-1}$, whereby B_+^{BFGS} is given by the inverse BFGS update formula (Theorem 9.12 in the lecture course). (3 points)

- 43. Let $M \in \mathbb{R}^{n \times n}$ be a regular matrix and $\{M_k\}_{k \ge 0} \in \mathbb{R}^{n \times n}$ a sequence of matrices which converges to M as $k \to +\infty$. Show that there exists $k_0 \ge 0$ such that M_k is regular for all $k \ge k_0$, and that the sequence $\{M_k^{-1}\}_{k \ge k_0}$ converges to M^{-1} . (3 points)
- 44. Consider the quadratic optimization problem

(P) min
$$f(x) := \gamma + c^T x + \frac{1}{2} x^T Q x,$$

s.t. $h(x) := b^T x = 0$

with $Q \in \mathbb{R}^{n \times n}$ a symmetric and positive definite matrix, $b, c \in \mathbb{R}^n$, $b \neq 0$, and $\gamma \in \mathbb{R}$. For given $\alpha > 0$, find the minimum $x^*(\alpha)$ of the penalty function

$$P(x;\alpha) := f(x) + \frac{\alpha}{2}(h(x))^2,$$

determine $x^* := \lim_{\alpha \to +\infty} x^*(\alpha)$, and prove that x^* is the unique optimal solution of the optimization problem (P).

Hint. Use the Sherman-Morrison formula.

(3 points)

45. Implement the local inverse BFGS algorithm in MATLAB. To do this, create the file quasi_newton_method.m with

(3 points)

(4 points)

function [X, Iter] = quasi_newton_method(fhandle, x0, B0, kmax, eps)

as first line. Here, func denotes a function handle, x0 the starting vector, B0 the starting matrix, kmax the maximal number of allowed iterations, and epsilon the parameter for the stopping criterion. A matrix X = [x0, x1, x2, ..] containing the iteration history and the number of performed iterations Iter should be returned.

The implemented algorithm should be tested for $epsilon=10^{-6}$, kmax=500 and B0 the identity matrix on the following functions and starting values:

- (a) $f(x_1, x_2) = (1 x_1)^2 + 100(x_2 x_1^2)^2$ (Rosenbrock function) for $\mathbf{x0} = (-1.2, 1)^T$.
- (b) $f(x_1, x_2, x_3, x_4) = \sum_{i=1}^{4} \left(4 \sum_{j=1}^{4} \cos x_j + i(1 \cos x_i) \sin x_i \right)^2$ (trigonometric function) for $\mathbf{x0} = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)^T$.
- (c) $f(x_1, x_2) = (x_1 10^6)^2 + (x_2 2 \cdot 10^6)^2 + (x_1 x_2 2)^2$ (Brown function) for $\mathbf{x0} = (1, 1)^T$.
- (d) $f(x_1, x_2, x_3, x_4) = 100(x_2 x_1^2)^2 + (1 x_1)^2 + 90(x_4 x_3^2)^2 + (1 x_3)^2 + 10(x_2 + x_4 2)^2 + \frac{1}{10}(x_2 x_4)^2$ (Wood function) for $\mathbf{x0} = (-3, -1, -3, -1)^T$.

The generated files should be sent by January 17, 2020 to radu.bot@univie.ac.at.