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1 Models on Finite Probability Spaces

In this section we consider a stock price process S = (St)
T
t=0 in finite,

discrete time, based on and adapted to a finite filtered probability space
(Ω,F , (Ft)Tt=0,P), where F = FT ). Similarly as in the introductory section
2 of [21] we want to develop the basic ideas of the duality theory in this
technically easy setting. The extra ingredient will be the role of transaction
costs. To avoid trivialities we assume P(ω) > 0, for all ω ∈ Ω.

To keep things simple we assume that there is only one stock. It takes
strictly positive values, i.e., S = (St)

T
t=0 is an R+-valued process. In addition,

there is a bond, denoted by B = (Bt)
T
t=0; by choosing B as numéraire we

may assume that Bt ≡ 1.
Next we introduce transaction costs λ ≥ 0 : that is, the process ((1−λ)St,

St)
T
t=0 models the bid and ask price of the stock S respectively. Of course,

we assume λ < 1 for obvious economic reasons.
We have chosen a very simple setting here. For a much more general

framework we refer, e.g., to [41], [42], [43], [46] and [68]. These authors
investigate the setting given by finitely many stocks S1, . . . , Sn, where the
prices (πij)1≤i,j≤n of exchanging stock j into stock i are general adapted
processes. A good economic interpretation for this situation is the case of n
currencies where the bid and ask prices πi,j and πj,i depend on the pair (i, j)
of currencies.

Here we do not strive for this generality. We do this on the one hand for
didactic reasons to keep things as non-technical as possible. On the other
hand we shall mainly be interested in the asymptotic theory for λ → 0, for
which our present simple setting is more natural.
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Definition 1.1. For given S = (St)
T
t=0 and 0 ≤ λ < 1, we associate the

process of solvency cones

Kt =
{

(ϕ0
t , ϕ

1
t ) ∈ L∞(Ω,Ft,P;R2) : ϕ0

t ≥ max(−ϕ1
tSt,−ϕ1

t (1− λ)St
}

(1)

ϕ0

ϕ1

Kt

−Kt

ϕ1 = −ϕ0

St

ϕ1 = − ϕ0

(1−λ)St

Figure 1: The solvency cone

The interpretation is that an economic agent holding ϕ0
t units of bond,

and ϕ1
t units of stock is solvent for a given stock price St if, after liquidat-

ing the position in stocks, the resulting position in bonds is non-negative.
“Liquidating the stock” means selling ϕ1

t stocks (at price (1−λ)St) if ϕ1
t > 0

and buying −ϕ1
t stocks (at price St) if ϕ1

t < 0.

Definition 1.2. For given S = (St)
T
t=0 and 0 ≤ λ < 1, an adapted process

(ϕ0
t , ϕ

1
t )
T
t=−1 starting at (ϕ0

−1, ϕ
1
−1) = (0, 0) is called self-financing if

(ϕ0
t − ϕ0

t−1, ϕ
1
t − ϕ1

t−1) ∈ −Kt, t = 0, . . . , T. (2)

The relation (2) is understood to hold P-a.s., which in the present setting
simply means: for each ω ∈ Ω.

To motivate this definition note that the change at time t of positions in
the portfolio (ϕ0

t − ϕ0
t−1, ϕ

1
t − ϕ1

t−1) can be carried out for the bid-ask prices(
(1− λ)St, St

)
iff (ϕ0

t − ϕ0
t−1, ϕ

1
t − ϕ1

t−1) ∈ −Kt.
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For (x1, x2) ∈ R2, we call (ϕ0
t , ϕ

1
t )
T
t=−1 self-financing and starting at

(x1, x2) if (ϕ0
t − x1, ϕ1

t − x2)Tt=−1 is self-financing and starting at (0, 0). We
also note that it is natural in the context of transaction costs to allow for T
trades (i.e. exchanges of bonds against stocks) in the T -period model (St)

T
t=0,

which leads to the initial condition in terms of (ϕ0
−1, ϕ

1
−1).

Definition 1.3. The process S = (St)
T
t=0 admits for arbitrage under transac-

tion costs 0 ≤ λ < 1 if there is a self-financing trading strategy (ϕ0
t , ϕ

1
t )
T
t=−1,

starting at ϕ0
−1 = ϕ1

−1 = 0, and such that

(ϕ0
T , ϕ

1
T ) ≥ (0, 0), P-a.s.

and
P
[
(ϕ0

T , ϕ
1
T ) > (0, 0)

]
> 0.

We say that S satisfies the no arbitrage condition (NAλ) if it does not allow
for an arbitrage under transaction costs 0 ≤ λ < 1.

We introduce the following notation. For fixed S and λ > 0, denote
by Aλ the set of R2-valued F -measurable random variables (ϕ0, ϕ1), such
that there exists a self-financing trading strategy (ϕ0

t , ϕ
1
t )
T
t=−1 starting at

(ϕ0
−1, ϕ

1
−1) = (0, 0), and such that (ϕ0, ϕ1) ≤ (ϕ0

T , ϕ
1
T ).

Proposition 1.4. Suppose that S satisfies (NAλ), for fixed 0 ≤ λ < 1. Then
Aλ is a closed polyhedral cone in L∞(Ω,F ,P;R2), containing L∞(Ω,F ,P;R2

−)
and such that Aλ ∩ L∞(Ω,F ,P;R2

+) = {0}.

Proof: Fix 0 ≤ t ≤ T and an atom F ∈ Ft. Recall that F is an atom of
the finite sigma-algebra Ft if E ∈ Ft, E ⊆ F implies that either E = F or
E = ∅. Define the ask and bid elements aF and bF in L∞(Ω,F ,P;R2) as

aF =
(
−St|F , 1

)
1F , bF =

(
(1− λ)St|F ,−1

)
1F . (3)

Note that St|F is a well-defined positive number, as St is Ft-measurable and
F an atom of Ft.

The elements aF and bF are in Aλ. They correspond to the trading strat-
egy (ϕ0

s, ϕ
1
s)
T
s=−1 such that (ϕ0

s, ϕ
1
s) = (0, 0), for −1 ≤ s < t, and (ϕ0

s, ϕ
1
s)

equals aF (resp. bF ), for t ≤ s ≤ T. The interpretation is that an agent does
nothing until time t. Then, conditionally on the event F ∈ Ft, she buys
(resp. sells) one unit of stock and holds it until time T.

Note that an element (ϕ0, ϕ1) in L∞(Ω,F ,P;R2) is in Aλ iff there are
non-negative numbers µF ≥ 0 and νF ≥ 0, where F runs through the atoms
of Ft, and t = 0, . . . , T, such that

(ϕ0, ϕ1) ≤
∑
F

(µFaF + νF bF ).
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In other words, the elements of the form (3), together with the vectors
(−1, 0)1ω and (0,−1)1ω, where ω runs through Ω, generate the cone Aλ. It
follows that Aλ is a closed polyhedral cone (see Appendix A).

The inclusionAλ ⊇ L∞(Ω,F ,P;R2
−) is obvious, and (NAλ) is tantamount

to the assertion Aλ ∩ L∞(Ω,F ,P;R2
+) = {0}.

Definition 1.5. An element (ϕ0, ϕ1) ∈ Aλ is called maximal if, for ((ϕ0)′, (ϕ1)′) ∈
Aλ satisfying ((ϕ0)′, (ϕ1)′) ≥ (ϕ0, ϕ1) a.s., we have ((ϕ0)′, (ϕ1)′) = (ϕ0, ϕ1)
a.s.

Definition 1.6. Fix the process S = (St)
T
t=0 and transaction costs 0 ≤ λ < 1.

A consistent price system is a pair (S̃, Q), such that Q is a probability measure
on Ω equivalent to P, and S̃ = (S̃t)

T
t=0 is a martingale under Q taking its

values in the bid-ask spread [(1− λ)S, S], i.e.

(1− λ)St ≤ S̃t ≤ St, P-a.s. (4)

We denote by Sλ the set of consistent price systems.

Remark 1.7. For λ = 0 we have S̃ = S, so that we find the classical
equivalent martingale measures Q ∈ Me. We shall see that the set of real
numbers EQ[ϕ0

T + ϕ1
T S̃T ], where (S̃, Q) ranges in Sλ, yields precisely the

arbitrage-free prices (in terms of bonds) for the contingent claim (ϕ0
T , ϕ

1
T ) ∈

L∞(R2).

Theorem 1.8. (Fundamental Theorem of Asset Pricing): Fixing the process
S = (St)

T
t=0 and transaction costs 0 ≤ λ < 1, the following are equivalent:

(i) The no arbitrage condition (NAλ) is satisfied.
(ii) There is a consistent price system (S̃, Q) ∈ Sλ.
(iii) There is an R2-valued P-martingale (Zt)

T
t=0 = (Z0

t , Z
1
t )Tt=0 such that

Z0
t > 0, Z1

t > 0, and

Z1
t

Z0
t
∈ [(1− λ)St, St] , t = 0, . . . , T. (5)

Remark 1.9. The basic idea of the above version of the Fundamental The-
orem of Asset Pricing goes back to the paper [38] of Jouini and Kallal from
1995. The present version dealing with finite probability space Ω is due to
Kabanov and Stricker [44].

In the case λ = 0 condition (iii) allows for the following interpretation:
in this case (5) means that

Z1
t = Z0

t St. (6)

Interpret Z0
T as a probability measure by letting dQ

dP := Z0
T , where we assume

(without loss of generality) that Z0
0 = EP[Z0

T ] = 1. Condition (6) and the
P-martingale property of Z1 then is tantamount to the assertion that S is a
Q-martingale.
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Proof: (ii) ⇒ (i) As usual in the context of the Fundamental Theorem
of Asset Pricing, this is the easy implication, allowing for a rather obvious
economic interpretation. Suppose that (S̃, Q) is a consistent price system.

Let us first give the intuition: as the process S̃ is a martingale under
Q, it is free of arbitrage (without transaction costs). Trading in S under
transaction costs λ only allows for less favorable terms of trade than trading in
S̃ without transaction costs (see (4)). Hence we find that S under transaction
costs λ satisfies (NAλ) a fortiori.

Here is the formalization of this economically obvious reasoning.
Note that, for every self-financing trading strategy (ϕ0

t , ϕ
1
t )
T
t=−1 starting

at (ϕ0
−1, ϕ

1
−1) = (0, 0) we have

ϕ0
t − ϕ0

t−1 ≤ min
(
−(ϕ1

t − ϕ1
t−1)St,−(ϕ1

t − ϕ1
t−1)(1− λ)St

)
≤ −(ϕ1

t − ϕ1
t−1)S̃t,

by (4), as (ϕ0
t − ϕ0

t−1, ϕ
1
t − ϕ1

t−1) ∈ −Kt.
Hence

(ϕ0
T − ϕ0

−1) =
T∑
t=0

(ϕ0
t − ϕ0

t−1)

≤ −
T∑
t=0

(ϕ1
t − ϕ1

t−1)S̃t

=
T∑
t=1

ϕ1
t−1(S̃t − S̃t−1) + ϕ1

−1S̃0 − ϕ1
T S̃T .

Taking expectations under Q, and using that ϕ0
−1 = ϕ1

−1 = 0, we get

EQ[ϕ0
T ] + EQ[ϕ1

T S̃T ] ≤ EQ

[
T∑
t=1

ϕ1
t−1(S̃t − S̃t−1)

]
= 0. (7)

Now suppose that ϕ0
T ≥ 0 and ϕ1

T ≥ 0, P-a.s., i.e. ϕ0
T (ω) ≥ 0 and

ϕ1
T (ω) ≥ 0, for all ω in the finite probability space Ω.

Using the fact that Q is equivalent to P, i.e. Q(ω) > 0 for all ω ∈ Ω, we
conclude from (7) that ϕ0

T (ω) = 0 and ϕ1
T (ω)S̃T (ω) = 0, for all ω ∈ Ω. Ob-

serving that S̃T is strictly positive by the assumption λ < 1, for each ω ∈ Ω,
we also have ϕ1

T (ω) = 0 so that S satisfies (NAλ).

(i) ⇒ (iii) Now suppose that S satisfies (NAλ). By Proposition 1.4 we
know that Aλ is a closed convex cone in L∞(Ω,F ,P;R2) such that

Aλ ∩ L∞(Ω,F ,P;R2
+) = {0}.
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Claim: There is an element Z = (Z0, Z1) ∈ L1(Ω,F ,P;R2), verifying
Z0(ω) > 0 and Z1(ω) ≥ 0, for all ω ∈ Ω, and normalized by E[Z0] = 1, such
that

〈(ϕ0
T , ϕ

1
T ), (Z0, Z1)〉 = EP[ϕ0

TZ
0 + ϕ1

TZ
1] ≤ 0, for all (ϕ0

T , ϕ
1
T ) ∈ Aλ. (8)

Indeed, fix ω ∈ Ω, and consider the element (1ω, 0) ∈ L∞(Ω,F ,P;R2)
which is not an element of Aλ.

ϕ1

ϕ0
L∞(R2

+)

Aλ

closed, convex cone

(1ω, 0)

Hyperplane separating Aλ
from (1ω, 0)

Figure 2: Regarding the proof of Thm 1.10

By Hahn-Banach and the fact that Aλ is closed and convex (Prop. 1.4),
we may find, for fixed ω ∈ Ω, an element Zω ∈ L1(Ω,F ,P;R2) separating Aλ
from (1ω, 0). As Aλ is a cone, we may find Zω such that

〈(1ω, 0), (Z0
ω, Z

1
ω)〉 > 0,

while
Zω |Aλ ≤ 0.

The first inequality simply means that the element Z0
ω ∈ L1(Ω,F ,P) takes

a strictly positive value on ω, i.e.

Z0
ω(ω) > 0.

AsAλ contains the negative orthant L∞(Ω,F ,P;−R2
+), the second inequality

implies that
Z0
ω ≥ 0, Z1

ω ≥ 0.
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Doing this construction for each ω ∈ Ω and defining

Z =
∑
ω∈Ω

µωZω,

where (µω)ω∈Ω are arbitrary strictly positive scalars, we obtain an element
Z ∈ L1(Ω,F ,P;R2) such that

Z |Aλ ≤ 0, (9)

which is tantamount to (8), and

Z0 > 0, Z1 ≥ 0,

proving the claim.
We associate to Z the R2-valued martingale (Zt)

T
t=0 by

Zt = E[Z|Ft], t = 0, . . . , T.

We have to show that
Z1
t

Z0
t

takes its values in the bid-ask-spread [(1 −
λ)St, St] of St. Applying (9) to the element aF defined in (3), for an atom
F ∈ Ft, we obtain〈

(Z0
t , Z

1
t ), (−St|F , 1)1F

〉
= E

[
(−St|FZ0

t + Z1
t )1F

]
≤ 0.

In the last line we have used the Ft-measurability of St1F to conclude
that 0 ≥ E[(−St|FZ0

t + Z1
t )1F ] = E[(−St|FZ0

t|F + Z1
t|F )1F ]. As St|F , Z

0
t|F , and

Z1
t|F are constants, we conclude that

−St|FZ0
t|F + Z1

t|F ≤ 0,

i.e.
Z1
t|F

Z0
t|F
≤ St|F .

As this inequality holds true for each t = 0, . . . , T and each atom F ∈ Ft
we have shown that

Z1
t

Z0
t

∈ ]−∞, St] t = 0, . . . , T.

Applying the above argument to the element bF in (3) instead of to aF
we obtain

Z1
t

Z0
t

∈ [(1− λ)St,∞[, t = 0, . . . , T, (10)
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which yields (5).
Finally we obtain from (10), and the fact that λ < 1, that (Z1

t )Tt=0 also
takes strictly positive values.

(iii)⇒ (ii) Defining the measure Q on F by

dQ

dP
=

Z0

E[Z0]

we obtain a probability measure equivalent to P.
Define the process S̃ = (S̃t)

T
t=0 by

S̃t =
Z1
t

Z0
t

.

By (5) the process S̃ takes its values in the bid-ask-spread of S. To verify
that S̃ is a Q-martingale it suffices to note that this property is equivalent
to S̃Z0 being a P-martingale. As Z1 = S̃Z0 this is indeed the case.

We denote by Bλ ⊆ L1(Ω,F ,P;R2) the polar of Aλ (see Definition A.3 in
the Appendix), i.e.

Bλ := (Aλ)◦ = {Z = (Z0, Z1) :
〈
(ϕ0, ϕ1), (Z0, Z1)

〉
= EP

[
ϕ0Z0 + ϕ1Z1

]
≤ 0,

for all (ϕ0, ϕ1) ∈ Aλ}.

As Aλ is a closed polyhedral cone in a finite-dimensional space, its po-
lar Bλ is so too (Proposition A.3). As Aλ contains the negative orthant
L∞(Ω,F ,P;−R2

+) = {(ϕ0
T , ϕ

1
T ) : ϕ0

T ≤ 0, ϕ1
T ≤ 0}, we have that Bλ is con-

tained in the positive orthant L1(Ω,F ,P;R2
+).

Corollary 1.10. Suppose that S satisfies (NAλ) under transaction costs
0 ≤ λ < 1. Let Z = (Z0, Z1) ∈ L1(Ω,F ,P;R2) and associate to Z the
martingale Zt = EP[Z|Ft], where t = 0, . . . , T.

Then Z ∈ Bλ iff Z ≥ 0 and S̃t :=
Z1
t

Z0
t
∈ [(1 − λ)St, St] on {Z0

t 6= 0} and

Z1
t = 0 on {Z0

t = 0}, for every t = 0, . . . , T.
Dually, an element (ϕ0, ϕ1) ∈ L∞(Ω,F ,P;R2) is in Aλ iff for every con-

sistent price system (S̃, Q) we have

EQ[ϕ0 + ϕ1S̃T ] ≤ 0. (11)

Proof: If Z = (Z0, Z1) is in Bλ we have Z ≥ 0 by the paragraph preceding
the corollary. Repeating the argument in the proof of the Fundamental

Theorem 1.8, conditionally on {Z0
t 6= 0}, we obtain that S̃t :=

Z1
t

Z0
t

indeed

takes values in the bid-ask interval [(1−λ)St, St] on {Z0
t 6= 0} for t = 0, . . . , T.
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As regards the set {Z0
t = 0} fix an atom Ft ∈ Ft, with Ft ⊆ {Z0

t = 0}.
Observe again that (−St|Ft , 1)1Ft ∈ Aλ as in the preceding proof. As Z ∈
(Aλ)◦ we get

〈(−St, 1)1Ft , (0, Z
1
t )〉 ≤ 0,

which readily implies that Z1
t also vanishes on Ft.

Conversely, if Z = (Z0, Z1) satisfies Z ≥ 0 and
Z1
t

Z0
t
∈ [(1− λ)St, St] (with

the above caveat for the case Z0
t = 0), we have that

〈1Ft(−St, 1), (Z0, Z1)〉 ≤ 0,

and 〈1Ft ((1− λ)St,−1) , (Z0, Z1)〉 ≤ 0,

for every atom Ft ∈ Ft. As the elements on the left hand side generate the
cone Aλ we conclude that Z ∈ Bλ.

Let us now pass to the dual point of view. By the bipolar theorem (see
Proposition A.1 in the appendix) and the fact that Aλ is closed and convex
in L∞(Ω,F ,P;R2), we have (Aλ)◦◦ = (Bλ)◦ = Aλ. Hence (ϕ0

T , ϕ
1
T ) ∈ Aλ =

(Aλ)◦◦ iff for every Z = (Z0, Z1) ∈ Bλ we have

EP[Z0ϕ0
T + Z1ϕ1

T ] ≤ 0. (12)

This is equivalent to (11) if we have that Z0 is strictly positive as in this
case dQ

dP := Z0/EP[Z0] and S̃t = EP[Z1|Ft]/EP[Z0|Ft] well-defines a consistent
price system.

In the case when Z0 may also assume the value zero, a little extra care is
needed to deduce (11) from (12). By assumption (NAλ) and the Fundamental
Theorem 1.8 we know that there is Z̄ = (Z̄0, Z̄1) ∈ Bλ such that Z̄0 and Z̄1

are strictly positive. Given an arbitrary Z = (Z0, Z1) ∈ Bλ and µ ∈]0, 1] we
have that the convex combination µZ̄+(1−µ)Z is in Bλ and strictly positive.
Hence we may deduce the validity of (12) from (11) for µZ̄+(1−µ)Z. Sending
µ to zero we conclude that (ϕ0

T , ϕ
1
T ) ∈ Aλ iff (11) is satisfied, for all consistent

price systems (S̃, Q).

Corollary 1.11. (Superreplication Theorem): Fix the process S = (St)
T
t=0,

transaction costs 0 ≤ λ < 1, and suppose that (NAλ) is satisfied. Let
(ϕ0, ϕ1) ∈ L∞(Ω,F ,P;R2) and (x0, x1) ∈ R2 be given. The following are
equivalent.

(i) (ϕ0, ϕ1) = (ϕ0
T , ϕ

1
T ) for some self-financing trading strategy (ϕ0

t , ϕ
1
t )
T
t=0

starting at (ϕ0
−1, ϕ

1
−1) = (x0, x1).
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(ii) EQ[ϕ0 +ϕ1S̃T ] ≤ x0 +x1S̃0, for every consistent price system (S̃, Q) ∈
Sλ.

Proof: Condition (i) is equivalent to (ϕ0 − x0, ϕ1 − x1) being in Aλ. By
Corollary 1.10 this is equivalent to the inequality

EQ
[
(ϕ0 − x0) + (ϕ1 − x1)S̃T

]
≤ 0,

for every (S̃, Q) ∈ Sλ which in turn is tantamount to (ii).

We now specialize the above result, considering only the case of trading
strategies (ϕ0

t , ϕ
1
t )
T
t=−1 starting at some (ϕ0

−1, ϕ
1
−1) = (x, 0), i.e. without

initial holdings in stock. Similarly we require that at terminal time T the
position in stock is liquidated, i.e., (ϕ0

T , ϕ
1
T ) satisfies ϕ1

T = 0.
We call Cλ the cone of claims (in units of bonds), attainable from initial

endowment (0, 0) :

Cλ = {ϕ0 ∈ L∞(Ω,F ,P) : there is (ϕ0
T , ϕ

1
T ) ∈ Aλ s.t. ϕ0

T ≥ ϕ0, ϕ1
T ≥ 0}

(13)

= Aλ ∩ L∞0 (Ω,F ,P;R2).

In the last line we denote by L∞0 (Ω,F ,P;R2) the subspace of L∞(Ω,F ,P;R2)
formed by the elements (ϕ0, ϕ1) with ϕ1 = 0. We may and shall identify
L∞0 (Ω,F ,P;R2) with L∞(Ω,F ,P).

The present notation Cλ corresponds, for λ = 0, to the notation of [21],
where the cone of contingent claims attainable at prize 0 (without transaction
costs) is denoted by C.

By (13) and Proposition 1.4 we conclude that Cλ is a closed polyhedral
cone. Using analogous notation as in [57], we denote by Dλ the polar of Cλ.
By elementary linear algebra we obtain from (13) the representation

Dλ = {Y ∈ L1(Ω,F ,P) : there is Z = (Z0, Z1) ∈ Bλ with Y = Z0}, (14)

which is a polyhedral cone in L1
+(Ω,F ,P). We denote byMλ the probability

measures in Dλ, i.e.

Mλ = Dλ ∩ {Y : ‖Y ‖1 = EP[Y ] = 1}.

The Superreplication Theorem 1.11 now specializes into a very familiar
form, if we start with initial endowment (x, 0) consisting only of bonds, and
liquidate all positions in stock at terminal date T.
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Corollary 1.12. (one-dimensional Superreplication Theorem): Fix the pro-
cess S = (St)

T
t=0, transaction costs 0 ≤ λ < 1, and suppose that (NAλ) is

satisfied. Let ϕ0 ∈ L∞(Ω,F ,P) and x ∈ R be given. The following are equiv-
alent.
(i) ϕ0 − x is in Cλ.
(ii) EQ[ϕ0] ≤ x, for every Q ∈Mλ.

Proof: Condition (i) is equivalent to (ϕ0−x, 0) being in Aλ. This in turn
is equivalent to EQ[ϕ0− x] ≤ 0, for every Q ∈Mλ, which is the same as (ii).

Formally, the above corollary is in perfect analogy to the superreplication
theorem in the frictionless case (see, e.g., ([21], Th. 2.4.2)). The reader may
wonder whether – in the context of this corollary – there is any difference at
all between the frictionless and the transaction cost case.

In fact, there is a subtle difference: in the frictionless case the set M =
M0 of martingale probability measures Q for the process S has the following
remarkable concatenation property: let Q′, Q′′ ∈M and associate the density
process Y ′t = E[dQ

′

dP |Ft], and Y ′′t = E[dQ
′′

dP |Ft]. For a stopping time τ we define
the concatenated process

Yt =

{
Y ′t , for 0 ≤ t ≤ τ,

Y ′τ
Y ′′t
Y ′′τ

for τ ≤ t ≤ T.
(15)

We then have that dQ
dP = YT again defines a probability measure under which

S is a martingale, as one easily checks. This concatenation property turns
out to be crucial for several aspects of the frictionless theory.

For λ > 0 the sets Mλ do not have this property any more. But apart
from this drawback the setsMλ share the properties ofM of being a closed
polyhedral subset of the simplex of probability measures on (Ω,F). Hence
all the results pertaining only to the latter aspect, e.g. much of the duality
theory, carry over from the frictionless to the transaction cost case, at least
in the present setting of finite Ω. This applies in particular to the theory of
utility maximization treated in the next section.

We end this section by illustrating the above result for two very elemen-
tary examples.

Example 1.13. (One Period Binomial Model; for notation see, e.g., [21,
Ex.3.3.1]): In the traditional case, without transaction costs, we have
which amounts to

EQ[S1] = S0 = uS0qu + dS0qd = uS0qu + dS0(1− qu) (16)

1 = uqu + d(1− qu), (17)

11



S1 = uS0

S1 = dS0

S0

δd δu

Q

Mλ

or the well-known formulas for the risk less probability Q.

qu = 1−d
u−d and qd = 1− qu = u−1

u−d . (18)

Introducing proportional transaction costs, we are looking for a consistent
price system (S̃, Q), where S̃ is a Q-martingale and

(1− λ)St ≤ S̃t ≤ St, t ∈ {0, 1}. (19)

We therefore have:

EQ[S̃1] = S̃0︸︷︷︸
≥(1−λ)S0

= quS̃1(u) + qdS̃1(d) ≤ quuS0 + qddS0, (20)

and therefore quu + qdd ≥ (1 − λ). Using analogue inequalities in the other
direction and the fact that qu = 1− qd we obtain by elementary calculations
lower and upper bounds for qu:

max

(
1−λ

1
− d

u− d
, 0

)
≤ qu ≤ min

(
1

1−λ − d
u− d

, 1

)
. (21)

For λ 7→ 0, this interval shrinks to the point qu = 1−d
u−d which is the unique

frictionless probability (18). For λ sufficiently close to 1, this interval equals
[0, 1], i.e. Mλ consists of all convex, combinations of the Dirac measures δd
and δu. In an intermediate range of λ, the set Mλ is an interval containing
the measure Q = quδu + qdδd in its interior (see the above sketch).

Example 1.14. (One period trinomial model):
In this example (compare [21, Ex.3.3.4]) we consider three possible values

for S1: apart from the possibilities S1 = uS0 and S1 = dS0, where again
0 < d < 1 < u, we also allow for an intermediate case S1 = mS0. For
notational simplicity we let m = 1.

12



S1 = uS0

S1 = dS0

S1 = mS0S0

δu

δd

δm

Mλ

In the frictionless case we have, similar to the binomial model, for any
martingale measure Q, that
which amounts to

EQ[S1] = S0 = uS0qu + S0qm + dS0qd (22)

1 = uqu + dqd + (1− qu − qd), (23)

which reduces one degree of freedom among all probabilities (qu, qm, qd), for
the cases of an up, medium or down movement of S0. The corresponding set
M of martingale measures for S in the set of convex combinations of the
Dirac measures {δu, δm, δq} therefore is determined by the triples (qu, qm, qd)
of non-negative numbers where 0 ≤ qm ≤ 1 is arbitrary and where qu and qd
are determined via

qu + qd = 1− qm, (u− 1)qu + (d− 1)qd = 0. (24)

This corresponds to the line through δm in the above sketch. We now in-
troduce transaction costs 0 ≤ λ ≤ 1, and look for the set of consistent
probability measures. In analogy to (20) we obtain the inequalities:

EQ[S̃1] =

≥(1−λ)S0︷︸︸︷
S̃0 = quS̃1(u) + qmS̃1(m) + qdS̃1(d) (25)

≤ [quuS0 + qmS0 + qddS0] . (26)

Together with the other direction this gives us again a lower and upper bound:

−λ ≤ qu(u− 1) + qd(d− 1) ≤ λ

1− λ
. (27)

HenceMλ is given by the shaded area in the above sketch which is confined
by two lines, parallel to the line given by (24).
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