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Nonlinear Optimization
Exercise session 7

46. Consider the optimization problem

min f(x) := (x1 + 1)2 + (x2 + 2)2

s.t. g1(x) := −x1 ≤ 0
g2(x) := −x2 ≤ 0

with x = (x1, x2)
T . For α > 0, find the minimum x∗(α) of the penalty function

P (x;α) := f(x) +
α

2
‖g+(x)‖2,

and the limits x∗ := lim
α→+∞

x∗(α) and λ∗ := lim
α→+∞

αg+(x∗(α)). Find out if (x∗, λ∗) is a KKT

point of the optimization problem. (3 points)

47. Consider the optimization problem

(P ) min f(x) := x2

s.t. g(x) := 1− ln(x) ≤ 0

and the penalized optimization problem

min
x∈R

P (x;α) := f(x) + αϕ

(
g(x)

α

)
with ϕ(t) = et − 1 (exponential penalty function). For α > 0, find the optimal solution x∗(α)
of the penalty optimizaton problem and prove that x∗ := lim

α↓0
x∗(α) is an optimal solution of

the problem (P ). (3 point)

48. Consider the optimization problem

min x2

s.t. x− 1 = 0

and its optimal solution x∗ = 1. Find ᾱ > 0 such that the `1-penalty function P1(·;α) is exact
at x∗ for every α ≥ ᾱ. (3 points)

49. Consider the optimization problem (P ) in Exercise 44.
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(a) Prove that
µ∗ := lim

α→∞
αh(x∗(α))

is the Lagrange multiplier which corresponds to the optimal solution x∗.

(b) Consider the penalized optimization problem

min
x∈Rn

P1(x;α) := f(x) + α|h(x)|.

Find ᾱ > 0 such that P1(·;α) is exact at x∗ for every α ≥ ᾱ.

Hint. Use µ∗ to find ᾱ. (4 points)

50. Prove that the following functions are NCP-functions:

(a) the minimum function:
ϕ(a, b) = min{a, b}.

(b) the Fischer-Burmeister function:

ϕ(a, b) =
√
a2 + b2 − a− b.

(c) the penalized minimum function:

ϕ(a, b) = 2λmin{a, b}+ (1− λ)a+b+,

where a+ := max{a, 0}, b+ := max{b, 0} and λ ∈ (0, 1).

(3 points)

51. Let (x∗, λ∗, µ∗) ∈ Rn × Rm × Rp be a KKT point of the optimization problem (all functions
are assumed to be twice continuously differentiable)

min f(x)
s.t. gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., p

fulfilling:

(i) gi(x
∗) + λ∗i 6= 0 for all i = 1, ...,m (strict complementarity);

(ii) the gradients ∇gi(x∗), i ∈ A(x∗) = {i = 1, ...,m : gi(x
∗) = 0}, and ∇hj(x∗), j = 1, ..., p,

are linearly independent (LICQ);

(c) it holds dT∇2
xxL(x∗, λ∗, µ∗)d > 0 for all d 6= 0 with ∇gi(x∗)Td = 0, i ∈ A(x∗), and

∇hj(x∗)Td = 0, j = 1, ..., p (second order sufficient optimality condition).

Further, let Φ : Rn+m+p → Rn+m+p be defined by

Φ(x, λ, µ) :=

 ∇xL(x, λ, µ)
h(x)

φ(−g(x), λ)


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and
φ(−g(x), λ) = (ϕ(−g1(x), λ1), ..., ϕ(−gm(x), λm))T ∈ Rm,

where ϕ : R2 → R is the minimum function

ϕ(a, b) = min{a, b}.

Prove that the matrix ∇Φ(x∗, λ∗, µ∗) is well-defined and regular. (4 points)

52. Implement the Lagrange-Newton algorithm in Matlab. Use

function [LN, Iter] = lagrange newton(func, x0, µ0, kmax, epsilon)

as first line. Here, func denotes a function handle, x0 and µ0 denote the starting vectors,
kmax the maximal number of allowed iterations, and epsilon the parameter for the stopping
criterion. A matrix LN = [x0, µ0, x1, µ1, x2, µ2, ...] containing the iteration history and the
number of performed iterations Iter should be returned.

The implemented algorithm should be tested on the following functions, starting values, and
parameters:

(a) f(x1, x2) = 2x41 + x42 + 4x21 − x1x2 + 6x22, h(x1, x2) = 2x1 − x2 + 4 with x0=(0, 0)T , µ0
= 0, kmax=200 and epsilon=10−3.

(b) f(x1, x2, x3) = 1000 − x21 − 2x22 − x23 − x1x2 − x1x3, h1(x1, x2, x3) = x21 + x22 + x23 − 25,
h2(x1, x2, x3) = 8x1 + 14x2 + 7x3− 56 with x0=(3, 0.2, 3)T , µ0 = (0, 0)T , kmax=200 and
epsilon=10−5.

(5 points)

The generated files should be sent by January 31, 2020 to radu.bot@univie.ac.at.

3


