Univ.-Prof. Dr. Radu Ioan Bot

Exercises for the lecture course "Convex Optimization" Winter term 2021/2022

Solutions are to be submitted by October 31, 2021:

- 1. Let $(H, \langle \cdot, \cdot \rangle)$ be a real Hilbert space and $D \subseteq H$ a nonempty set. For i = 1, ..., k, let $T_i : D \to H$ be α_i -averaged operators, $\alpha_i \in (0, 1)$, and $\omega_i \geq 0$ such that $\sum_{i=1}^k \omega_i = 1$. Show that $\sum_{i=1}^k \omega_i T_i$ is α -averaged with $\alpha = \max_{i=1,...,k} \alpha_i$.
- 2. Let $(H, \langle \cdot, \cdot \rangle)$ be a real Hilbert space, $D \subseteq H$ a nonempty set, $T_1 : D \to H$ an α_1 -averaged operator and $T_2 : D \to D$ an α_2 -averaged operator, where $\alpha_1, \alpha_2 \in (0, 1)$. Show that T_1T_2 is α -averaged with

$$\alpha := \frac{\alpha_1 + \alpha_2 - 2\alpha_1\alpha_2}{1 - \alpha_1\alpha_2} \in (0, 1).$$

3. Let $(H, \langle \cdot, \cdot \rangle)$ be a real Hilbert space, $D \subseteq H$ a nonempty set and $T_i : D \to D$ α_i -averaged operators, where $\alpha_i \in (0, 1)$ for i = 1, ..., m. Show that $T_1T_2...T_m$ is α -averaged with

$$\alpha := \frac{1}{1 + \frac{1}{\sum_{i=1}^{m} \frac{\alpha_i}{1 - \alpha_i}}} \in (0, 1).$$

- 4. Let $(H, \langle \cdot, \cdot \rangle)$ be a real Hilbert space, $f : H \to \overline{\mathbb{R}}$ a proper function and $\beta > 0$. Prove that the following statements are equivalent:
 - (i) f is strongly convex with constant β ;
 - (ii) $f \frac{\beta}{2} \| \cdot \|^2$ is convex.
- 5. Let $(H, \langle \cdot, \cdot \rangle)$ be a real Hilbert space, $U \subseteq H$ a nonempty, open and convex set, $f: U \to \mathbb{R}$ a Gâteaux differentiable function on U and consider the following statements:
 - (i) f is strictly convex on U;
 - (ii) $\langle \nabla f(x), y x \rangle < f(y) f(x) \ \forall x, y \in U, x \neq y;$
 - (iii) $\langle \nabla f(y) \nabla f(x), y x \rangle > 0 \ \forall x, y \in U, x \neq y;$
 - (iv) if f is twice Gâteaux differentiable on U, then $\nabla^2 f(x)(d,d) > 0 \ \forall x \in U \ \forall d \in H, d \neq 0.$

Prove that $(iv) \Rightarrow (i) \Leftrightarrow (ii) \Leftrightarrow (iii)$ and show that the first implication is not an equivalence in general.

6. (a) For $\underline{\alpha}, \overline{\alpha}$ real numbers, such that $\underline{\alpha} < \overline{\alpha}$, calculate the proximal operator of

$$\sigma_{[\underline{\alpha},\overline{\alpha}]}: \mathbb{R} \to \mathbb{R}, \ \sigma_{[\underline{\alpha},\overline{\alpha}]}(x) = \begin{cases} \underline{\alpha}x, & \text{if } x < 0\\ 0, & \text{if } x = 0\\ \overline{\alpha}x, & \text{if } x \ge 0. \end{cases}$$

- (b) Calculate the proximal operator of the function $\|\cdot\|_1 : \mathbb{R}^n \to \mathbb{R}$.
- 7. For $\alpha > 0$, calculate the proximal operator of the following real-valued functions defined on \mathbb{R} :
 - (a) $x \mapsto \max\{|x| \alpha, 0\};$

(b)

$$x \mapsto \begin{cases} \frac{1}{2}x^2, & \text{if } |x| \le \alpha\\ \alpha |x| - \frac{\alpha^2}{2}, & \text{otherwise.} \end{cases}$$

Solutions to be submitted by December 5, 2021:

- 8. Let H be a real Hilbert spaces.
 - (a) For $f: H \to \overline{\mathbb{R}}$ a proper, convex and lower semicontinuous function and $\gamma > 0$, prove that

$$\operatorname{prox}_{\gamma(^{1}f)}(x) = \frac{x + \gamma \operatorname{prox}_{(\gamma+1)f}(x)}{\gamma + 1}$$

where

$${}^{1}f: H \to \mathbb{R}, \; {}^{1}f(x) = \inf_{y \in H} \left\{ f(y) + \frac{1}{2} \|y - x\|^{2} \right\}.$$

denotes the Moreau envelope of f of parameter 1.

- (b) For $C \subseteq H$ a nonempty, convex and closed set, calculate the proximal operator of the squared distance function $\frac{1}{2}d_C^2$.
- 9. Let H be a real Hilbert space.
 - (a) For $f : \mathbb{R} \to \overline{\mathbb{R}}$ is a proper, convex and lower semicontinuous function and $u \in H$, determine the proximal operator of the function $x \mapsto f(\langle u, x \rangle)$.
 - (b) For H a finite-dimensional space, $e_1, ..., e_n$ an orthonormal basis of H and $f: H \to \overline{\mathbb{R}}$, $f(x) = \sum_{i=1}^n f_i(\langle x, e_i \rangle)$, where $f_i: \mathbb{R} \to \overline{\mathbb{R}}$, i = 1, ..., n, are proper, convex and lower semicontinuous functions, determine the proximal operator of f.
- 10. Let H be a real Hilbert space, $f: H \to \overline{\mathbb{R}}$ a proper, convex and lower semicontinuous function and $\gamma > 0$.
 - (a) Prove that $\operatorname{prox}_{(\gamma f)}(x) = x + \frac{1}{\gamma+1} \left(\operatorname{prox}_{(\gamma+1)f}(x) x \right) \quad \forall x \in H.$
 - (b) For $g: H \to \mathbb{R}, g(x) = \frac{1}{2\gamma} \|x\|^2 (\gamma f)(x)$, prove that $g(x) = (f + \frac{1}{2\gamma} \|\cdot\|^2)^* \left(\frac{1}{\gamma}x\right)$ for all $x \in H$, and deduce from here that g is convex.
 - (c) Show that $\operatorname{prox}_g(x) = x \frac{1}{\gamma} \operatorname{prox}_{\frac{\gamma^2}{\gamma+1}f} \left(\frac{\gamma}{\gamma+1}x\right) \quad \forall x \in H.$
- 11. Implement the proximal point algorithm. Apply the algorithm to minimize the convex function

$$f: \mathbb{R}^n \to \mathbb{R}, \ f(x) = \frac{\alpha}{2} ||x||^2 + ||x||_1,$$

- (i) by considering different values for the dimension n (for instance, n = 1, 10, 100, 1000) and for the starting point x^0 ;
- (ii) by considering different values for the parameter α (for instance, $\alpha = 0, 1, 10, 100, 1000, 10000$);
- (iii) by using as stopping criterion $||x^k x^*|| \le 10^{-6}$, where x^* denotes the unique minimizer of f;
- (iv) by using the following choices for the stepsizes: $\gamma_k = 1, \forall k \ge 0; \gamma_k = \frac{1}{k+1}, \forall k \ge 0; \gamma_k = k+1, \forall k \ge 0; \gamma_k = (k+1)^2, \forall k \ge 0; \gamma_k = e^k, \forall k \ge 0.$

Display the fixed point residual $(||x^{k+1} - x^k||, k = 0, 1, 2, ...)$, the distance to the optimal solution $(||x^k - x^*||, k = 0, 1, 2, ...)$, and the objective function values $(f(x^k) - f(x^*), k = 0, 1, 2, ...)$ as functions of the number of iterations k (in separate plots).

12. Implement the proximal-gradient algorithm. Apply the algorithm to solve the minimization problem

$$\min_{x \in \mathbb{R}^n} f(x) + g(x),$$

where $f : \mathbb{R}^n \to \mathbb{R}$, $f(x) = \frac{\alpha}{2} ||x||^2 + ||x||_1$, with $\alpha \ge 0$, and $g : \mathbb{R}^n \to \mathbb{R}$, $g(x) = \frac{1}{2} ||Ax - b||^2$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$,

- (i) by considering different values for the dimensions m and n;
- (ii) by independently generating the entries of A and of b using a standard normal distribution;
- (iii) by considering different values for the parameter α (for instance, $\alpha = 0, 1, 10, 100, 1000, 10000$);
- (iv) by using different values for the and for the starting point x^0 and the stepsize $\gamma \in \left(0, \frac{2}{L_{\nabla g}}\right)$, taking also into consideration the restriction on the step size required in order to obtain covergence rates.

For every instance of the optimization problem, a given starting point and a given step size in $\left(0, \frac{1}{L_{\nabla g}}\right)$, first let the algorithm run for 10000 iterations, and set $x^* := x^{10000}$. Further, for various starting points and various stepsizes, stop the algorithm after 300 iterations and display $(||x^k - x^*||, k = 0, 1, 2, ..., 300)$ and $((f+g)(x^k) - (f+g)(x^*), k = 0, 1, 2, ..., 300)$ as functions of the number of iterations k (in separate plots).

Solutions to be submitted by January 23, 2022:

13. Implement the subgradient algorithm. Apply the algorithm to solve the minimization problem

$$\min_{(x_1, x_2) \in \mathbb{R}^2} g(x_1, x_2) = |x_1 + 2x_2| + |3x_1 + 4x_2|,$$

- (i) by using $x^0 = (1, 2)$ as starting point;
- (ii) by considering different choices for the sequence of step sizes $(t_k)_{k\geq 0}$, including the choice $t_k = \frac{g(x^k)}{\|\xi^k\|}$, where $\xi^k \in \partial g(x_1^k, x_2^k)$, for all $k \geq 0$.

Stop the algorithm after at most 100 iterations and display $(g(x_1^k, x_2^k), k = 0, 1, 2, ..., 100)$ and $(g_{\text{best}}^k, k = 0, 1, 2, ..., 100)$ as functions of the number of iterations k in one plot, and $((x_1^k, x_2^k), k = 0, 1, 2, ..., 100)$ as functions of the number of iterations over the contour lines of the function g.

14. Implement the fast proximal-gradient algorithm. Apply the algorithm to solve the minimization problem

$$\min_{x \in \mathbb{D}^n} f(x) + g(x),$$

where $f: \mathbb{R}^n \to \mathbb{R}, f(x) = \|x\|_1$ and $g: \mathbb{R}^n \to \mathbb{R}, g(x) = \frac{1}{2} \|Ax - b\|^2$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$,

- (i) by considering different values for the dimensions m and n;
- (ii) by independently generating the entries of A and of b using a standard normal distribution;
- (iii) by using the Nesterov rule and the Chambolle-Dossal rule for the momentum parameters;
- (iv) by using different values for the starting point x^0 .

For every instance of the optimization problem, a given starting point and step size $\gamma = \frac{1}{L_{\nabla g}}$, first let the algorithm run for 10000 iterations, and set $x^* := x^{10000}$. Further, for various starting points, run the fast proximal-gradient algorithm and the proximal-gradient algorithm with step size $\gamma = \frac{1}{L_{\nabla g}}$, both for 200 iterations. Display for both algorithms ($||x^k - x^*||, k = 0, 1, 2, ..., 200$) and ($(f+g)(x^k) - (f+g)(x^*), k = 0, 1, 2, ..., 200$) as functions of the number of iterations k.

15. Solve the minimization problem

$$\min_{x \in \mathbb{D}^n} g(x),$$

where

$$g: \mathbb{R}^n \to \mathbb{R}, \quad g(x) = \begin{cases} \frac{1}{c} \|x\| - \frac{1}{2c^2}, & \text{if } \|x\| \ge \frac{1}{c}, \\ \frac{1}{2} \|x\|^2, & \text{otherwise,} \end{cases}$$

with the gradient algorithm and the fast gradient algorithm,

- (i) by considering different values for the dimension $n \in \{1, 10, 50, 500, 5000\}$ and the parameter c > 0;
- (ii) by using the Nesterov rule and the Chambolle-Dossal rule for the momentum parameters;
- (iii) by using different values for the starting point x^0 .

Run the fast proximal-gradient algorithm and the proximal-gradient algorithm with a given starting point and step size $\gamma = \frac{1}{L_{\nabla g}}$ for 200 iterations. Display for both algorithms ($||x^k||, k = 0, 1, 2, ..., 200$) and $(g(x^k), k = 0, 1, 2, ..., 200)$ as functions of the number of iterations k.

16. (MAP versus DR) Implement the method of alternating projections (MAP) and the Douglas-Rachford (DR) algorithm for determining an element in the intersection of two sets. Apply the algorithms to find an element in the intersection of the sets

$$S = \mathbb{R}^2_+$$
 and $T = \{(u, v) \in \mathbb{R}^2 : u + 5v = 6\},\$

- (i) by using $d_T(x_k) \leq 10^{-4}$ as stopping criterion for the method of alternating projections.;
- (ii) by using $d_S(P_T(x_k)) \leq 10^{-4}$ as stopping criterion for the Douglas-Rachford algorithm;
- (iii) by choosing $x_0 \in \{(u_0, v_0) \in \mathbb{Z} \times \mathbb{Z} : u_0 \in [0, 100], v_0 \in [-100, 0]\}$ as starting points for both algorithms.

For each of the algorithms and all starting points display in a colored array the number of iterations needed to satisfy the stopping criteria.

17. Implement the Chambolle-Pock algorithm. Apply the algorithm to solve the minimization problem

$$\min_{x \in \mathbb{R}^n} f(x) + g(Ax) + h(x),$$

where $f: \mathbb{R}^n \to \mathbb{R}, f(x) = \|x\|_1, h: \mathbb{R}^n \to \mathbb{R}, h(x) = \frac{\alpha}{2} \|x\|^2$ with $\alpha \ge 0$, and $A \in \mathbb{R}^{m \times n}$,

- (i) for $g : \mathbb{R}^m \to \mathbb{R}, g(y) = \|y\|$, and $g : \mathbb{R}^m \to \mathbb{R}, g(y) = \|y\|_1$;
- (i) by considering different values for the dimensions m and n;
- (ii) by independently generating the entries of A using a standard normal distribution;
- (iii) by considering different values for the parameter α (for instance, $\alpha = 0, 1, 10, 100, 1000, 10000$);
- (iv) by using different values for the starting point (x^0, y^0) and the stepsizes c > 0 and $\tau > 0$ chosen such that $1 > c\tau ||A||^2$.

For various starting points and various stepsizes, run the algorithm for 300 iterations. Display ($||x^k||, k = 0, 1, 2, ..., 300$), ($||y^k||, k = 0, 1, 2, ..., 300$) and ($(f + g \circ A + h)(\overline{x}^k), k = 1, 2, ..., 300$), where $\overline{x}^k := \frac{1}{k} \sum_{i=1}^{k} x^k$, as functions of the number of iterations k (in separate plots).