
2 Utility Maximization under Transaction Costs:

the Case of Finite Ω

In this section we again adopt the simple setting of a finite filtered probability
space pΩ,F , pFtqTt“0,Pq. In addition to the ingredients of the previous section,
i.e. the stock price process S “ pStq

T
t“0 and the level of transaction costs

0 ď λ ă 1, we also fix a utility function

U : D Ñ R. (28)

The domain D of U will be either D “s0,8r or D “s´ 8,8r, and U is
supposed to be a concave, R-valued (hence continuous), increasing function
on D. We also assume that U is strictly concave and differentiable on the
interior of D. This assumption is not very essential but avoids to speak about
subgradients instead of derivatives and allows for the uniqueness of solutions.
More importantly, we assume that U satisfies the Inada conditions

lim
xŒx0

U 1pxq “ 8, lim
xÕ8

U 1pxq “ 0, (29)

where x0 P t´8, 0u denotes the left boundary of D.

Remark 2.1. Some widely studied examples for utility functions include:

• Upxq “ logpxq,

• Upxq “ x1{2

1{2
or, more generally, Upxq “ xγ

γ
, for γ Ps0, 1r,

• Upxq “ x´1

´1
or, more generally, Upxq “ xγ

γ
, for γ Ps ´ 8, 0r,

• Upxq “ ´ expp´xq, or, more generally, Upxq “ ´ expp´µxq, for µ ą 0.

The first three examples pertain to the domain D “s0,8r, while the
second pertains to D “s´8,8r.

We also fix an initial endowment x P D, denoted in units of bond. The
aim is to find a trading strategy pϕ0

t , ϕ
1
t q
T
t“´1 maximizing expected utility of

terminal wealth (measured in units of bond). More formally, we consider the
optimization problem

pPxq ErUpx` ϕ0
T qs Ñ max! (30)

ϕ0
T P Cλ

In pPxq the random variables ϕ0
T run through the elements of Cλ, i.e.

such that there is a self-financing trading strategy pϕ0
t , ϕ

1
t q
T
t“´1, starting at

ϕ0
´1, ϕ

1
´1 “ p0, 0q.
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The interpretation is that an agent, whose preferences are modeled by the
utility function U, starts with x units of bond (and no holdings in stock). She
then trades at times t “ 0, . . . , T´1, and at terminal date T she liquidates her
position in stock so that ϕ1

T “ 0 (this equality constraint clearly is equivalent
to the inequality constraint ϕ1

T ě 0 when solving the problem pPxq). She then
evaluates the performance of her trading strategy in terms of the expected
utility of her final holdings ϕ0

T in bond.

Of course, we could formulate the utility maximization problem in greater
generality. For example, we could consider initial endowments px, yq in bonds
as well as in stocks, instead of restricting to the case y “ 0. We also could
replace the requirement ϕ1

T ě 0 by introducing a utility function Upx, yq
defined on an appropriate domain D Ď R2 and consider

pPx,yq ErUpϕ0
T , ϕ

1
T qs Ñ max!

where pϕ0
T , ϕ

1
T q runs through all terminal values of trading strategies pϕ0

t , ϕ
1
t q
T
t“´1

starting at pϕ0
´1, ϕ

1
´1q “ px, yq.

Note that (28) corresponds to the two-dimensional utility function

Upx, yq “
"

Upxq, if y ě 0,
´8, if y ă 0.

(31)

We refer to [19] and [47] for a thorough treatment of such a more general
framework. For the present purposes we prefer, however, to remain in the
realm of problem (30) as this allows for easier and crisper formulations of the
results.

Using (28) and Corollary 1.12, we can reformulate pPxq as a concave
maximization problem under linear constraints:

pPxq ErUpx` ϕ0
T qs Ñ max! ϕ0

T P L
8
pΩ,F ,Pq, (32)

EQrϕ0
T s ď 0, Q PMλ. (33)

As Mλ is a compact polyhedron we can replace the infinitely many con-
straints (33) by finitely many: it is sufficient that (33) holds true for the
extreme points pQ1, . . . , QMq of Mλ.

We now are precisely in the well-known situation of utility optimization
as in the frictionless case, which in the present setting reduces to a concave
optimization problem on the finite-dimensional vector space L8pΩ,F ,Pq un-
der linear constraints. Proceeding as in ([22, section 3.2]) we obtain the
following basic duality result, where V denotes the conjugate function (the
Legendre transform up to the choice of signs) of U

V pyq “ sup
xPD
tUpxq ´ xyu, y ą 0. (34)
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Theorem 2.2. (compare [22, Th. 3.2.1]): Fix 0 ď λ ă 1 and suppose that
in the above setting the pNAλq condition is satisfied for some fixed 0 ď λ ă 1.

Denote by u and v the value functions

upxq “ sup
 

ErUpx` ϕ0
T qs : pϕ0

T , ϕ
1
T q P Aλ, ϕ1

T ě 0
(

(35)

“ suptErUpx` ϕ0
T qs : ϕ0

T P Cλu, x P D.

vpyq “ inftErV py dQ
dP qs : Q PMλ

u (36)

“ inftErV pZ0
T qs : ZT “ pZ

0
T , Z

1
T q P Bλ,ErZ0

T s “ yu, y ą 0.

Then the following statements hold true:

piq The value functions upxq and vpyq are mutually conjugate, and the
indirect utility function u : D Ñ R is smooth, concave, increasing, and
satisfies the Inada conditions (29).

piiq For x P D and y ą 0 such that u1pxq “ y, the optimizers ϕ̂0
T “

ϕ̂0
T pxq P Cλ and Q̂ “ Q̂pyq P Mλ in (35) and (36) exist, are unique, and

satisfy

x` ϕ̂0
T “ I

´

y dQ̂
dP

¯

, y dQ̂
dP “ U 1

`

x` ϕ̂0
T

˘

, (37)

where I “ pU 1q´1 “ ´V 1 denotes the “inverse” function. The measure Q̂ is
equivalent to P, i.e. Q̂ assigns a strictly positive mass to each ω P Ω.

piiiq The following formulae for u1 and v1 hold true

u1pxq “ EP
“

U 1
`

x` ϕ̂0
T pxq

˘‰

, v1pyq “ EQ̂pyq
”

V 1
´

y dQ̂pyq
dP

¯ı

, (38)

x u1pxq “ EP
“`

x` ϕ̂0
T pxq

˘

U 1
`

x` ϕ̂0
T pxq

˘‰

, y v1pyq “ EP

”

y dQ̂pyq
dP V 1

´

y dQ̂pyq
dP

¯ı

.

(39)

Proof: We follow the reasoning of [22, section 3.2]. Denote by tω1, . . . , ωNu
the elements of Ω. We may identify a function ϕ0 P L8pΩ,F ,Pq with the
vector pξnq

N
n“1 “ pϕ

0pωnqq
N
n“1 P RN .

Denote by Q1, . . . , QM the extremal points of the compact polyhedron
Mλ and, for 1 ď m ďM, by pqmn q

N
n“1 “ pQ

mrωnsq
N
n“1 the weights of Qm. We

may write the Lagrangian for the problem (32) as

Lpξ1, . . . , ξN , η1, . . . , ηMq “
N
ÿ

n“1

pnUpξnq ´
M
ÿ

m“1

ηm

˜

N
ÿ

n“1

qmn ξn ´ x

¸

“

N
ÿ

n“1

pn

˜

Upξnq ´
M
ÿ

m“1

ηmq
m
n

pn
ξn

¸

` x
M
ÿ

m“1

ηm.
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Here x is the initial endowment in bonds, which will be fixed in the sequel.
The variables ξn vary in R, the variables ηm in R`. Our aim is to find the
(hopefully uniquely existing) saddle point pξ̂1, . . . , ξ̂N , η̂1, . . . , η̂Mq of L which
will give the primal optimizer via x ` ϕ̂0

T pωnq :“ ξ̂n, as well as the dual
optimizer via yQ̂ “

řM
m“1 η̂mQ

m, where y “
řM
m“1 η̂m so that Q̂ PMλ.

In order to do so we shall consider maxξ minη Lpξ, ηq as well as minη
maxξ Lpξ, ηq. Define

Φpξ1, . . . , ξNq “ inf
η1,...,ηM

Lpξ1, . . . , ξN , η1, . . . , ηMq

“ inf
yą0,QPMλ

#

N
ÿ

n“1

pn

ˆ

Upξnq ´
yqn
pn

ξn

˙

` yx

+

Again the relation between pη1, . . . , ηMq and y ą 0 and Q PMλ is given
via y “

řM
m“1 ηm and Q “

řM
m“1

ηm
y
Qm, where we denote by qn the weights

qn “ Qrωns.
Note that Φpξ1, . . . , ξNq equals the target functional (30) if pξ1, . . . , ξNq

is admissible, i.e. satisfies (33), and -8 otherwise. Identifying the elements
ϕ0 P L8pΩ,F ,Pq with pξ1, . . . , ξNq P RN , this may be written as

Φpϕ0
q “

"

ErUpϕ0qs, if EQrϕ0s ď x for all Q PMλ

´8, otherwise.
(40)

Let us now pass from the max min to the min max: identifying pη1, . . . , ηMq
with py,Qq as above, define

Ψpy,Qq “ sup
ξ1,...,ξN

Lpξ1, . . . , ξN , y, Qq

“ sup
ξ1,...,ξN

N
ÿ

n“1

pn

´

Upξnq ´ y
qn
pn
ξn

¯

` xy

“

N
ÿ

n“1

pn sup
ξn

´

Upξnq ´ y
qn
pn
ξn

¯

` xy

“

N
ÿ

n“1

pnV
´

y qn
pn

¯

` xy

“ EP
“

V
`

y dQ
dP

˘‰

` xy.

We have used above the definition (30) of the conjugate function V of U.
Defining

Ψpyq “ inf
QPMλ

Ψpy,Qq (41)
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we infer from the compactness of Mλ that, for y ą 0, there is a minimizer
Q̂pyq in (41). From the strict convexity of V (which corresponds to the
differentiability of U as we recall in the appendix) we infer, as in [22], section
3.2, that Q̂pyq is unique and Q̂pyqrωs ą 0, for each ω P Ω.

Finally, we minimize y ÞÑ Ψpyq to obtain the optimizer ŷ “ ŷpxq by
solving

Ψ1
pŷq “ 0. (42)

Denoting by vpyq the dual value function which is obtained from Ψpyq by
dropping the term xy, i.e.

vpyq “ inf
QPMλ

E
“

V py dQ
dP q

‰

,

we obtain from (42) the relation

v1pŷpxqq “ ´x.

The uniqueness of ŷpxq follows from the strict convexity of v which, in
turn, is a consequence of the strict convexity of V (see Proposition B.4 of
the appendix).

Turning back to the Lagrangian Lpξ1, . . . , ξN , y, Qq, the first order condi-
tions

B

Bξn
Lpξ1, . . . , ξN , y, Qq|ξ̂1,...,ξ̂N ,ŷ,Q̂ “ 0 (43)

for a saddle point yield the following equations for the primal optimizers
ξ̂1, . . . , ξ̂N

U 1pξ̂nq “ ŷ q̂n
pn
, (44)

where ŷ “ ŷpxq and Q̂ “ Q̂pŷpxqq. By the Inada conditions (29), as well
as the smoothness and strict concavity of U , equation (44) admits unique
solutions pξ̂1, . . . , ξ̂Nq “ pξ̂1pxq, . . . , ξ̂Npxqq.

Summing up, we have found a unique saddle point pξ̂1, . . . , ξ̂N , ŷ, Q̂q of
the Lagrangian L. Denoting by L̂ “ L̂pxq the value

L̂ “ Lpξ̂1, . . . , ξ̂N , ŷ, Q̂q

we infer from the concavity of L in ξ1, . . . , ξN and convexity in y and Q that

max
ξ

min
y,Q

L “ min
y,Q

max
ξ
L “ L̂. (45)

It follows from (40) that L̂ is the optimal value of the primal problem
pPxq in (30), i.e.

upxq “
N
ÿ

n“1

pnUpξ̂nq “ L̂. (46)
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The second equality in (45) yields

L̂ “ Ψpŷq “ vpŷq ` xŷ. (47)

Equations (46) and (47), together with the concavity (resp. convexity) of
u (resp. pvq) and v1pŷq “ ´x are tantamount to the fact that the functions
u and v are conjugate.

We thus have shown piq of Theorem 2.2. The listed qualitative properties
of u are straightforward to verify (compare [22], section 3.2). Item piiq now
follows from the above obtained existence and uniqueness of the saddle point
pξ̂1, . . . , ξ̂N , ŷ, Q̂q and piiiq again is straightforward to check as in [22].

We remark that in the above proof we did not apply an abstract mini-
max theorem guaranteeing the existence of a saddle point of the Lagrangian.
Rather we directly found the saddle point by using the first order conditions,
very much as we did in high school: differentiate and set the derivative to
zero! The assumptions of the theorem are designed in such a way to make
sure that this method yields a unique solution.

We now adapt the idea of market completion as developed in [53] to the
present setting. Fix the initial endowment x P D, and y “ u1pxq. Define a
frictionless financial market, denoted by AS, in the following way. For each
fixed ω P Ω, the Arrow security ASω, paying ASωT “ 1ω units of bond at
time t “ T, is traded (without transaction costs) at time t “ 0 at price
ASω0 :“ Q̂pyqrωs. In other words, ASω pays one unit of bond at time T if ω
turns out at time T to be the true state of the world, and zero otherwise.
We define, for each ω P Ω, the price process of ASω as the Q̂pyq-martingale

ASωt “ EQ̂pyqr1ω|Fts, t “ 0, . . . , T.

The set CA, where A stands for Kenneth Arrow, of claims attainable
at price zero in this complete, frictionless market equals the half-space of
L8pΩ,F ,Pq

CA “ HQ̂pyq “ tϕ
0
T P L

8
pΩ,F ,Pq : EQ̂pyqrϕ

0
T s ď 0u. (48)

Indeed, every ϕ0
T P HQ̂pyq may trivially be written as a linear combination

of Arrow securities

ϕ0
T “

ÿ

ωPΩ

ϕ0
T pωq1tωu

“
ÿ

ωPΩ

ϕ0
T pωqAS

ω
T pωq

19



which may be purchased at time t “ 0 at price
ÿ

ωPΩ

ϕ0
T pωqAS

ω
0 pωq “ EQ̂pyqrϕ

0
T s ď 0.

The Arrow securities ASω are quite different from the original process S “
pStq

T
t“0 or, more precisely, the process of bid-ask intervals prp1´λqSt, Stsq

T
t“0.

But we know from the fact that Q̂pyq PMλ that

Cλ Ď CA “ HQ̂pyq. (49)

In prose: the contingent claims ϕ0
T attainable at price 0 in the market S

under transaction costs λ are a subset of the contingent claims ϕ0
T attainable

at price zero in the frictionless Arrow market AS.

The message of the next theorem is the following: although the complete,
frictionless market AS offers better terms of trade than S (under transaction
costs λ), the economic agent modeled by (28) will choose as her terminal
wealth the same optimizer ϕ̂0

T P Cλ, although she can choose in the bigger
set CA.
Theorem 2.3. Fix S “ pStq

T
t“0, transaction costs 0 ď λ ă 1 such that

pNAλq is satisfied, as well as U : D Ñ R verifying (29) and x P D. Using the
notation of Theorem 2.2, let y “ u1pxq and denote by Q̂pyq P Mλ the dual
optimizer in (36).

Define the optimization problem

pPA
x q ErUpx` ϕ0

T qs Ñ max! (50)

EQ̂pyqrϕ
0
T s ď 0,

where ϕ0
T ranges through all D-valued, FT -measurable functions.

The optimizer ϕ̂0
T pxq of the above problem exists, is unique, and coincides

with the optimizer of problem pPxq defined in (30).

Proof: As Q̂pyq PMλ we have that Q̂pyq|Cλ ď 0 so that Q̂pyq|x`Cλ ď x. It
follows from (50) that in pPA

x q we optimize over a larger set than in pPxq.
Denote by ϕ̂0

T “ ϕ̂0
T pxq the optimizer of pPxq which uniquely exists by

Theorem 2.2. Denote by ŷ “ ŷpxq the corresponding Lagrange multiplier
ŷ “ u1pxq. We shall now show that Q̂pŷq induces the marginal utility pricing
functional.

Fix 1 ď k ď N and consider the variation functional corresponding to ωk

vkphq “ E
“

Upϕ̂0
T ` h1ωkq

‰

“

N
ÿ

n “ 1
n ‰ k

pnUpξ̂nq ` pkUpξ̂k ` hq, h P R.
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The function vk is strictly concave and its derivative at h “ 0 satisfies by
(44)

v1kp0q “ pkŷ
q̂k
pk
“ ŷq̂k.

Let ζ P L8pΩ,F ,Pq, ζ ‰ 0 be such that EQ̂pζq “ 0. The variation func-
tional vζ

vζphq “ E
“

Upϕ̂0
T ` hζq

‰

“

˜

N
ÿ

k“1

pkζpωkqvkphq,

¸

h P R,

“

N
ÿ

k“1

pkUpξ̂k ` hζkq

has as derivative

v1ζphq “
N
ÿ

k“1

pkU
1
pξ̂k ` hζkqζk.

Hence

v1ζp0q “
N
ÿ

k“1

pk U
1
pξ̂kq

loomoon

“ŷ
q̂k
pk

ζk “
N
ÿ

k“1

ŷq̂kξk

“ ŷEQ̂rξs
“ 0

The function h ÞÑ vζphq is strictly concave and therefore attains its unique
maximum at h “ 0.

Hence, for every ϕ0
T P L

8pΩ,F ,Pq, ϕ0
T ‰ ϕ̂0

T such that EQ̂rϕ0
T s “ x we

have
ErUpϕ0

T qs ă ErUpϕ̂0
T qs.

Indeed, it suffices to apply the previous argument to ζ “ ϕ0
T ´ ϕ̂

0
T . Finally, by

the monotonicity of U , the same inequality holds true for all ϕ0
T P L

8pΩ,F ,Pq
such that EQ̂rϕ0

T s ă x.
The proof of Theorem 2.3 now is complete.

In the above formulation of Theorems 2.2 and 2.3 we have obtained the
unique primal optimizer ϕ̂0

T only in terms of the final holdings in bonds;
similarly the unique dual optimizer Q̂ is given in terms of a probability mea-

sure which corresponds to a one dimensional density Z0 “
dQ̂
dP . What are the

“full” versions of these optimizers in terms of pϕ0
T , ϕ

1
T q P Aλ, i.e., in terms
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of bond and stock, resp. pZ0, Z1q P Bλ which is an R2
`-valued martingale?

As regards the former, we mentioned already that it is economically obvious
(and easily checked mathematically) that the unique optimizer pϕ0

T , ϕ
1
T q P Aλ

corresponding to ϕ̂0
T P Cλ in (35) simply is pϕ0

T , ϕ
1
T q “ pϕ̂

0
T , 0q, i.e. the op-

timal holding in stock at terminal date T is zero. As regards the optimizer
pZ0, Z1q P Bλ in (36) corresponding to the optimizer Q̂ P Mλ the situa-
tion is slightly more tricky. By the definition (14) of Dλ, for given Ẑ0 P Dλ
there is Ẑ1 P L1

`pΩ,F ,Pq such that pẐ0, Ẑ1q P Bλ. But this Ẑ1 need not
be unique, even in very regular situations as shown by the subsequent easy

example. Hence the “shadow price process” pS̃tq
T
t“0 “

´

Ẑ1
t

Ẑ0
t

¯T

t“0
need not be

unique. The terminology “shadow price” will be explained below, and will
be formally defined in 2.7.

Example 2.4. In the above setting suppose that pStq
T
t“0 is a martingale

under the measure P. Then it is economically obvious (and easily checked)
that it is optimal not to trade at all (even under transaction costs λ “ 0).
More formally, we obtain upxq “ Upxq, vpyq “ V pyq and, for x P D, the
unique optimizers in Theorem 2.2 are given by ϕ̂0

T ” 0, and Q̂ “ P, as well as
ŷ “ U 1pxq. For the optimal shadow price process S̃ we may take S̃ “ S. But
this choice is not unique. In fact, we may take any P-martingale S̃ “ pS̃tq

T
t“0

taking values in the bid-ask spread prp1´ λqSt, Stsq
T
t“0.

In the setting of Theorem 2.2 let pẐ0
T , Ẑ

1
T q be an optimizer of (36) and

denote by ˆ̃S the process

ˆ̃St “
ErẐ1

T |Fts
ErẐ0

T |Fts
, t “ 0, . . . , T,

which is a martingale under Q̂pyq. We shall now justify why we have called
this process a shadow price process for S under transaction costs λ.

Fix x P D and y “ u1pxq. To alleviate notation we write S̃ “ pS̃tq
T
t“0

for ˆ̃Spyq and Q for Q̂pyq. Denote by CS̃ the cone of random variables ϕ0
T

dominated by a contingent claim of the form pH ¨ S̃qT , i.e.

CS̃ “ tϕ0
T P L

8
pΩ,F ,Pq : ϕ0

T ď pH ¨ S̃qT , for some H P Pu.

Here we use standard notation from the frictionless theory. The letter P
denotes the space of predictable R-valued trading strategies pHtq

T
t“1, i.e. Ht

is Ft´1-measurable, and pH ¨ S̃qT denotes the stochastic integral

pH ¨ S̃qT “
T
ÿ

t“1

HtpS̃t ´ S̃t´1q. (51)
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In prose: CS̃ denotes the cone of random variables ϕ0
T which can be super-

replicated in the financial market S̃ without transaction costs and with zero
initial endowment.

Lemma 2.5. Using the above notation and assuming that S satisfies pNAλq
we have

Cλ Ď CS̃ Ď CA (52)

Proof: The first inclusion was already shown in the proof of the Funda-
mental Theorem 1.8; it corresponds to the fact that trading without trans-
action costs on S̃ yields better terms of trade than trading on S under trans-
action costs λ.

As regards the second inclusion note that, for pH ¨ S̃qT as in (51), we have

EQrpH ¨ S̃qT s “ 0,

whence pH ¨ S̃qT belongs to CA by (48). As CA also contains the negative
orthant L8pΩ,F ,P;´R2

`q we obtain

CS̃ Ď CA.

Corollary 2.6. Using the above notation and assuming that S satisfies pNAλq,
the optimization problem

pP S̃
x q ErUpx` ϕ0

T qs Ñ max! (53)

ϕ0
T ď pH ¨ S̃qT , for some H P P . (54)

has the same unique optimizer ϕ̂0
T as the problem pPxq defined in (30) as well

as the problem pPA
x q defined in (50).

If the λ-self-financing process pϕ̂0
t , ϕ̂

1
t q
T
t“0, starting at zero is a maximizer

for problem pPxq then

Ĥt “ ϕ̂1
t´1, t “ 1, . . . , T

defines a maximizer for problem pP S̃
x q and we have

pĤ ¨ S̃qT “
T
ÿ

t“1

ĤtpS̃t ´ S̃t´1q “ ϕ̂0
T (55)

and more generally,

pĤ ¨ S̃qt “ ϕ̂0
t ` ϕ̂

1
t S̃t (56)

“ ϕ̂0
t´1 ` ϕ̂

1
t´1S̃t, t “ 1, . . . , T.
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Proof: The first part follows form (52) and Theorem 2.3.
As regards the second part, let us verify (56) by induction. Rewrite these

equations as
pĤ ¨ S̃qt “ ϕ̂0

t´1 ` ϕ̂
1
t´1S̃t ` at (57)

pĤ ¨ S̃qt “ ϕ̂0
t ` ϕ̂

1
t S̃t ` bt (58)

We have to show that the elements at, bt P L8pΩ,F ,Pq are all zero.
Obviously a0 “ 0. As inductive hypothesis assume that 0 “ a0 ď b0 “

a1 ď . . . ď bt´1 “ at. We claim that at ď bt. Indeed, pϕ̂0
t , ϕ̂t

1
q is obtained

from pϕ̂0
t´1, ϕ̂

1
t´1q by trading at price St or p1 ´ λqSt, depending on whether

ϕ̂t
1
´ ϕ̂1

t´1 ě 0 or ϕ̂t
1
´ ϕ̂1

t´1 ď 0. As S̃t takes values in rp1´ λqSt, Sts we get
in either case

pϕ̂t
1
´ ϕ̂1

t´1qS̃t ` pϕ̂
0
t ´ ϕ̂

0
t´1q ď 0,

which gives at ď bt.
To complete the inductive step we have to show that bt “ at`1, i.e.

pĤ ¨ S̃qt`1 ´ pĤ ¨ S̃qt “ ϕ̂t
1
pS̃t`1 ´ S̃tq.

As the left hand side equals Ĥt`1pS̃t`1 ´ S̃tq this follows from the definition
Ĥt`1 “ ϕ̂1

t .
Having completed the inductive step we conclude that bT ě 0. We have

to show that bT “ 0. If this were not the case we would have

E
”

Upx` pĤ ¨ S̃qT q
ı

“ E
“

Upx` ϕ̂0
T ` bT q

‰

ą E
“

Upx` ϕ̂0
T q
‰

,

which contradicts the first part of the corollary, showing (55) and (56).

Here is the economic interpretation of the above argument: whenever
ϕ̂1
t ´ ϕ̂1

t´1 ‰ 0 we must have that S̃t equals either the bid or the ask price
p1´ λqSt, resp. St, depending on the sign of ϕ̂1

t ´ ϕ̂
1
t´1. More formally

 

ϕ̂1
t ´ ϕ̂

1
t´1 ą 0

(

Ď

!

S̃t “ St

)

, (59)

 

ϕ̂1
t ´ ϕ̂

1
t´1 ă 0

(

Ď

!

S̃t “ p1´ λqSt

)

, t “ 0, . . . , T. (60)

The predictable process pĤtq
T
t“1 denotes the holdings of stock during the

intervals pst ´ 1, tsqTt“1. Inclusion (59) indicates that the utility maximizing
agent, trading optimally in the frictionless market S̃, only increases her in-
vestment in stock when S̃ equals the ask price S. Inclusion (60) indicates
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the analogous result for the case of decreasing the investment in stock. The
inclusions pertain to Ft´1-measurable sets, i.e. to investment decisions done
at time t ´ 1, where t ´ 1 range from 0 to T. The reader may check that,
defining Ĥ0 “ ĤT`1 “ 0, this reasoning also extends to the trading decisions
at time t “ 0 and t “ T ` 1.

The reader may wonder why we index the process H by pHtq
T`1
t“0 , while y is

indexed by pytq
T
t“´1. As regards H, this is the usual definition of a predictable

process from the frictionless theory (where HT`1 plays no role). The reason
why we shift the indexation for t by 1 will be discussed in the more general
continuous time setting in section 4.

One may also turn the point of view around and start from a process
S̃ (obtained, e.g., from an educated guess) such that the associated (fric-
tionless) optimizer ϕ̂1

t “ Ĥt`1 satisfies (59) and (60), and deduce from the

solution of pP S̃
x q the solution of pPxq. In fact, this idea will turn out to work

very nicely in the applications (see section 3 below).

Here is a formal definition [48].

Definition 2.7. Fix a process pStq
T
t“0 and 0 ď λ ă 1 such that pNAλq is

satisfied, as well as a utility function U and an initial endowment x P D as
above. In addition, suppose that S̃ “ pS̃tq

T
t“0 is an adapted process defined on

pΩ,F , pFtqTt“0,Pq, taking its values in the bid-ask spread prp1 ´ λqSt, Stsq
T
t“0.

We call S̃ a shadow price process for S if there is an optimizer pĤtq
T
t“1 for

the frictionless market S̃, i.e.

EP

”

U
´

x` pĤ ¨ S̃qT

¯ı

“ sup
!

EP

”

Upx` pH ¨ S̃qT q
ı

: H P P
)

,

such that
!

∆Ĥt ą 0
)

Ď tS̃t´1 “ St´1u, t “ 1, . . . , T, (61)

!

∆Ĥt ă 0
)

Ď tS̃t´1 “ p1´ λqSt´1u, t “ 1, . . . , T. (62)

Theorem 2.8. Suppose that S̃ is a shadow price for S, and let Ĥ, U, x, and
0 ď λ ă 1 be as in Definition 2.7.

Then we obtain an optimal (in the sense of (30)) trading strategy pϕ̂0
t , ϕ̂

1
t q
T
t“´1

in the market S under transaction costs λ via the identification ϕ̂0
´1 “ ϕ̂1

´1 “

0 and

ϕ̂1
t´1 “ Ĥt, t “ 1, . . . , T, (63)

ϕ̂0
t´1 “ ´ϕ̂

1
t´1S̃t´1 ` pĤ ¨ S̃qt´1, t “ 1, . . . , T, (64)

as well as ϕ̂1
T “ 0, ϕ̂0

T “ pĤ ¨ S̃qT .
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Proof: Again the proof reduces to the economically obvious fact that
trading in the frictionless market S̃ yields better terms of trade than in the
market S under transaction costs λ. This is formalized by the first inclusion in
Lemma 2.5. Hence (61) and (62) imply that the frictionless trading strategy
pĤtq

T
t“1 can be transformed into a trading strategy pϕ̂0

t , ϕ̂
1
t q
T
t“´1 via (63) and

(64).
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Remark 2.9. In the above analysis the notion of the Legendre transform
played a central role.

As a side step – which may be safely skipped without missing any math-
ematical content – let us try to give an economic “interpretation”, or rather
“visualisation” of the conjugate function V

V pyq “ sup
x
pUpxq ´ xyq. (65)

Instead of interpreting U as a function which maps money to happiness, it
seems more feasible for the present purpose to interpret U as a production
function.

We shall only give a hypothetical mind experiment which is silly form a
realistic point of view: suppose that you own a gold mine. You have the
choice to invest x Euros into the (infrastructure of the) gold mine which
will result in a production of Upxq kilos of gold. You only can make this
investment decision once, then take the resulting kilos of gold, and then the
story is finished. In other words, the gold mine is a machine turning money
into gold. The monotonicity and concavity of U correspond to the “law of
diminishing returns”.

Now suppose that gold is traded at a price of y´1 Euros for one kilo of gold
or, equivalently, y is the price of one Euro in terms of kilos of gold. What
is your optimal investment into the gold mine? Clearly you should invest the
amount of x̂ Euros for which the marginal production U 1px̂q of kilos of gold
per invested Euro equals the market price y of one Euro in terms of gold, i.e.
x̂ is determined by U 1px̂q “ y.

Given the price y, we thus may interpret the conjugate function (65) as
the net value V pyq of your gold mine in terms of kilos of gold: it equals
V pyq “ supxpUpxq´xyq “ Upx̂q´ x̂y. Indeed, starting from an initial capital
of 0 Euros it is optimal for you to borrow x̂ Euros and invest them into the
mine so that it produces Upx̂q many kilos of gold. Subsequently you sell x̂y
many of those kilos of gold to obtain x̂ Euros which you use to pay back the
loan. In this way you end up with a net result of Upx̂q ´ x̂y kilos of gold.

Summing up, V pyq equals the net value of your gold mine in terms of
kilos of gold, provided that the price of a kilo of gold equals y´1 Euros and
that you invest optimally.

Let us next try to interpret the inversion formula

Upxq “ inf
y
pV pyq ` xyq.

Suppose that you have given the gold mine to a friend, whom we might
call the “devil”, and he promises to give you in exchange for the mine its net
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value in gold, i.e. V pyq many kilos of gold, if the market price of one kilo of
gold turns out to be y´1. Fix y ą 0. If you own an initial capital of x Euros
and want to transform all your wealth, i.e. the claims to the devil plus the x
Euros, into gold, the total amount of kilos of gold then equals

V pyq ` xy.

Fix your initial capital of x Euros. If the devil is able to manipulate the
market, then he might be evil and choose the price y in such a way that your
resulting position in gold is minimized, i.e.

V pyq ` xy ÞÑ min!, y ą 0.

Again, the optimal ŷ (i.e. the meanest choice of the devil) is determined
by the first order condition V 1pŷq “ ´x. The duality relation

Upxq “ inf
y
pV pyq ` xyq “ V pŷq ` xŷ

thus may interpreted in the following way: if the devil does the choice of y
which is least favourable for you, then you will earn the same amount of gold
as if you would have done by keeping the mine and investing your x Euros
directly into the mine. In both cases the result equals Upxq kilos of gold.

Next we try to visualize the theme of Theorem 2.2: we not only consider
the utility function U , but also the financial market S under transaction costs
λ. In this variant of the above story you invest into the goldmine at time T
to transform an investment of ξ units of Euros into Upξq many kilos of gold.
At time t “ 0 you start with an initial capital of x Euros and you are allowed
to trade in the financial market S under transaction costs λ by choosing a
trading strategy ϕ. This will result in a random variable of x` ϕ0

T pωq Euros
which you can transform into Upx ` ϕ0

T pωqq kilos of gold. Passing to the
optimal strategy ϕ̂0

T you therefore obtain Upx ` ϕ̂0
T pωqq many kilos of gold

if ω turns out to be the true state of the world. In average this will yield
upxq “ EPrUpx` ϕ̂

0
T qs many kilos of gold. We thus may consider the indirect

utility function upxq as a machine which turns the original wealth x into upxq
many expected kilos of gold, provided you invest optimally into the financial
market S and subsequently into the gold mine also in an optimal way.

We now pass again to the dual problem, i.e., to the devil to whom you
have given your gold mine. Fix your initial wealth x and first regard upxq
simply as a utility function as in the first part of this remark.
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We may define the conjugate function

vpyq “ sup
ξ
pupξq ´ ξyq (66)

and interpret it as the net value of the gold mine, denoted in expected kilos
of gold, if the price y of Euro versus gold equals y at time t “ 0. Indeed the
argument works exactly as in the first part of this remark where again we
interpret u as a machine turning money into gold (measured in expectation
and assuming that you trade optimally). In particular we get for the “dev-
ilish” price ŷ at time t “ 0, given by ŷ “ u1pxq, that the devil gives you at
time t “ 0 precisely the amount of vpŷq kilos of gold such that vpŷq ` xŷ
equals upxq, i.e. the expected kilos of gold which you could obtain by trading
optimally and investing into the gold mine at time T .

But this time there is an additional feature: the devil will also do some-
thing more subtle. He offers you, alternatively, to pay V pypωqq many kilos
of gold as recompensation for leaving him the goldmine. The payment now
depends on the prize ypωq of one Euro in terms of gold at time T which may
depend on the random element ω and which is only revealed at time T . The
function V now is the conjugate function of the original utility function U as
defined in (65).

The main message of Theorem 2.2 can be resumed in prose as follows

(a) there is a choice of “devilish” prices ŷpωq given by the marginal utility
of the optimal terminal wealth

ŷpωq “ U 1px` ϕ̂0
T pωqq, ω P Ω.

(b) There is a probability measure Q̂ on Ω such that

ŷpωq “ ŷ
dQ̂

dP
pωq,where ŷ is the optimizer in (66).

It follows that
ř

ω ŷpωqPpωq “ ŷ, i.e., ŷ is the P-average of the prizes
ŷpωq.

(c) The formula

vpŷq “ EP

”

V
`

ŷpωq
˘

ı

“ EP

”

V
´

ŷ
dQ̂

dP
pωq

¯ı

now has the interpretation that the devil gives you (in average) the same
amount of gold, namely vpŷq many kilos, independently of whether you
do the deal with him at time t “ 0 or t “ T.
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(d) If you choose any strategy ϕ we have the inequality

EQ̂rϕ
0
T s ď EQ̂rϕ̂

0
T s “ x

as Q̂ is a λ-consistent price system. Hence

EP
“`

x` ϕ0
T pωq

˘

ŷpωq
‰

ď EP
“`

x` ϕ̂0
T pωq

˘

ŷpωq
‰

(67)

which may be interpreted in the following way: if you accept the devil’s
offer to get the amount of V pŷpωqq kilos of gold at time T , you cannot
improve your expected result by changing from ϕ̂ to some other trading
strategy ϕ, while the devil remains his choice of prices ŷpωq unchanged.

We close this “visualisation” of the duality relations between U, V and
u, v by stressing once more that the fictitious posession of a gold mine has, of
course, no practical economic relevance and was presented for purely didactic
reasons.
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