
A Appendix

In section 1 we have used a number of elementary results from linear algebra.
In particular, this includes the following facts:

• The bipolar set of a closed, convex set in Rd containing the origin is
the set itself.

• A set containing the origin is polyhedral iff its polar is polyhedral.

• The projection of a polyhedral cone is again a polyhedral cone.

For the convenience of the reader we provide proofs and present the under-
lying theory in a rather self-contained way in this appendix.

Let E be a vector space over the real numbers with finite dimension d
and E 1 its dual. The space E then is isomorphic to Rd and we will use this
fact in some of the discussion below, in which case we will denote the origin
by 0 P Rd and the canonical basis by te1, . . . , edu.

A.1 Polar sets

We start with some basic definitions following [87] and [33]; shorter introduc-
tions to the geometry of convex sets can be found in [32] and [37]. For any
set A Ď E, the smallest closed convex set containing A is called the closed
convex hull of A, i.e. convpAq is the intersection of all closed convex sets
containing A. A closed convex set C Ď E is called a closed convex cone if
λa P C for every a in C and λ ě 0. The closed convex cone generated by a
set W Ď E is the closure of the convex cone

conepW q :“

#

ÿ

iPI

µiwi : wi P W, µi ě 0

+

,

where I is finite. It is the smallest closed convex cone containing W. We
define conepHq :“ t0u. The following properties of cones can be checked
easily:

• Every closed convex cone contains the origin.

• The intersection of two closed convex cones is again a closed convex
cone.

For a set A Ď E we define the polar A˝ of E as

A˝ :“ ty P E 1 : xx, yy ď 1, for all x P Au .
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If A is a cone, we may equivalently define A˝ as

A˝ “ ty P E 1 : xx, yy ď 0, for all x P Au .

If A is a linear space, we even may equivalently define A˝ as the annihilator

A˝ “ ty P E 1 : xx, yy “ 0, for all x P Au .

The Minkowski sum of two sets A,B Ď E is defined as the set

A`B :“ ta` b, a P A, b P Bu.

It is easy to verify that, for any two sets A Ď B Ď E, we have A˝ Ě B˝. If
C1, C2 Ď E are cones, then pC1 ` C2q

˝ “ C˝1 X C˝2 . Note that the polar of a
cone is a closed convex cone.

The following theorem is a version of the celebrated Hahn-Banach the-
orem. The proof presented here can be found in [82]; for a more general
discussion see for example [76].

Proposition A.1 (Bipolar Theorem). For a set A Ď E the bipolar A˝˝ “
pA˝q˝ equals the closed convex hull of AY t0u.

Proof: Let B “ convpAY t0uq. Since B Ě A we have B˝ Ď A˝.
On the other hand, let y P A˝ and M P N and pick λi P r0, 1s, for

1 ď i ďM , such that
řM
i“1 λi “ 1. Then we have, for any ai P AY t0u:

1 ě
M
ÿ

i“1

λixy, aiy “
M
ÿ

i“1

xy, λiaiy “ x
M
ÿ

i“1

λiai, yy.

Every x P B can be written as x “
řM
i“1 λiai. It follows that B˝ Ě A˝ and

hence A˝ “ B˝.
We will now prove that B˝˝ “ B which finishes the proof. Let x P B.

For any y P B˝ we have xx, yy ď 1 by definition and continuity, from which
it follows that x P B˝˝ and therefore B Ď B˝˝. Conversely, assume x1 R B.
Then there exists an y P E 1 and a constant c such that xx, yy ď c, for x P B,
and xx1, yy ą c (this follows from the Hahn-Banach theorem in its version as
separating hyperplanes theorem, see for example [82]).

Because 0 P B we have c ě 0. We can even assume c ą 0. It follows that
xx, y{cy ď 1, for x P B, and thus y{c P B˝. But from xx1, y{cy ą 1 we see
that x1 R B

˝˝.

Corollary A.2. If C Ď E is a closed convex cone then C˝˝ “ C.
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A.2 Polyhedral sets

We will now introduce the concept of polyhedral sets, which can be defined
in two distinct ways. The first definition builds a polyhedron “from inside”:
Let V and W be two finite sets in E. The Minkowski sum of convpV q and
the cone generated by W

P “ convpV q ` conepW q

is called a V-polyhedron, where the name comes from the fact that such a
polyhedron is defined using its vertices. Note that P is closed.

Polyhedral sets can also be built “from outside”. A set P Ď E is called
an H-polyhedron, if it can be expressed as the finite intersection of closed
halfspaces, that is

P “
N
č

i“1

tx P E : xx, yiy ď ciu,

for some elements yi P E
1, and some constants ci, i P t1, . . . Nu. As a subset

of Rd such a polyhedron can be written as

P “ P pA, zq :“
 

x P Rd : Ax ď z
(

for some A P RNˆd, z P RN .

Note that an H-polyhedron with all ci “ 0, i.e. of the form P pA, 0q, is in fact
a closed convex cone: we shall encounter such polyhedral cones quite often.

These two distinct characterizations for polyhedral sets are useful for
calculations and will play an important part in the following discussion. As
we will verify below, the notions of V- and H-polyhedral sets are equivalent.

Our first Lemma deals with the projection of H-cones. The proof and a
more thorough discussion can be found in [87].

Proposition A.3. A projection of an H-cone along any coordinate directions
ek, 1 ď k ď d, is again an H-cone. More specifically, if C is an H-cone in
Rd, then so is its elimination cone elimkpCq :“ tx` µek : x P C, µ P Ru and
its projection cone projkpCq :“ elimkpCq X tx P Rd : xx, eky “ 0u.

Proof: Note that it suffices to show that the set elimkpCq is an H-cone, for
any k, because the projection cone is the intersection of the elimination cone
with the two halfspaces tx P Rd : xx, eky ď 0u and tx P Rd : xx,´eky ď 0u.

Suppose that C “ P pA, 0q and a1, a2, . . . , aN are the row vectors of A.
We will construct a new matrix Ak such that elimkpCq “ P pAk, 0q.
Claim: Ak “ tai : aik “ 0u Y taikaj ´ ajkai : aik ą 0, ajk ă 0u
If x P C then Ax ď 0. But then we also have Akx ď 0, because Ak consists
of nonnegative linear combinations of rows of A. Therefore C Ď P pAk, 0q. As
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the kth component of Ak is zero by construction, we even have elimkpCq Ď
P pAk, 0q.

On the other hand, let x P P pAk, 0q. We want to show that there is a
µ P R such that x ´ µek P C, i.e. Apx ´ µekq ď 0. Writing these equations
out, we obtain the inequalities ajx´ ajkµ ď 0, or

µ ě aix
aik
, if aik ą 0,

µ ď
ajx

ajk
, if ajk ă 0.

Such a µ exists, because if aik ą 0 and ajk ă 0, then paikaj ´ ajkaiqx ď 0,
since x P P pAk, 0q, which can be written as

aix

aik
ď
ajx

ajk
.

It follows that P pAk, 0q Ď elimkpCq, finishing the proof.

Proposition A.4. Every V-polyhedron is an H-polyhedron and vice versa.

We split the proposition into two claims for the two directions, which we
prove independently.
Claim: Every V-polyhedron is an H-polyhedron.
Remark: Proving the claim directly turns out to be rather tedious, due to the
difficulty of manipulating the necessary sets. There is, however, an elegant
proof using homogenization: Every polyhedron in d-dimensional space can be
regarded as a polyhedral cone in dimension d` 1. The equivalence between
V-cones and H-cones is easier to show. The direct proof uses Fourier-Motzkin
elimination to calculate the sets explicitly. It can be found, together with
the indirect proof given here, in [87].
Proof: By mapping a point x P Rd to p 1

x q P Rd`1 we associate with every
polyhedral set P in Rd a cone in Rd`1 in the following way: If P “ P pA, zq
is a H-polyhedral set, define

CpP q :“ P
``

´1 0
´z A

˘

, p 0
0 q
˘

.

Conversely, if C P Rd`1 is an arbitrary H-cone, then tx P Rd : p 1
x q P Cu is a

(possibly empty) H-polyhedral set.
On the other hand, if P “ convpV q ` conepW q is a V-polyhedral set for

some finite sets V and W , we define

CpP q :“ cone p 1 0
V W q ,

that is, we add a zeroth coordinate to the vectors in V and W before gen-
erating the cone, namely 1 and 0, respectively. As before, a straightforward
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calculation shows that if C is a V-cone in Rd`1, then tx P Rd : p 1
x q P Cu is a

V-polyhedral set in Rd.
If we can now show that every V-cone is an H-cone we are done, since

every V-polyhedral set in Rd can be identified with a V-cone in Rd`1 and
the H-cone then translated back to the H-polyhedral set. Consider thus a
V-cone, which can be written as

C “

#

x P Rd : Dλi ě 0 : x “
ÿ

i

λiwi, wi P W

+

,

or equivalently as

C “

#

px, λq P Rd`n : λi ě 0, x “
ÿ

i

λiwi, wi P W

+

,

the latter set being an H-cone in Rd`n. By successsively projecting the cone
onto the hyperplanes for which the kth coordinate equals zero, for d ă k ď
d`n, we obtain a cone in Rd since we already showed that such a projection
of an H-cone is again an H-cone. This finishes the proof of the claim.

The second part of the equivalence can also be shown directly or via
homogenization, but we will give a third proof, which makes use of an elegant
induction argument. For a thorough discussion of these concepts (and the
proof of the following claim) see also [33].
Claim: Every H-polyhedron is a V-polyhedron.

Proof: Let P be an intersection of finitely many closed halfspaces in Rd.
We may assume w.l.g. that the dimension of P is d and will prove the claim
by induction on d. If d “ 1, then P is a halfline or a closed interval and
the claim is clear. For d ě 2 we will show that every point in P can be
represented as the convex combination a “ p1´ λqb` λc, 0 ď λ ď 1, where
b and c belong to two distinct facets F and G of P respectively, i.e.

F “ convpVF q ` conepWF q and G “ convpVGq ` conepWGq,

for some finite sets VF ,WF , VG,WG. This suffices to prove the claim since
the Minkowski sum of two V-polyhedral sets is again a V-polyhedral set.

Since every facet has dimension d ´ 1, we know that the boundaries
of P are polyhedral sets. Let a be any point in the interior of P . Then
there is some line l through a that intersects two facets of P , which is not
parallel to any of the generating hyperplanes and intersects them in distinct
points. Since a must lie between two such intersection points it is the linear
combination of finitely many elements of V-polyhedral sets and because a was
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an arbitrary point in the interior of P , it follows that P itself is V-polyhedral.

The next proof can also be found in [33], along with other constructive
results regarding polyhedra.

Proposition A.5. Let A Ď E be a polyhedral set. Then its polar A˝ also is
a polyhedral set.

Proof: We show that the polar of a V-polyhedron is an H-polyhedron,
which we calculate explicitly. Let therefore A be of the form

A “ convpV q ` conepW q “ convptv1, . . . , vNuq ` coneptw1, . . . , wKuq,

for some finite sets V and W . By definition, we have

A˝ “

#

y P E 1 :

C

N
ÿ

i“1

λivi `
K
ÿ

j“1

µjwj, y

G

ď 1, λi ě 0, µj ě 0,
ÿ

λi “ 1

+

“

#

y P E 1 :
ÿ

i

λixvi, yy `
ÿ

j

µjxwj, yy ď 1, λi ě 0, µj ě 0,
ÿ

λi “ 1

+

.

We therefore find that

A˝ “
N
č

i“1

ty P E 1 : xvi, yy ď 1u X
K
č

j“1

ty P E 1 : xwj, yy ď 0u ,

which is an H-polyhedron.

Corollary A.6. A convex, closed set containing the origin is polyhedral iff
its polar is so too.

Proof: This follows immediately from the previous proposition and the
bipolar theorem, since then A˝ is polyhedral and A “ A˝˝.

B The Legendre Transformation

Definition B.1. Let u : RÑ RYt´8u be a concave upper semi-continuous
function and D “ inttu ą ´8u “ H its domain, which we assume to be
non-empty. The conjugate v of u is the function

vpyq :“ suptupxq ´ xy, x P Ru.
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The function v is the Legendre transform of ´up´xq and is therefore
convex rather than concave.4 Given the conjugate function v, the original
function u can be recovered via the transformation

upxq :“ inftvpyq ` xy, y P Ru.

From these definitions it is immediately clear that for every px, yq P R2

we have Fenchel’s inequality :

upxq ´ vpyq ď xy. (251)

Note that equality holds when the supremum (respectively the infimum) in
the above definitions is attained for the corresponding values of x and y.

Definition B.2. The subdifferential Bvpy0q of a convex function v at y0 is
the set of x P R such that

vpyq ě vpy0q ` x ¨ py ´ y0q, for all y P R.

For a concave function u we define the superdifferential Bupx0q of at x0 equiv-
alently as the set of y P R satisfying

upxq ď upx0q ` y ¨ px´ x0q, for all x P R.

If Bupx0q consists of one single element y, then u is differentiable at x0 and
∇upx0q “ y. Equivalently if Bvpy0q consists of one single element x, then v
is differentiable at y0 and ∇vpy0q “ x.

Our first duality result links the super- and subdifferential of the conju-
gate functions u and v:

Proposition B.3. The superdifferential Bupx0q contains y0 iff ´x0 P Bvpy0q.

Proof: Let y0 be in Bupx0q. Then we have, for every x,

upxq ď upx0q ` y0px´ x0q

upxq ´ y0x ď upx0q ´ y0x0.

Since this also holds for the supremum and using Fenchel’s inequality on the
right hand side, we obtain for every y in R

vpy0q ď upx0q ´ x0y0 ď vpyq ` x0y ´ x0y0

vpy0q ď vpyq ` x0py ´ y0q,

4In fact, the classical duality theory considers the (convex) function ´up´xq to obtain
a perfectly symmetric setting.
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which is exactly the requirement for ´x0 to be in the subdifferential Bvpy0q.
The other direction can be proved analogously.

There is an important duality regarding the smoothness and the strict
concavity of the dual functions u and v. The following proof can be found
in [45].

Proposition B.4. The following are equivalent:

1. u : D Ñ R is strictly concave.

2. v is differentiable on the interior of its domain.

Proof: piq ñ piiq. Suppose that piiq fails, i.e. there is some y such that
Bvpyq contains two distinct points, and call them ´x1 and ´x2. We may
suppose that x1 ă x2. This is equivalent to the requirement that y P Bupx1qX

Bupx2q. For i “ 1, 2 we have

upxiq ´ vpyq “ xiy

and using Fenchel’s inequality, we get (for 0 ď λ ď 1):

λupx1q ` p1´ λqupx2q ´ vpyq “ y ¨ pλx1 ` p1´ λqx2q (252)

ě upλx1 ` p1´ λqx2q ´ vpyq. (253)

But this implies that u is affine on rx1, x2s, a contradiction since u is strictly
concave. Therefore Bvpyq must be single-valued for all y P int dom pvq, i.e.
v is continuously differentiable.
piiq ñ piq. Suppose that there are two distinct points x1 and x2 such that

u is affine on the line segment rx1, x2s. If we set x :“ 1
2
px1 ` x2q, there is an

y such that ∇vpyq “ x, i.e. y P Bupxq. We can write

0 “ upxq ´ vpyq ´ xy “
1

2

2
ÿ

i“1

rupxiq ´ vpyq ´ yxis ,

which implies (using Fenchel’s inequality), that each of the terms in the
bracket on the right hand side must vanish. We therefore have y P Bupx1q X

Bupx2q, i.e. Bvpyq contains more than one point, which contradicts the as-
sumption that v is differentiable.
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