
Univ.-Prof. Dr. Radu Ioan Boţ

Exercises for the lecture course “Convex Optimization”
Winter term 2021/2022

Solutions are to be submitted by October 31, 2021:

1. Let (H, 〈·, ·〉) be a real Hilbert space and D ⊆ H a nonempty set. For i = 1, ..., k, let Ti : D → H
be αi-averaged operators, αi ∈ (0, 1), and ωi ≥ 0 such that

∑k
i=1 ωi = 1. Show that

∑k
i=1 ωiTi is

α-averaged with α = maxi=1,...,k αi.

2. Let (H, 〈·, ·〉) be a real Hilbert space, D ⊆ H a nonempty set, T1 : D → H an α1-averaged operator
and T2 : D → D an α2-averaged operator, where α1, α2 ∈ (0, 1). Show that T1T2 is α-averaged with

α :=
α1 + α2 − 2α1α2

1− α1α2
∈ (0, 1).

3. Let (H, 〈·, ·〉) be a real Hilbert space, D ⊆ H a nonempty set and Ti : D → D αi-averaged operators,
where αi ∈ (0, 1) for i = 1, ...,m. Show that T1T2...Tm is α-averaged with

α :=
1

1 + 1∑m
i=1

αi
1−αi

∈ (0, 1).

4. Let (H, 〈·, ·〉) be a real Hilbert space, f : H → R a proper function and β > 0. Prove that the following
statements are equivalent:

(i) f is strongly convex with constant β;

(ii) f − β
2 ‖ · ‖

2 is convex.

5. Let (H, 〈·, ·〉) be a real Hilbert space, U ⊆ H a nonempty, open and convex set, f : U → R a Gâteaux
differentiable function on U and consider the following statements:

(i) f is strictly convex on U ;

(ii) 〈∇f(x), y − x〉 < f(y)− f(x) ∀x, y ∈ U, x 6= y;

(iii) 〈∇f(y)−∇f(x), y − x〉 > 0 ∀x, y ∈ U, x 6= y;

(iv) if f is twice Gâteaux differentiable on U , then ∇2f(x)(d, d) > 0 ∀x ∈ U ∀d ∈ H, d 6= 0.

Prove that (iv) ⇒ (i) ⇔ (ii) ⇔ (iii) and show that the first implication is not an equivalence in
general.

6. (a) For α, α real numbers, such that α < α, calculate the proximal operator of

σ[α,α] : R→ R, σ[α,α](x) =


αx, if x < 0

0, if x = 0
αx, if x ≥ 0.

(b) Calculate the proximal operator of the function ‖ · ‖1 : Rn → R.

7. For α > 0, calculate the proximal operator of the following real-valued functions defined on R:

(a) x 7→ max{|x| − α, 0};
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(b)

x 7→
{ 1

2x
2, if |x| ≤ α

α|x| − α2

2 , otherwise.

Solutions to be submitted by December 5, 2021:

8. Let H be a real Hilbert spaces.

(a) For f : H → R a proper, convex and lower semicontinuous function and γ > 0, prove that

proxγ(1f)(x) =
x+ γ prox(γ+1)f (x)

γ + 1
,

where
1f : H → R, 1f(x) = inf

y∈H

{
f(y) +

1

2
‖y − x‖2

}
,

denotes the Moreau envelope of f of parameter 1.

(b) For C ⊆ H a nonempty, convex and closed set, calculate the proximal operator of the squared
distance function 1

2d
2
C .

9. Let H be a real Hilbert space.

(a) For f : R→ R is a proper, convex and lower semicontinuous function and u ∈ H, determine the
proximal operator of the function x 7→ f(〈u, x〉).

(b) For H a finite-dimensional space, e1, ..., en an orthonormal basis of H and f : H → R, f(x) =∑n
i=1 fi(〈x, ei〉), where fi : R → R, i = 1, ..., n, are proper, convex and lower semicontinuous

functions, determine the proximal operator of f .

10. Let H be a real Hilbert space, f : H → R a proper, convex and lower semicontinuous function and
γ > 0.

(a) Prove that prox(γf)(x) = x+ 1
γ+1

(
prox(γ+1)f (x)− x

)
∀x ∈ H.

(b) For g : H → R, g(x) = 1
2γ ‖x‖

2 − (γf)(x), prove that g(x) = (f + 1
2γ ‖ · ‖

2)∗
(

1
γx
)

for all x ∈ H,

and deduce from here that g is convex.

(c) Show that proxg(x) = x− 1
γ prox γ2

γ+1
f

(
γ
γ+1x

)
∀x ∈ H.

11. Implement the proximal point algorithm. Apply the algorithm to minimize the convex function

f : Rn → R, f(x) =
α

2
‖x‖2 + ‖x‖1,

(i) by considering different values for the dimension n (for instance, n = 1, 10, 100, 1000) and for the
starting point x0;

(ii) by considering different values for the parameter α (for instance, α = 0, 1, 10, 100, 1000, 10000);

(iii) by using as stopping criterion ‖xk − x∗‖ ≤ 10−6, where x∗ denotes the unique minimizer of f ;

(iv) by using the following choices for the stepsizes: γk = 1, ∀k ≥ 0; γk = 1
k+1 , ∀k ≥ 0; γk = k+1,∀k ≥

0; γk = (k + 1)2,∀k ≥ 0; γk = ek, ∀k ≥ 0.

Display the fixed point residual (‖xk+1 − xk‖, k = 0, 1, 2, ...), the distance to the optimal solution
(‖xk−x∗‖, k = 0, 1, 2, ...), and the objective function values (f(xk)− f(x∗), k = 0, 1, 2, ...) as functions
of the number of iterations k (in separate plots).
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12. Implement the proximal-gradient algorithm. Apply the algorithm to solve the minimization problem

min
x∈Rn

f(x) + g(x),

where f : Rn → R, f(x) = α
2 ‖x‖

2 + ‖x‖1, with α ≥ 0, and g : Rn → R, g(x) = 1
2‖Ax − b‖

2, where
A ∈ Rm×n and b ∈ Rm,

(i) by considering different values for the dimensions m and n;

(ii) by independently generating the entries of A and of b using a standard normal distribution;

(iii) by considering different values for the parameter α (for instance, α = 0, 1, 10, 100, 1000, 10000);

(iv) by using different values for the and for the starting point x0 and the stepsize γ ∈
(

0, 2
L∇g

)
, taking

also into consideration the restriction on the step size required in order to obtain covergence rates.

For every instance of the optimization problem, a given starting point and a given step size in
(

0, 1
L∇g

)
,

first let the algorithm run for 10000 iterations, and set x∗ := x10000. Further, for various starting points
and various stepsizes, stop the algorithm after 300 iterations and display (‖xk−x∗‖, k = 0, 1, 2, ..., 300)
and ((f+g)(xk)−(f+g)(x∗), k = 0, 1, 2, ..., 300) as functions of the number of iterations k (in separate
plots).

Solutions to be submitted by January 23, 2022:

13. Implement the subgradient algorithm. Apply the algorithm to solve the minimization problem

min
(x1,x2)∈R2

g(x1, x2) = |x1 + 2x2|+ |3x1 + 4x2|,

(i) by using x0 = (1, 2) as starting point;

(ii) by considering different choices for the sequence of step sizes (tk)k≥0, including the choice tk =
g(xk)
‖ξk‖ , where ξk ∈ ∂g(xk1, x

k
2), for all k ≥ 0.

Stop the algorithm after at most 100 iterations and display (g(xk1, x
k
2), k = 0, 1, 2, ..., 100) and (gkbest, k =

0, 1, 2, ..., 100) as functions of the number of iterations k in one plot, and ((xk1, x
k
2), k = 0, 1, 2, ..., 100)

as functions of the number of iterations over the contour lines of the function g.

14. Implement the fast proximal-gradient algorithm. Apply the algorithm to solve the minimization pro-
blem

min
x∈Rn

f(x) + g(x),

where f : Rn → R, f(x) = ‖x‖1 and g : Rn → R, g(x) = 1
2‖Ax− b‖

2, where A ∈ Rm×n and b ∈ Rm,

(i) by considering different values for the dimensions m and n;

(ii) by independently generating the entries of A and of b using a standard normal distribution;

(iii) by using the Nesterov rule and the Chambolle-Dossal rule for the momentum parameters;

(iv) by using different values for the starting point x0.

For every instance of the optimization problem, a given starting point and step size γ = 1
L∇g

, first let the

algorithm run for 10000 iterations, and set x∗ := x10000. Further, for various starting points, run the fast
proximal-gradient algorithm and the proximal-gradient algorithm with step size γ = 1

L∇g
, both for 200

iterations. Display for both algorithms (‖xk−x∗‖, k = 0, 1, 2, ..., 200) and ((f+g)(xk)−(f+g)(x∗), k =
0, 1, 2, ..., 200) as functions of the number of iterations k.
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15. Solve the minimization problem
min
x∈Rn

g(x),

where

g : Rn → R, g(x) =

{
1
c‖x‖ −

1
2c2
, if ‖x‖ ≥ 1

c ,
1
2‖x‖

2, otherwise,

with the gradient algorithm and the fast gradient algorithm,

(i) by considering different values for the dimension n ∈ {1, 10, 50, 500, 5000} and the parameter
c > 0;

(ii) by using the Nesterov rule and the Chambolle-Dossal rule for the momentum parameters;

(iii) by using different values for the starting point x0.

Run the fast proximal-gradient algorithm and the proximal-gradient algorithm with a given starting
point and step size γ = 1

L∇g
for 200 iterations. Display for both algorithms (‖xk‖, k = 0, 1, 2, ..., 200)

and (g(xk), k = 0, 1, 2, ..., 200) as functions of the number of iterations k.

16. (MAP versus DR) Implement the method of alternating projections (MAP) and the Douglas-Rachford
(DR) algorithm for determining an element in the intersection of two sets. Apply the algorithms to
find an element in the intersection of the sets

S = R2
+ and T = {(u, v) ∈ R2 : u+ 5v = 6},

(i) by using dT (xk) ≤ 10−4 as stopping criterion for the method of alternating projections.;

(ii) by using dS(PT (xk)) ≤ 10−4 as stopping criterion for the Douglas-Rachford algorithm;

(iii) by choosing x0 ∈ {(u0, v0) ∈ Z × Z : u0 ∈ [0, 100], v0 ∈ [−100, 0]} as starting points for both
algorithms.

For each of the algorithms and all starting points display in a colored array the number of iterations
needed to satisfy the stopping criteria.

17. Implement the Chambolle-Pock algorithm. Apply the algorithm to solve the minimization problem

min
x∈Rn

f(x) + g(Ax) + h(x),

where f : Rn → R, f(x) = ‖x‖1, h : Rn → R, h(x) = α
2 ‖x‖

2 with α ≥ 0, and A ∈ Rm×n,

(i) for g : Rm → R, g(y) = ‖y‖, and g : Rm → R, g(y) = ‖y‖1;
(i) by considering different values for the dimensions m and n;

(ii) by independently generating the entries of A using a standard normal distribution;

(iii) by considering different values for the parameter α (for instance, α = 0, 1, 10, 100, 1000, 10000);

(iv) by using different values for the starting point (x0, y0) and the stepsizes c > 0 and τ > 0 chosen
such that 1 > cτ‖A‖2.

For various starting points and various stepsizes, run the algorithm for 300 iterations. Display (‖xk‖, k =
0, 1, 2, ..., 300), (‖yk‖, k = 0, 1, 2, ..., 300) and ((f + g ◦ A + h)(xk), k = 1, 2, ..., 300), where xk :=
1
k

∑k
i=1 x

k, as functions of the number of iterations k (in separate plots).
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