
3 The Growth-Optimal Portfolio in the Black-

Scholes Model

In this section we follow the lines of [34] and analyze the dual optimizer in a
Black-Scholes model under transaction costs λ ě 0. The task is to maximize
the expected return (or growth) of a portfolio. This is tantamount to consider
utility maximization with respect to logarithmic utility Upxq “ logpxq of
terminal wealth at time T,

pPxq E rlogpVT qs Ñ max!, VT P x` C
λ. (68)

Our emphasis will be on the limiting behavior for T Ñ 8.
We take as stock price process S “ pStqtě0 the Black-Scholes model

St “ S0 exp
”

σWt ` pµ´
σ2

2
qt
ı

, (69)

where σ ą 0 and µ ě 0 are fixed constants.
To keep the notation light, the bond price process will again be assumed

to be Bt ” 1. We remark that the case Bt “ expprtq can rather trivially be
reduced to the present one, simply by passing to discounted terms.

3.1 The frictionless case

We first recall the situation without transaction costs. This topic is well-
known and goes back to the seminal work of R. Merton [71]. For later use
we formulate the result in a slightly more general setting: we assume that
the volatility σ and the drift µ are arbitrary predictable processes.

We fix the horizon T and assume that W “ pWtq0ďtďT is a Brownian
motion based on pΩ,F , pFtq0ďtďT ,Pq where pFtq0ďtďT is the (saturated) fil-
tration generated by W.

Theorem 3.1. (compare [71]): Suppose that the s0,8r-valued stock price
process S “ pStq0ďtďT satisfies the stochastic differential equation

dSt
St
“ µtdt` σt dWt, 0 ď t ď T,

where pµtq0ďtďT and pσtq0ďtďT are predictable, real-valued processes such that

E

»

–

T
ż

0

µ2
t

σ2
t

dt

fi

fl ă 8. (70)
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Define the growth optimal process V̂ “ pV̂tq0ďtďT , starting at V̂0 “ 1, by

dV̂t

V̂t
“ π̂t ¨

dSt
St
, (71)

where π̂t equals the mean variance ratio

π̂t “
µt
σ2
t

. (72)

Then V̂ is a well-defined s0,8r-valued process satisfying

V̂t “ exp

»

–

t
ż

0

µs
σs
dWs `

t
ż

0

µ2
s

2σ2
s

ds

fi

fl , 0 ď t ď T. (73)

We then have

E
”

logpV̂T q
ı

“ E
”

T
ż

0

µ2
t

2σ2
t

dt
ı

. (74)

If pπtq0ďtďT is any competing strategy in (71), i.e. an R-valued, pre-
dictable process such that

E

»

–

T
ż

0

π2
t σ

2
t dt

fi

fl ă 8, and

T
ż

0

|πtµt|dt ă 8, a.s., (75)

the stochastic differential equation

dVt
Vt
“ πt

dSt
St

(76)

well-defines a s0,8r-valued process

Vt “ exp

»

–

t
ż

0

πsσsdWs `

t
ż

0

ˆ

πsµs ´
π2
sσ

2
s

2

˙

ds

fi

fl , (77)

for which we obtain

E rlogpVT qs ď E
”

logpV̂T q
ı

,

and, more generally, for stopping times 0 ď % ď τ ď T

E
”

logpVτ
V%
q

ı

ď E
”

logp V̂τ
V̂%
q

ı

.

32



Proof: If a strategy pπtq0ďtďT satisfies (75) we get from Itô’s formula and
(69) that (77) is the solution to (76) with initial value V0 “ 1. Passing to π̂
defined in (72), the assertion (74) is rather obvious

E
”

logpV̂T q
ı

“ E

»

–

T
ż

0

µt
σt
dWt `

T
ż

0

µ2
t

2σ2
t
dt

fi

fl

“ E

»

–

T
ż

0

µ2
t

2σ2
t
dt

fi

fl

as p
şt

0
µs
σs
dWsq0ďtďT is a martingale bounded in L2pPq by (70).

If π “ pπtq0ďtďT is any competing strategy verfying (75), we again obatin

E rlogpVT qs “ E

»

–

T
ż

0

πtσtdWt `

T
ż

0

ˆ

πtµt ´
π2
t σ

2
t

2

˙

dt

fi

fl

“ E

»

–

T
ż

0

ˆ

πtµt ´
π2
t σ

2
t

2

˙

dt

fi

fl .

It is obvious that, for fixed 0 ď t ď T and ω P Ω, the function

π Ñ πµtpωq ´
π2σ2

t pωq

2
, π P R,

attains its unique maximum at π̂tpωq “
µtpωq

σ2
t pωq

so that

E rlogpVT qs ď E

»

–

T
ż

0

ˆ

π̂tµt ´
π̂2
t σ

2
t

2

˙

dt

fi

fl

“ E

»

–

T
ż

0

µ2
t

2σ2
t

dt

fi

fl “ E
”

logpV̂T q
ı

.

More generally, for stopping times 0 ď % ď τ ď T, we obtain

E
„

log

ˆ

Vτ
V%

˙

“ E

»

–

τ
ż

%

ˆ

πtµt ´
π2
t σ

2
t

2

˙

dt

fi

fl

ď E

»

–

τ
ż

%

ˆ

π̂tµt ´
π̂2
t σ

2
t

2

˙

dt

fi

fl “ E

«

log

˜

V̂τ

V̂%

¸ff

.
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3.2 Passing to transaction costs: some heuristics

Before we pass to a precise formulation of the utility maximization problem
for the log-utility maximizer (see Definition 3.9 below) we want to develop the
heuristics to find the shadow price process pS̃tqtě0 for the utility maximization
problem of optimizing the expected growth of a portfolio. We make two
heroic assumptions. In fact, we are allowed to make all kind of heuristic
assumptions and bold guesses, as we shall finally pass to verification theorems
to justify them.

Assumption 3.2. When the shadow price pS̃tqtě0 ranges in the interior
sp1 ´ λqSt, Str of the bid-ask interval rp1 ´ λqSt, Sts then the process S̃t is a
deterministic function of St

S̃t “ gcpStq. (78)

More precisely, we suppose that there is a family of (deterministic, smooth)
functions gcp¨q, depending on a real parameter c, such that, whenever we have
random times % ď τ such that S̃t Psp1´ λqSt, Str, for all t PK%, τJ, then there
is a fixed parameter c (depending on the interval K%, τJ) such that

S̃t “ gcpStq, % ď t ď τ.

The point is that the parameter c does not change while S̃t ranges in the
interior sp1´λqSt, Str of the bid-ask interval. Only when S̃t equals p1´λqSt
or St we shall allow the parameter c to vary.

Assumption 3.3. A log-utility agent, who can invest in a frictionless way
(i.e. without paying transaction costs) in the market S̃ does not want to
change her positions in stock and bond as long as S̃t ranges in the interior
sp1´ λqSt, Str of the bid-ask interval.

Assumption 3.3 is, of course, motivated by the results on the shadow price
process in Section 2 (Def. 2.7).

Here are two consequences of the above assumptions. Suppose that S̃t
satisfies

dS̃t

S̃t
“ µ̃tdt` σ̃tdWt, (79)

where pµ̃tqtě0 and pσ̃tqtě0 are general predictable processes which we eventu-
ally want to determine. Applying Itô to (78) and dropping the subscript c of
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gc for the moment (and supposing that g is sufficiently smooth), we obtain

dpgpStqq “ g1pStqdSt `
g2pStq

2
dxSyt, or, equivalently

dS̃t

S̃t
“
g1pStq

gpStq
dSt `

g2pStq

2gpStq
dxSyt.

Inserting (69) we obtain in (79) above (compare [34])

σ̃t “
σg1pStqSt
gpStq

(80)

µ̃t “
µg1pStqSt `

σ2

2
g2pStqS

2
t

gpStq
(81)

and in particular the relation

µ̃t
σ̃2
t

“
gpStqrµg

1pStqSt `
σ2

2
g2pStqS

2
t s

σ2g1pStq2S2
t

. (82)

On the other hand, it follows from Theorem 3.1 that the optimal pro-
portion π̃ of the investment ϕ1S̃ into stock to total wealth ϕ0 ` ϕ1S̃ for the
log-utility optimizer in the frictionless market S̃ is given by

π̃t “
ϕ1
t S̃t

ϕ0
t ` ϕ

1
t S̃t

“
gpStq

c` gpStq
, (83)

where

c :“
ϕ0
t

ϕ1
t

(84)

is the ratio of positions ϕ0
t and ϕ1

t in bond and stock respectively. Assumption
3.3 implies that ϕ0

t and ϕ1
t , and therefore also the parameter c, should remain

constant when S̃ ranges in the interior sp1´ λqSt, Str of the bid-ask spread.
We have assembled all the ingredients to yield a unifying equation: on

the one hand side, the ratio π̃t of the value of the investment in stock and
total wealth (both evaluated by using the shadow price S̃) is given by formula
(83). On the other hand, by formula (72) in Theorem 3.1 and Assumption
3.3 we must have π̃t “

µ̃t
σ̃2
t

and the latter ratio is given by (82). Hence

π̃t “
gpStq

c` gpStq
“
gpStqrµg

1pStqSt `
σ2

2
g2pStqS

2
t s

σ2g1pStq2S2
t

.

Rearranging this equation and substituting St by the variable s P R`, we
arrive at the ODE

g2psq “
2g1psq2

c` gpsq
´

2µg1psq

σ2s
, s ą 0. (85)
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Somewhat surprisingly this ODE admits a closed form solution (compare,
however, Section 3.9 below for a good reason why we actually find a closed
form solution). Before spelling out this solution let us pass to a (heuristic)
discussion of the initial conditions of the ODE (85). Fix t0 ě 0 and suppose
that we have St0 “ 1 which is just a matter of normalization. More impor-
tantly, suppose also that S̃t0 “ St0 “ 1. The economic interpretation is that
the economic agent was just buying stock at time t0 which forces the shadow
price S̃t0 to equal the ask price St0 . We also suppose (very heuristically!) that
pStqtě0 starts a positive excursion at time t0, i.e. St ą St0 for t ą t0 such
that t´ t0 is sufficiently small.

We then are led to the initial conditions for (85)

gp1q “ 1, g1p1q “ 1. (86)

The second equation is a “smooth pasting condition” requiring that St
and S̃t “ gpStq match of first order around t “ t0. The necessity of this
condition is intuitively rather clear and will become obvious in subsection
3.7 below.

We write θ “ µ
σ2 as (85) only depends on this ratio. As Mathematica tells

us, the general form of the solution to (85) satisfying the initial conditions
(86) then is given by

gpsq “ gcpsq “
´cs` p2θ ´ 1` 2cθqs2θ

s´ p2´ 2θ ´ cp2θ ´ 1qqs2θ
(87)

unless θ “ 1
2
, which is a special case (see (88) below) that can be treated

analogously. The parameter c defined in (84) is still free in (87).

As regards the given mean-variance ratio θ “ µ
σ2 ą 0, we have to dis-

tinguish the regimes θ Ps0, 1r, θ “ 1, and θ ą 1. Let us start by discussing
the singular case θ “ 1: in this case (see Theorem 3.1) the optimal solution
in the frictionless market S “ pStqtě0 defined in (69) is given by π̂t ” 1.
Speaking economically, the utility maximizing agent, at time t “ 0, invests
all her wealth into stock and keeps this position unchanged until maturity
T. In other words, no dynamic trading takes place in this special case, even
without transaction costs. We therefore expect that this case will play a
special (degenerate) role when we pass to transaction costs λ ą 0.

The singular case θ “ 1 divides the regime θ Ps0, 1r from the regime
θ ą 1. In the former the log-utility maximizer holds positive investments in
stock as well as in bond, while in the latter case she goes short in bond and
invests more than her total wealth into stock. These well-known facts follow
immediately from Theorem 3.1 in the frictionless case and we shall see in
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Theorem 3.10 below that this basic feature still holds true in the presence of
transaction costs, at least for λ ą 0 sufficiently small.

The mathematical analysis reveals that the case θ “ 1
2

also plays a special
role (apart from the singular case θ “ 1): in this case the general solution to
the ODE (85) under initial conditions (86) involves logarithmic terms rather
than powers:

gpsq “ gcpsq “
c` 1` c logpsq

c` 1´ logpsq
. (88)

But this solution is only special from a mathematical point of view while,
from an economic point of view, this case is not special at all and we shall
see that the solution (88) nicely interpolates the solution (87), for θ Ñ 1

2
.

We now pass to the elementary, but tedious, discussion of the qualitative
properties of the functions gcp¨q in (87) and (88) respectively. As this discus-
sion amounts - at least in principle - to an involved version of a high school
exercise, we only resume the results and refer for proofs to [34, Appendix A].

3.3 The case 0 ă θ ă 1

In this case we consider the function gpsq “ gcpsq given by (87) and (88)
respectively, on the right hand side of s “ 1, i.e. on the domain s P r1,8r.
Fix the parameter c in s1´θ

θ
,8r for θ Ps0, 1

2
s (resp. in s1´θ

θ
, 1´θ

θ´
1
2

r for θ P

s1
2
, 1r). Plugging s “ 1 into the ODE (85) we observe that the above domains

were chosen in such a way to have g2c p1q ă 0. Hence for fixed c P s1´θ
θ
,8r

(resp. c P s1´θ
θ
, 1´θ

θ´
1
2

r for θ Ps1
2
, 1r) the function gcp¨q is strictly concave in a

neighbourhood of s “ 1 so that from (86) we obtain

gcpsq ă s,

for s ‰ 1 sufficiently close to s “ 1.
Figure 3 is a picture of the qualitative features of the function gcp¨q on

s P r1, ŝr. The point ŝ ą 1 is the pole of gcp¨q where the denominator in (87)
(resp. (88)) vanishes.

The function gc is strictly increasing on r1, ŝr; it is concave in a neighbor-
hood of s “ 1, then has a unique inflection point in s1, ŝr, and eventually is
convex between the inflection point and the pole ŝ.

We also observe that, for 1´θ
θ
ă c1 ă c2 we have gc1psq ą gc2psq, for

s P r1, ŝr, where ŝ is the pole of the function gc1 as displayed in Figure 4.

37



1
1 s

`
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gcHsL

Figure 3: The function gcpsq.

gc1
HsL

gc2
HsL

1
1

s

gcHsL

Figure 4: The functions gc1psq and gc2psq, for c1 ă c2.
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We still have to complement the boundary conditions (86) for the ODE
(85) at the other endpoint, corresponding to the “selling boundary”: we want
to find a point s̄ “ s̄pcq P s1, ŝr and 0 ă λ ă 1 such that

gcps̄q “ p1´ λqs̄, g1cps̄q “ p1´ λq. (89)

Geometrically this task corresponds to drawing the unique line through the
origin which tangentially touches the graph of gcp¨q. See Figure 5.

1 s�

1

Figure 5: Smooth pasting conditions for the function g.

If we have found this tangent and the touching point s̄, then (89) holds
true, where p1´ λq is the slope of the tangent.

In fact, for fixed c P s1´θ
θ
,8r and θ Ps0, 1

2
s (resp. c P s1´θ

θ
, 1´θ

θ´
1
2

r and

θ Ps1
2
, 1r) one may explicitly solve the two equations (89) in the two variables

λ and s̄ by simply plugging in formula (87) to obtain, for 1´θ
θ
ă c ă 8,

s̄ “ s̄pcq “

ˆ

c

p2θ ´ 1` 2cθqp2´ 2θ ´ cp2θ ´ 1qq

˙1{p2θ´1q

, (90)

λ “ λpcq “
p1´ 2pc` 1qθqs̄pcq2θ ` cs̄pcq

s̄pcq pp2pc` 1qθ ´ c´ 2qs̄pcq2θ ` s̄pcqq
` 1, (91)

gps̄q “ (92)

p2pc` 1qθ ´ 1q

ˆ

´

´
p2pc`1qθ´1qp2pc`1qθ´c´2q

c

¯
1

1´2θ

˙2θ

´ c
´

´
p2pc`1qθ´1qp2pc`1qθ´c´2q

c

¯
1

1´2θ

p2pc` 1qθ ´ c´ 2q

ˆ

´

´
p2pc`1qθ´1qp2pc`1qθ´c´2q

c

¯
1

1´2θ

˙2θ

`

´

´
p2pc`1qθ´1qp2pc`1qθ´c´2q

c

¯
1

1´2θ

.

39



In the special case θ “ 1
2
, where 1´θ

θ
“ 1, we obtain the somewhat simpler

formulae

s̄ “ s̄pcq “ exp

ˆ

c2 ´ 1

c

˙

, 1 ă c ă 8, (93)

λ “ λpcq “ 1´ c2 exp

ˆ

1´ c2

c

˙

, 1 ă c ă 8, (94)

gps̄q “ gcps̄pcqq “ c2, 1 ă c ă 8. (95)

We summarize what we have found so far.

Proposition 3.4. Fix θ P s0, 1r and c P s1´θ
θ
,8r (resp. c P s1´θ

θ
, 1´θ

θ´
1
2

r if

θ Ps1
2
, 1r). Then the function gpsq “ gcpsq defined in (87) (resp. (88)) is

strictly increasing in r1, s̄s, where s̄ “ s̄pcq is defined in (90) (resp. (93)). In
addition, g satisfies the boundary conditions

gcp1q “ 1, g1cp1q “ 1,

gcps̄q “ p1´ λqs̄, g1cps̄q “ 1´ λ,

where λ is given by (91) (resp. (94)).

Proof: The energetic reader may verify the above assertions by simply
calculating all the above expressions and discussing the function g1c.

The drawback of the above proposition is that c is the free variable pa-
rameterizing the solution. The transaction costs λ “ λpcq in (91) (resp. (94))
are a function of c. Our original problem, however is stated the other way
round: the level 0 ă λ ă 1 of transaction costs is given and c as well as
s̄ “ s̄pcq and the function g “ gc depend on λ. In other words, we have to
invert the formulae (91) and (94). Unfortunately, when we shall do this final
step, we will have to leave the pleasant case of closed form solutions which
we have luckily encountered so far. We shall only be able to determine the
inverse function of (91) (resp. (94)) locally around λ “ 0 as a fractional
Taylor series in λ (see (97) below). As this Taylor series only converges in
some neighborhood of λ “ 0, from now on, every assertion has to be pre-
ceded by the caveat “for λ ą 0 sufficiently small”. Hence we are interested
in the behavior of the function λ “ λpcq in (91) (resp. (94)) when c is in a
neighborhood of the left limit 1´θ

θ
of its domain: this corresponds to λ being

in a neighborhood of zero.
In order to keep the calculations simple we focus on the special case θ “ 1

2
.

The arguments carry over to the case of general 0 ă θ ă 1, at the expense
of somewhat longer formulae (compare [34]).
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Differentiating λpcq in (94) with respect to c we obtain

λ1pcq “ pc´ 1q2 exp
´

1´c2

c

¯

,

λ2pcq “ pc´ 1q expp1´c2

c
q´3c3`5c2`c´1

c2
,

λ3pcq “
1` c2p3` cp´6` p´3` cq2cqq

c4
exp

ˆ

1

c
´ c

˙

so that λp1q “ λ1p1q “ λ2p1q “ 0 while λ3p1q “ 2 ‰ 0. Therefore the Taylor
expansion of the analytic function λpcq around c “ 1 starts as

λpcq “ 1
3
pc´ 1q3 `Opc´ 1q4.

This implies that the function c ÞÑ λpcq given in (94) λ “ 0 is locally in-
vertible around c “ 1 and that the inverse function λ ÞÑ cpλq has a fractional
Taylor expansion in terms of powers of λ1{3 around λ “ 0, with leading term

cpλq “ 1` 31{3λ1{3
`Opλ2{3

q. (96)

As shown in [34] one may algorithmically determine all the coefficients
in the above fractional Taylor expansion (96) of the function λ ÞÑ cpλq. This
not only works for the specially simple case θ “ 1

2
considered above, but for

all θ P s0, 1r and the coefficients are explicit functions of θ, which turn out
to be fractional powers of certain rational functions of θ (see Proposition 3.5
below as well as Proposition 6.1 of [34] for the details).

Once we have expanded the parameter c as a function of λ around λ “ 0
we can, for c “ cpλq, also plug this expansion into all the other quantities
depending on c, e.g. s̄ “ s̄pcq given in (90) (resp. (93)), to again obtain frac-
tional Taylor expansions in λ. We resume our findings in the next proposition
and refer to [34] for details and full proofs.

Proposition 3.5. Fix θ Ps0, 1r. There are fractional Taylor series

cpλq “
1´ θ

θ
`

1´ θ

2θ

ˆ

6

θp1´ θq

˙1{3

λ1{3

`
p1´ θq2

4θ

ˆ

6

θp1´ θq

˙2{3

λ2{3
`Opλq (97)

s̄pλq “ 1`

ˆ

6

θp1´ θq

˙1{3

λ1{3
`

1

2

ˆ

6

θp1´ θq

˙2{3

λ2{3
`Opλq (98)

such that, for λ ě 0 sufficiently small, the above series converge. The func-
tion gpsq “ gcpλqpsq, defined on the interval r1, s̄pλqs and given in (87) (resp.
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(88)), then satisfies the ODE (85) as well as the boundary conditions

gp1q “ 1, g1p1q “ 1,

gps̄pλqq “ p1´ λqs̄pλq, g1ps̄pλqq “ p1´ λq.

3.4 Heuristic construction of the shadow price process

Fix θ P s0, 1r and λ ą 0 as in the previous proposition. We shall continue
to do some heuristics in this sub-section to motivate the sub-sequent formal
definition. Define

S̃t “ gpStq, t ě 0, (99)

where g “ gcpλq was defined in (87) and cpλq in (97).

Normalize S to satisfy S0 “ 1 so that also S̃0 “ gpS0q “ 1, and suppose
(again heuristically!) that S starts a positive excursion at time t “ 0, i.e.
that St ą 1 for t ą 0 sufficiently small. In sub-section 3.2 the function g has
been designed in such a way that the log-utility optimizer in the frictionless

market S̃ keeps her holdings ϕ0
t and ϕ1

t constant, where the ratio
ϕ0
t

ϕ1
t
“

ϕ0
t

ϕ1
t S̃0

equals the constant c “ cpλq (in (97)).
But what happens if St hits the boundaries 1 or s̄ of the interval r1, s̄s?

Say, at time t0 ą 0 we have for the first time after t “ 0 that again we have
St0 “ 1. Consider the Brownian motion W “ pWtqtě0 during the infinitesimal
interval rt0, t0 ` dts.

Interpreting, following a good tradition applied in physics, W as a random
walk on an infinitesimal grid, we have (heuristically!) two possibilities for the
increment of W : either dWt0 :“ Wt0`dt ´Wt0 “ dt1{2 or dWt0 :“ Wt0`dt ´

Wt0 “ ´dt
1{2.

Let us start with the former case: we then have dSt0 “ St0pµ dt`σ dt
1{2q

so that, continuing to define S̃ by (99)

dS̃t0 :“ gpSt0`dtq ´ gpSt0q “ g1pSt0qdSt0 `
1
2
g2pSt0qdxSyt0

“ St0pµ dt` σ dt
1{2
q `

g2p1q

2
S2
t0
σ2dt (100)

“ σ dt1{2 `

ˆ

µ`
g2p1q

2
σ2

˙

dt.

Note that g2p1q “ 2
c`1

´ 2θ ă 0, as follows from (80).

The case dWt0 “ ´dt1{2 is different from the case dWt0 “ `dt1{2: in
this case we cannot blindly use definition (99) to find S̃t0`dt, as St0`dt is
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(infinitesimally) outside the domain of definition r1, s̄s of g. In this case we
move S̃ identically to S: in Fig. 4 this corresponds geometrically to the fact
that S̃ decreases along the identity line. We then get

dS̃t0 “ dSt0 “ St0pµ dt´ σ dt
1{2
q (101)

“ ´σ dt1{2 ` µ dt.

When St0 thus has moved out of the domain r1, s̄s of g, the agent also
has to rebalance the portfolio pϕ0

t , ϕ
1
t q in order to keep the ratio of wealth in

bond and wealth in stock

c “
ϕ0
t0

ϕ1
t0S̃t0

“
ϕ0
t0`dt

ϕ1
t0`dt

S̃t0`dt
(102)

constant. This is achieved by buying an infinitesimal amount (of order dt1{2)
of stock at ask price St0 “ S̃t0 “ 1. In order for (102) to match with (101)
we must have

dϕ1
t0
“ ϕ1

t0

c

c` 1
σ dt1{2, dϕ0

t0
“ ´ϕ0

t0

1

c` 1
σ dt1{2 (103)

as one easily checks by plugging (103) into (102) (neglecting terms of higher
order than dt1{2). Note in passing that S̃t0`dt “ St0`dt also corresponds to
the last fact that the agent is buying stock during the infinitesimal interval
rt0, t0 ` dts.

We continue the discussion of the case Wt0`dt´Wt0 “ ´dt
1{2 by passing to

the next infinitesimal interval rt0`dt, t0`2dts : again we have to distinguish
the case Wt0`2dt´Wt0`dt “ `dt

1{2 and Wt0`2dt´Wt0`dt “ ´dt
1{2. Let us first

consider the second case: we then continue to move S̃ in an identical way as
S (compare (101)) and to keep buying stock at price St0`dt which yields the
same formula as in (103) , neglecting again terms of higher order than dt1{2.

But what do we do if Wt0`2dt´Wt0`dt “ `dt
1{2? The intuition is that we

now move again into the no-trade region, where S̃ should depend on S in a
functional way, similarly as in (99). This is indeed the case, but the function
g now has to be rescaled. The domain of definition r1, s̄s has to be replaced by
the interval rmt,mts̄s, where pmtqtě0 denotes the (local) running minimum of
the process pStqtě0 : in our present infinitesimal reasoning (neglecting terms
of higher order than dt1{2) we have mt0`dt “ St0`dt “ 1´σ dt1{2. If pStqtět0`dt
starts a positive excursion at time t0` dt, which heuristically corresponds to
Wt0`2dt ´Wt0`dt “ `dt

1{2, we define S̃ by

S̃t “ mt g

ˆ

St
mt

˙

, t ě t0 ` dt, (104)
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where t ě t0 ` dt is sufficiently small so that pStqtět0`dt remains above
mt0`dt “ St0`dt “ 1´ σ dt1{2.

We have used the term mt rather than 1 ´ σdt1{2 in order to indicate
that the previous formula not only holds true for the infinitesimal reasoning,
but also for finite movements by considering the running minimum process
mt “ inf0ďuďt Su.

Summing up: during positive excursions of pStqtě0 we expect the process
pS̃tqtě0 to be defined by forumla (104), while at times t when pStqtě0 hits
its running minimum mt “ min0ďuďt Su we simply let S̃t “ St and buy
stock similarly as in (103), following the movements of the running minimum
pmtqtě0.

The behavior of S̃ might remind of a reflected diffusion: by (104), we
always have S̃t ď St, with equality happening when St equals its running
minimum mt. It is well-known that the set tt P R` : St “ mtu is a Cantor-like
subset of R` of Lebesgue measure, related to “local time”. There is, however
an important difference between the present situation and, say, reflected
Brownian motion p|Wt|qtě0: we shall prove below that pS̃tqtě0 is a diffusion,
i.e. its semi-martingale characteristics are absolutely continuous with respect
to Lebesgue measure. In other words, the process pS̃tqtě0 does not involve a
“local time component”. The reason for this remarkable feature of S̃ is the
smooth pasting condition g1p1q “ 1 in (87). This condition yielded in the
above calculations that the leading terms of the differentials (100) and (101)
are - up to the sign - identical, namely σ dt1{2 and ´σ dt1{2. In other words,
when mt “ St “ S̃t so that the movement of S̃ is given by the regime (100)
or (101), the effect of order dt1{2 on the movement of S̃t is given by σ dWt as
the leading terms in (100) and (101) are symmetric. This distinguishes the
behavior of the process S̃ from, e.g., reflected Brownian motion where this
relation fails to be symmetric when reflection takes place.

A closer look at the differentials (100) and (101) reveals that the terms
of order dt do not coincide any more. However, this will do no harm, as the
set of time instances t where St “ S̃t, i.e. St equals its running minimum
mt, only is a set of Lebesgue measure zero. Integrating quantities of order
dt over such a set will have no effect.

The fact that the terms of order dt do not coincide in (100) and (101)
corresponds to the fact that the extended function G : r0, s̄s Ñ r0, p1´ λqs̄

Gpsq “

#

s, for 0 ď s ď 1

gpsq, for 1 ď s ď s̄

is once, but not twice differentiable: the second derivative is discontinuous
at the point s “ 1 (with finite left and right limits). It is well known that
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such an isolated discontinuity of the second derivate does not restrict the
applicability of Itô’s lemma, which is the more formal version of the above
heuristics.

Here is another aspect to be heuristically discussed before we turn to
the mathematically precise formulation (Theorem 3.6 below) of the present
theme. So far we have only dealt with the case when the process S̃t equals
the ask price St or makes some (small) excursion away from it. We still have
to discuss the behavior of S̃ when it makes a “large” excursion, so that S̃t
hits the bid price p1´ λqSt. In this case an analogous phenomenon happens,
with signs reversed.

To fix ideas, suppose again (heuristically) that the process pStqtě0 starts
a positive excursion at S0 “ 1 and hits the level s̄ ą 1 at some time t1 ą 0.
We then have, in accordance with (99),

S̃t “ gpStq, 0 ď t ď t1, (105)

and S̃t1 “ gps̄q “ p1´λqSt1 , i.e. S̃t hits the bid price p1´λqSt at time t “ t1.
What happens now? Again we distinguish the cases dWt1 “ Wt1`dt ´Wt1 “

˘dt1{2. If dWt1 “ ´dt
1{2, we turn back into the no-trade region: we continue

to define S̃ via (105) also at time t1`dt. If, however dWt1 “ `dt
1{2 we define

S̃t1`dt “ p1´ λqSt1`dt,

i.e., the relation between S̃ and S is given by the straight line through the
origin with slope 1 ´ λ (see Figure 5). We then sell stock at the bid price
S̃t1 “ p1´ λqSt1 in a similar way as in (103), but now with the signs of dϕ0

t1

and dϕ1
t1

reversed, as well as slightly different constants (compare (119) -
(122) below).

Instead of considering the running minimum process m, we have to moni-
tor from time t1 on the (local) running maximum process M which is defined
by

Mt “ max
t1ďuďt

Su, t ě t1.

We then define, for t ě t1, similarly as in (104),

S̃t “
Mt

s̄
g

ˆ

s̄St
Mt

˙

, (106)

so that S̃t “ p1 ´ λqSt whenever St “ Mt, in which case we sell stock in
infinitesimal portions of order dt1{2. When St ăMt we have S̃t ą p1´λqSt in
(106) and we do not do any trading. We continue to act according to these
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rules until the next “large” negative excursion happens where we get St “
Mt

s̄

so that S̃t “ St in (106). When this happens we again switch to the regime
of buying stock, monitoring (locally) the running minimum process mt etc
etc.

We repeatedly used the word “locally” when speaking about the running
minimum pmtqtě0 (resp. running maximum pMtqtě0) of St. Let us make pre-
cise what we have in mind, thus also starting to translate the above heuris-
tics (e.g., arguing with “immediate” excursions) into proper mathematics.
At time t “ 0, we start by defining S̃0 :“ S0 which corresponds to the fact
that we assume that at time t “ 0 the agent buys stock (which holds true
for µ ą 0 and λ sufficient small).

Now define sequences of stopping times p%nq
8
n“0, pσnq

8
n“1 and processes

pmtqtě0 and pMtqtě0 as follows: let %0 “ 0 and m the running minimum
process of S, i.e.

mt “ inf
%0ďuďt

Su, 0 ď t ď σ1, (107)

where the stopping time σ1 is defined as

σ1 “ inftt ě %0 : St
mt
ě s̄u.

Next define M as the running maximum process of S after time σ1, i.e.

Mt “ sup
σ1ďuďt

Su, σ1 ď t ď %1, (108)

where the stopping time %1 is defined as

%1 “ inftt ě σ1 : St
Mt
ď 1

s̄
u.

For t ě %1, we again define

mt “ inf
%1ďuďt

Su, %1 ď t ď σ2, (109)

where
σ2 “ inftt ě %1 : St

mt
ě s̄u,

and, for t ě σ2, we define

Mt “ sup
σ2ďuďt

Su, σ2 ď t ď %2,

where
%2 “ inftt ě σ2 : St

Mt
ď 1

s̄
u.
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Continuing in an obvious way we obtain a.s. finite stopping times p%nq
8
n“0

and pσnq
8
n“1, increasing a.s. to infinity, such that m (resp. M) are the rela-

tive running minima (resp. maxima) of S defined on the stochastic intervals
pJ%n´1, σnKq8n“1 (resp. pJσn, %nKq8n“1 ). Note that

s̄m%n “M%n “ s̄S%n , for n P N,

and
s̄mσn “Mσn “ Sσn , for n P N.

We may therefore continuously extend the processes m and M to R` by
letting

Mt :“ s̄mt, for t P
8
ď

n“0

J%n, σn`1K, (110)

mt :“ Mt

s̄
, for t P

8
ď

n“1

Jσn, %nK. (111)

For t ě 0, we then have s̄mt “Mt as well as mt ď St ďMt, and hence

mt ď St ď s̄mt, for t ě 0.

By construction, the processes m and M are of finite variation and only
decrease (resp. increase) on the predictable set tmt “ Stu (resp. tMt “ Stu “
tmt “ St{s̄uq.

We thus have that the process

Xt “
St
mt

“
s̄St
Mt

(112)

takes values in r1, s̄s, is reflected at the boundaries and satisfies

dXt “ Xtpµ dt` σ dWtq, (113)

when Xt P s1, s̄r.
In other words, prmt,Mtsqtě0 is an interval-valued process such that Mt

mt
”

s̄, and such that St always lies in rmt,Mts. The interval prmt,Mtsqtě0 only
changes location when St touches mt or Mt, in which case mt is driven down
(resp. Mt is driven up) whenever St hits mt (resp. Mt).

The full SDE satisfied by the process X therefore is

dXt “ Xtpµ dt` σ dWtq ´
dmt

mt

`

1tXt“1u ` s̄1tXt“s̄u
˘

. (114)
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3.5 Formulation of the Theorem

Finally, it is time to formulate a mathematically precise theorem.

Theorem 3.6. Fix θ “ µ
σ2 P s0, 1r and S0 “ 1 in the Black-Scholes model

(69). Let cpλq, s̄pλq, and gp¨q “ gcpλqp¨q be as in Proposition 3.5 where we
suppose that the transaction costs λ ą 0 are sufficiently small.

Define the continuous process S̃ “ pS̃tqtě0 by

S̃t “ mt g

ˆ

St
mt

˙

, t ě 0, (115)

where the process pmtqtě0 is defined in (107), (109) and (111).
Then S̃ is an Itô process, starting at S̃0 “ 1, and satisfying the stochastic

differential equation

dS̃t “ g1
ˆ

St
mt

˙

dSt `
1

2mt

g2
ˆ

St
mt

˙

dxSyt. (116)

Moreover S̃ takes values in the bid-ask spread rp1´ λqS, Ss.

Proof: We may apply Itô’s formula to (115). Using (112), (114) and
keeping in mind that pmtqtě0 is of finite variation, we obtain

dS̃t “ d pmtgpXtqq

“ mt d pgpXtqq ` gpXtq dmt

“ mt

´

g1pXtq dXt `
g2pXtq

2
dxXyt

¯

` gpXtqdmt

“ mt

´

g1pXtq

´

Xtpµ dt` σ dWtq ´
dmt
mt

`

1tXt“1u ` s̄1tXt“s̄u
˘

¯

`
g2pXtq

2
X2
t σ

2 dt
¯

` gpXtq dmt

“ g1
´

St
mt

¯

Stpµ dt` σ dWtq `
1
2
g2p St

mt
q 1
mt

S2
t σ

2 dt

´ g1pXtq dmt

`

1tXt“1u ` s̄1tXt“s̄u
˘

` gpXtq dmt

“ g1
´

St
mt

¯

dSt `
g2

ˆ

St
mt

˙

2mt
dxSyt,

where in the last line we have used that dmt ‰ 0 only on tXt “ 1uYtXt “ s̄u
and gpsq “ s g1psq for s “ 1 as well as for s “ s̄.

Corollary 3.7. Under the assumptions of Theorem 3.6, fix a horizon T ą 0
and consider an economic agent with initial endowment x ą 0 who can trade
in a frictionless way in the stock pS̃tq0ďtďT as defined in (115).
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The unique process pϕ̂0
t , ϕ̂

1
t q0ďtďT of holdings in bond and stock respectively

which optimizes

E
”

log
´

x` pϕ1
¨ S̃qT

¯ı

Ñ max! (117)

where ϕ1 runs through all predictable, S̃-integrable, admissible1 processes and
ϕ0
t “ x` pϕ1 ¨ S̃qt ´ ϕ

1
t S̃t, is given by the following formulae.

pϕ̂0
0´, ϕ̂

1
0´q “ px, 0q, pϕ̂0

0, ϕ̂
1
0q “

ˆ

c

c` 1
x,

1

c` 1
x

˙

(118)

and

ϕ̂0
t “ ϕ̂0

%k´1

ˆ

mt

m%k´1

˙
1
c`1

on
8
ď

k“1

J%k´1, σkK, (119)

ϕ̂0
t “ ϕ̂0

σk

ˆ

mt

mσk

˙

p1´λqs̄
c`p1´λqs̄

on
8
ď

k“1

Jσk, %kK, (120)

as well as

ϕ̂1
t “ ϕ̂1

%k´1

ˆ

mt

m%k´1

˙´ c
c`1

on
8
ď

k“1

J%k´1, σkK, (121)

ϕ̂1
t “ ϕ̂1

σk

ˆ

mt

mσk

˙´ c
c`p1´λqs̄

on
8
ď

k“1

Jσk, %kK. (122)

The corresponding fraction of wealth invested into stock is given by

π̃t “
ϕ̂1
t S̃t

ϕ̂0
t ` ϕ̂

1
t S̃t

“
1

1` c{gp St
mt
q
. (123)

Proof: By (115), S̃ is an Itô process with locally bounded coefficients. We
may write (116) as

dS̃t

S̃t
“ g1

ˆ

St
mt

˙

dSt

mtgp
St
mt
q
`

1

2m2
t

g2
ˆ

St
mt

˙

dxSyt

gp St
mt
q

“
S2
t σ

2g1p
St
mt
q2

m2
t

´

c` gp St
mt
q

¯

gp St
mt
q

loooooooooooomoooooooooooon

“:µ̃t

dt`
Stσg1p

St
mt
q

mtgp
St
mt
q

looomooon

“:σ̃t

dWt

1Admissibility of ϕ1 is defined by requiring that the stochastic integral ϕ1 ¨ S̃ remains
uniformly bounded from below.
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It follows from the ODE (85) that the mean variance ratio process µ̃t
σ̃2
t

is a

bounded process given by

µ̃t
σ̃2
t

“
1

1` c{gp St
mt
q
. (124)

On the other hand, the adapted process pϕ̂0
t , ϕ̂

1
t qtě0 defined in (119) -

(122) is predictable. By definition,

ϕ̂0
t “ cmtϕ̂

1
t , t ě 0. (125)

For any k P N, Itô’s formula, equation (125), and the fact that dmt ‰ 0 only
on tSt “ mtu yield

dϕ̂0
t ` S̃tdϕ̂

1
t “

«

ˆ

mt

m%k´1

˙´c{pc`1q
1

c` 1

˜

ϕ̂0
%k´1

m%k´1

´ cϕ̂1
%k´1

¸ff

dmt “ 0,

on Jρk´1, σkK and likewise on Jσk, ρkK where we use the fact that dmt ‰ 0
only on tSt “ s̄mtu. Therefore pϕ̂0, ϕ̂1q is self-financing. Again by (125), the
fraction

ϕ̂1
t S̃t

ϕ̂0
t ` ϕ̂

1
t S̃t

“
1

1` c{gp St
mt
q

of wealth invested into stocks, when following pϕ̂0, ϕ̂1q, coincides with the
Merton proportion computed in (124). Hence pϕ̂0, ϕ̂1q is log-optimal and we
are done.

In order to discuss the economic message of Corollary 3.7, it is instructive
to – formally – pass to the limiting case λ “ 0. In this case we have S̃t “
St “ mt “ Mt, as well as c “ 1´θ

θ
and s̄ “ 1, so that the exponents in (119)

- (122) equal
1

c` 1
“ θ, ´

c

c` 1
“ θ ´ 1.

We thus find after properly passing to the limits in (119) - (122) the well
known formulae due to R. Merton [71]

ϕ̂0
t “ p1´ θqS

θ
t , ϕ̂1

t “ θSθ´1
t (126)

and the fraction of wealth π̃t invested into stock equals

π̃t “
1

c` 1
“ θ. (127)

50



Passing again to the present case λ ą 0, we have c ą 1´θ
θ

and s̄ ą 1. We
then find for the exponents in (119), (120)

1

c` 1
ă θ ă

p1´ λqs̄

c` p1´ λqs̄
. (128)

In fact, as was kindly pointed out to us by Paolo Guasoni ([39, Remark

after Theorem 5.1]) θ is precisely the arithmetic mean of 1
1`c

and p1´λqs̄
c`p1´λqs̄

;

this fact can be verified by inserting the formulae (87), (88), (90), and (93)
into the identity gps̄q “ p1´ λqs̄ (compare [34]).

The economic message of (119) - (122) is that we now have to distinguish
between the intervals J%k´1, σkK and Jσk, %kK. The former are those periods of
time when pmtq0ďtďT is non-increasing; correspondingly during these inter-
vals the agent only buys stock so that pϕ0

t q0ďtďT is decreasing and pϕ1
t q0ďtďT

is increasing. Similarly, the intervals Jσk, %kK are those periods during which
pmtq0ďtďT is non-decreasing so that the agent only sells stock. The depen-
dence (126) of pϕ0

t q0ďtďT and pϕ1
t q0ďtďT on S̃t “ St “ mt via a power of this

process now is replaced by the equations (119) - (122) where the exponents
are somewhat different from θ and p1 ´ θq respectively, and where we have
to distinguish whether we are in the buying or in the selling regime.

As regards the fraction of wealth π̃t invested into the stock S̃, the message
of (123) is that this fraction oscillates between 1

1`c
and 1

1`c{pp1´λqs̄q
as Xt “

St
mt

oscillates between 1 and s̄. Looking again at (128) we obtain — thanks to
Paolo Guasoni’s observation — that the Merton proportion θ lies precisely
in the middle of these two quantities. Economically speaking, this means
that the no-trade region is perfectly symmetric around θ, provided that we
measure it in terms of the fraction π̃t of wealth invested into stock where we
value the stock by the shadow price S̃ “ gpsq.

The most important message of Corollary 3.7 is that the optimal strategy
pϕ̂0

t , ϕ̂
1
t q0ďtďT only moves when pmtqtě0 moves; the buying of stock takes place

when S̃t “ St while selling happens only when S̃t “ p1´ λqSt. This property
will be crucial when interpreting S̃ as a shadow price process for the bid-ask
process prp1´ λqSt, Stsq0ďtďT .

Another important feature of the present situation is time homogeneity.
The conclusion of Corollary 3.7 does not depend on the horizon T.

3.6 Formulation of the optimization problem

We now know that Corollary 3.7 is the answer. But we don’t know yet
precisely, what the question is! To prepare for the precise formulation, let us
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start with a formal definition of admissible trading strategies in the presence
of transaction costs λ ą 0.

Definition 3.8. Fix a strictly positive stock price process S “ pStq0ďtďT with
continuous paths and transaction costs λ ą 0.

A self-financing trading strategy starting with zero endowment is a pair
of right continuous, adapted finite variation processes pϕ0

t , ϕ
1
t q0ďtďT such that

piq ϕ0
0´ “ ϕ1

0´ “ 0

piiq ϕ0
t “ ϕ0,Ò

t ´ ϕ0,Ó
t and ϕ1

t “ ϕ1,Ò
t ´ ϕ1,Ó

t , where ϕ0,Ò
t , ϕ0,Ó

t , ϕ1,Ò
t , and ϕ1,Ó

t are
the decompositions of ϕ0 and ϕ1 into the difference of increasing processes,
starting at ϕ0,Ò

0´ “ ϕ0,Ó
0´ “ ϕ1,Ò

0´ “ ϕ1,Ó
0´ “ 0, and satisfying

dϕ0,Ò
t ď p1´ λqStdϕ

1,Ó
t , dϕ0,Ó

t ě Stdϕ
1,Ò
t , 0 ď t ď T. (129)

The trading strategy pϕ0, ϕ1q is called admissible if there is M ą 0 such that

Vtpϕ
0, ϕ1

q :“ ϕ0
t ` pϕ

1
t q
`
p1´ λqSt ´ pϕ

1
t q
´St ě ´M, (130)

holds true a.s., for 0 ď t ď T.

For example, the process pϕ̂0
t ´ x, ϕ̂

1
t q0ďtďT , where pϕ̂0, ϕ̂1q was defined in

Corollary 3.7 is an admissible trading strategy with zero endowment. Indeed,
the buying of the stock, i.e. dϕ1,Ò

t ‰ 0, only takes place when S̃t “ St and the
selling, i.e. dϕ1,Ó

t ‰ 0, happens only when S̃t “ p1´λqSt. In addition, pϕ̂0
t qtě0

and pϕ̂1
t qtě0 are of finite variation and as 0 ă θ ă 1, we have ϕ̂0

t ą 0, ϕ̂1
t ą 0.

Now we define a convenient version of our optimization problem.

Definition 3.9. Fix θ “ µ
σ2 P s0, 1r in the Black-Scholes model (69), trans-

action costs λ ą 0 sufficiently small, as well as an initial endowment x ą 0
and a horizon T.

Let pS̃tq0ďtďT be the process defined in Theorem 3.6. The optimization
problem is defined as

pPxq E
”

logpx` ϕ0
T ` ϕ

1
T S̃T q

ı

Ñ max! (131)

where pϕ0, ϕ1q runs through the admissible trading strategies with transaction
costs λ starting with zero endowment pϕ0

0´
, ϕ1

0´
q “ p0, 0q.

The definition is designed in such a way that the subsequent result holds
true.

Theorem 3.10. Under the hypotheses of Definition 3.9 the unique optimizer
in (131) is pϕ̂0 ´ x, ϕ̂1q, where pϕ̂0, ϕ̂1q are given by Corollary 3.7.

52



Proof: The process pϕ̂0, ϕ̂1q is the unique optimizer to the optimization
problem (117) when we optimize over the larger class of admissible trading
strategies in the frictionless market S̃.

As pϕ̂0, ϕ̂1q also is an admissible trading strategy in the sense of Definition
3.8 the assertion of the theorem follows a fortiori.

Let us have a critical look at the precise features of Definition 3.9. After
all, we are slightly cheating: we use the process S̃, which is part of the
solution, for the formulation of the problem. Why do we do this trick? We
just have seen that this way of defining the optimization problem allows for
the validity of the elegant Theorem 3.10. We also remark that Theorem 3.10
exhibits the same time homogeneity, i.e. non-dependence on the horizon T,
as Theorem 3.1 and Corollary 3.7.

But the honest formulation of problem (131) would be

pP 1xq E
“

logpx` ϕ0
T ` pϕ

1
T q
`
p1´ λqST ´ pϕ

1
T q
´ST q

‰

Ñ max! (132)

The economic interpretation of pP 1xq is that at time T the liquidation of
the position ϕ1

T in stock has to be done at the ask price ST or the bid price
p1´λqST , depending on the sign of ϕ1

T . On the other hand the problem pPxq
in (131) allows for liquidation at the shadow price S̃T , which is a random
variable taking values in rp1´ λqST , ST s .

The problem pP 1xq does not allow for a mathematically nice treatment as
it lacks time homogeneity (see [34] for a more detailed discussion pertaining
to the economic aspects). But pPxq is a good proxy for pP 1xq: the difference
between S̃T as opposed to p1´λqST and ST is of order λ and only pertains to
one instance of trading, namely at time T. On the other hand we have seen
in Proposition 3.5 (compare also Proposition 3.11 below) that the leading
terms of the effects of transaction costs on the dynamic trading activities
during the interval r0, T r are of order λ1{3. Hence, for fixed horizon T, the
latter effect becomes dominant as λÑ 0.

The situation becomes even better if we consider the limiting case T Ñ 8.
After proper normalization (see, e.g., (135) below) the difference between
pPxq and pP 1xq completely disappears in the limit T Ñ 8. For example, in
(137) below we find the exact dependence on λ ą 0 (involving all the powers
of λ1{3) independently of whether we consider the problem pPxq or pP 1xq. For
all these reasons we believe that pPxq is the “good” definition of the problem.

3.7 The Case θ ě 1

The preceding results pertain to the case 0 ă θ ă 1, where we have seen that
the optimal holdings pϕ̂0

t , ϕ̂
1
t q in bond as well as in stock are strictly positive,
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for all t ě 0.

The case θ “ 1 is degenerate. As is well known and immediately deduced
from Theorem 3.1, in the absence of transaction costs the optimal strategy
consists in fully investing the initial endowment x into stock at time zero,
so that ϕ̂0

t ” 0 and ϕ̂1
t ” x, if S0 is normalized to 1. In the presence of

transaction costs λ ą 0 it is rather obvious, from an economic point of view,
that this strategy still is optimal. In fact, if we define the shadow price
process S̃ simply by S̃t “ St, then the above strategy pϕ̂0

t , ϕ̂
1
t q “ p0, xq, for

0 ď t ď T also is the solution to the problem pPxq in (131) in a formal way.

More challenging is the case θ ą 1. In this regime the well-known friction-
less optimal strategy involves a short position in bond, i.e. ϕ0

t ă 0, and using
this leverage to finance a long position ϕ1

t in stock, so that ϕ1
tSt exceeds the

current wealth of the agent.
This phenomenon also carries over to the situation under (sufficiently

small) transaction costs λ ą 0. In this situation the agent buys stock when
stock prices are rising and sells stock when stock prices are falling, i.e., she
has the opposite behavior of the case 0 ă θ ă 1.

Mathematically speaking, this results in the fact that we again look at the
function g as defined in (87), satisfying the ODE (85), but now the domain
of definition of g is given by an interval rs̄, 1s, where s̄ ă 1.

1s�

1

Figure 6: Smooth pasting conditions for the function g, for θ ą 1.

The boundary conditions still are given by (86) and (89), and the formula
for c “ cpλq and s̄ “ s̄pλq still are given by (97) and (98) (applying the
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convention p´xq1{3 “ ´px1{3q, for x ą 0; see [34, Prop. 6.1] for details).
Hence, also in the case θ ą 1 we find an analogous situation as for 0 ă θ ă

1. The story simply has to be told the other way round: we start again with
the normalizing assumption S0 “ 1, as well as the definition S̃0 “ gpS0q “ 1,
which corresponds to assuming that the agent buys stock at time t “ 0, just
as above.

Now suppose (heuristically) that the stock starts a negative excursion at
time t “ 0, i.e. St ă 1, for t ą 0 small enough. We then define S̃ by

S̃t “ gpStq, t ě 0,

up to time t0 ą 0 when St hits again 1, or when St hits for the first time s̄
(which now is less than 1).

Passing to the general (and generic) case, i.e. dropping the assumption
about the negative excursion starting at t “ 0, we define the running maxi-
mum process pMtqtě0 locally by

Mt “ sup
0ďuďt

Su, 0 ď t ď %1

where %1 is the first time when St{Mt ď s̄. We define

S̃t “Mtg

ˆ

St
Mt

˙

, for 0 ď t ď %1.

During the stochastic interval J0, %1K the agent buys stock whenever pMtq0ďtď%1

moves up, following a similar logic as in (119) - (122) above.
After time %1 the agent monitors locally the running minimum process

pmtqtě%1

mt “ min
%1ďuďt

Su, %1 ď t ď σ1

where σ1 is the first time when St
mt

ě 1
s̄
. We define S̃t :“ mt

s̄
gp s̄St

mt
q for

%1 ď t ď σ1. During the stochastic interval J%1, σ1K, the agent sells stock
when mt moves down.

The reasoning is perfectly analogous to section 3.4 above. We refer to [34]
for details and only mention that, for θ ą 1, the parameter c in Proposition
3.4 now has to vary in s1´θ

θ
, 0r.

There is still one slightly delicate issue in the case θ ą 1 which we have not
yet discussed: the admissibility of the optimal strategies pϕ̂0

t , ϕ̂
1
t qtě0 which,

also in the case θ ą 1, are given by formulas (118) - (122). Now the holdings
pϕ̂1

t qtě0 in bond are negative so that we have to check more carefully whether
the agent is solvent at all times t ě 0. As ϕ̂1

t ě 0, the natural condition is

ϕ̂0
t ` ϕ̂

1
tStp1´ λq ě 0, t ě 0. (133)
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We know that
ϕ̂0
t ` ϕ̂

1
t S̃t ě 0, (134)

a.s., for each t ě 0. Indeed pϕ̂0
t , ϕ̂

1
t qtě0 is the log-optimal portfolio for the fric-

tionless market pS̃tqtě0; it is well-known form the frictionless theory (Theorem
3.1) and rather obvious that (134) has to hold true.

To show that even (133) is satisfied, fix t0 ě 0 and pϕ̂0
t0
, ϕ̂1

t0
, S̃t0q such that

S̃t0 P sp1 ´ λqSt0 , St0r. Conditionally on pϕ̂0
t0
, ϕ̂1

t0
, S̃t0q define the stopping

times % and σ.

% “ inftt ą t0 : S̃t “ Stu,

σ “ inftt ą t0 : S̃t “ p1´ λqStu.

Clearly we have, conditionally on pϕ̂0
t0
, ϕ̂1

t0
, S̃t0q, that Prσ ă %s ą 0. As

pϕ̂0
t , ϕ̂

1
t qt0ďtďσ^% remains constant and using Sσ ă St0 on tσ ă %u we deduce

from
ϕ̂0
σ ` ϕ̂

1
σS̃σ ě 0, on tσ ă %u

that
ϕ̂0
σ ` ϕ̂

1
σp1´ λqSσ ě 0 on tσ ă %u

so that
ϕ̂0
t0
` ϕ̂1

t0
p1´ λqSt0 ě ϕ̂0

σ ` ϕ̂
1
σp1´ λqSσ ě 0.

This proves (133).

3.8 The Optimal Growth Rate

We now want to compute the optimal growth rate

δ :“ lim sup
TÑ8

1

T
E
”

logp1` ϕ̂0
T ` S̃T ϕ̂

1
T q

ı

“ lim sup
TÑ8

1

T
E
„
ż T

0

µ̃2
t

2σ̃2
t

dt



, (135)

where the initial endowment x is normalized by x “ 1, and pϕ̂0, ϕ̂1q denotes
the log-optimal portfolio for the shadow price S̃ from Corollary 3.7. The
second equality follows from Theorem 3.1 and Theorem 3.10 (compare [60,
Example 6.4]).

By the construction in (112) the process X “ S{m is a geometric Brow-
nian motion with drift which is reflected on the boundaries of the interval
r1, s̄s (resp. on rs̄, 1s for the case θ ą 1). Therefore, an ergodic theorem for
positively recurrent one-dimensional diffusions (cf. e.g. [4, Sections II.36 and
II.37]) and elementary integration yield the following result.
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Proposition 3.11. Suppose the conditions of Theorem 3.6 hold true. Then
the process X “ S{m has the stationary distribution

νpdsq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2θ ´ 1

s̄2θ´1 ´ 1
s2θ´21r1,s̄spsqds for θ P p0, 1qzt1

2
u,

1

logps̄q
s´11r1,s̄spsqds for θ “ 1

2
,

2θ ´ 1

1´ s̄2θ´1
s2θ´21rs̄,1spsqds for θ P p1,8q.

Moreover, the optimal growth rate for the frictionless market with price pro-
cess S̃ as well as for the market with bid-ask process rp1 ´ λqS, Ss is given
by

δ “
ˇ

ˇ

ˇ

ż s̄

1

µ̃2psq

2σ̃2psq
νpdsq

ˇ

ˇ

ˇ

“

$

’

’

&

’

’

%

p2θ ´ 1qσ2s̄

2p1` cqps̄` p´2´ c` 2θp1` cqqs̄2θq
for θ P p0,8qzt1

2
, 1u,

σ2

2p1` cqp1` c´ log s̄q
for θ “ 1

2
,

(136)

where c and s̄ denote the constants from Proposition 3.5.
As λÑ 0, the optimal growth rate has the asymptotics

δ “
µ2

2σ2
´

ˆ

3σ3

?
128

θ2
p1´ θq2

˙2{3

λ2{3
`Opλ4{3

q. (137)

Proof: The calculation of the invariant distribution ν of the process X is
an elementary exercise. The remaining calculations are tedious, but elemen-
tary too (see [34, Proposition 5.4 and 6.3]).

3.9 Primal versus Dual Approach

In the preceding arguments we have developed the solution to the problem
of finding the growth-optimal portfolio under transaction costs by using the
“dual” approach, which also sometimes is called the “martingale method”
(compare the pioneering paper [12] by Cvitanic and Karatzas). Starting
from the Black-Scholes model (69), we have considered the “shadow price
process” S̃ “ pS̃tqtě0 which in the notation of (36) corresponds to

S̃t “
Ẑ1
t

Ẑ0
t

. (138)
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In the present context the density process pẐ0
t qtě0 is given by Girsanov’s

formula

Ẑ0
t “ exp

¨

˝´

t
ż

0

µ̃s
σ̃s
dWs ´

t
ż

0

µ̃2
s

2σ̃2
s

ds

˛

‚. (139)

It is the unique P-martingale with respect to the filtration generated by W
and starting at Ẑ0

0 “ 1, such that the process Ẑ1
t :“ Ẑ0

t S̃t is a P-martingale
too. As we have seen in Section 2, this solution of the dual problem can
be translated into the solution of the primal problem via the first order
conditions (37).

It is worthwhile to spell out explicitly the formulation of the dual problem
corresponding to (36). The conjugate function V pyq associated to Upxq “
logpxq by (34) is

V pyq “ ´ logpyq ´ 1, y ą 0.

Under the assumptions of Corollary 3.7 we define for fixed T ą 0, in
analogy to (36) and using (139),

vpyq “ ErV pyẐ0
T qs

“ ´ logpyq ´ 1` E
„
ż T

0

µ̃2
t

2σ̃2
t

dt



“ V pyq ` E
„
ż T

0

µ̃2
t

2σ̃2
t

dt



.

Hence we find as in Theorem 2.3 that vpyq is the conjugate function to
the indirect utility function associated to the shadow price process S̃

upxq “ ErUpxV̂T qs

“ logpxq ` E
„

U

ˆ

exp

ˆ
ż T

0

µ̃t
σ̃t
dWt `

ż T

0

µ̃2
t

2σ̃2
t

dt

˙˙

“ Upxq ` E
„
ż T

0

µ̃2
t

2σ̃2
t

dt



,

where

V̂T “

ˆ

expp

ż T

0

µ̃t
σ̃t
dWt `

ż T

0

µ̃2
t

2σ̃2
t

dt

˙

denotes the optimal terminal wealth for the frictionless market S̃.
The above considerations pertain to the frictionless complete market S̃;

they carry over verbatim to the bid as process rp1´λqS, Ss if we use definition
(131) for the formulation of the portfolio optimization problem.
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Another approach to finding the growth optimal portfolio is to directly at-
tack the primal problem which leads to a Hamilton-Jacobi-Bellman equation
for the value function associated to the primal problem; in economic ter-
minology this value function (see (141) below) is called the“indirect utility
function”.

This strain of literature has a longer history than the “dual approach”
[12]. In [85] Taksar, Klass and Assaf give a solution to the present problem
of finding the growth optimal portfolio, and in [28] Dumas and Luciano solve
the same problem for power utility Upxq “ xγ

γ
, 0 ă γ ă 1, rather than for

Upxq “ logpxq. Let us also mention the work of Davis and Norman [23] and
Shreve and Soner [83] on optimal consumption which proceeds by the primal
method too. We refer to [45] for an account on the ample literature persuing
this “primal” method.

We shall present here the approach of [85] and [28]. Our aim is to re-
late the “primal” and the “dual” approach, thus gaining additional insight
into the problem. While in the preceding subsections the mathematics were
finally done in a rigorous way, we now content ourselves to more informal
and heuristic considerations. We can afford to do so as we have established
things rigorously already above.

Fixing the level λ ą 0 of (sufficiently small) transactions costs, the horizon
T , and an initial endowment pϕ0, ϕ1q P R2

` in bond2 and stock, we define

upϕ0, ϕ1, s, T q “ suptErlogpϕ0
T ` ϕ

1
TST q|S0 “ ssu (140)

where pϕ0
T , ϕ

1
T q runs through all pairs of positive FT -measurable random

variables (modeling the holdings in units of bond and stock at time T ) which
can be obtained by admissible trading (and paying transaction costs λ) as in
(129), starting from initial positions pϕ0

0´, ϕ
1
0´q “ pϕ

0, ϕ1q.
The term pϕ0

T ` ϕ1
TST q in (140) above corresponds to the modeling as-

sumption that the position ϕ1
T in stock can be liquidated at time T at price

ST . One might also define (140) by using pϕ0
T `ϕ

1
T p1´λqST q. As observed at

the end of sub-section 3.6, this difference will play no role when we eventually
pass to the (properly scaled) limit T Ñ 8, hence we may as well use (140)
as is done in [28].

Turning back to a fixed horizon T ą 0, define, for 0 ď t ď T, the value
function

upϕ0, ϕ1, s, t, T q “ suptErlogpϕ0
T ` ϕ

1
TST q|St “ ssu, (141)

2in [85] and [28] no short-selling is allowed so that ϕ0 ě 0, ϕ1 ě 0. Hence we assume,
as in these papers, that θ “ µ

σ2 P s0, 1r.
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where now pϕ0
T , ϕ

1
T q range in the random variables which can be obtained,

similarly as above, by admissible trading during the period rt, T s, and starting
at time t´ with holdings pϕ0

t´
, ϕ1

t´
q “ pϕ0, ϕ1q.

The idea is to pass, for fixed t ą 0, to the limit T Ñ 8 in (141) in order
to obtain an indirect utility function upϕ0, ϕ1, s, tq not depending on the
horizon T. But, of course, by blindly passing to this limit we shall typically
find upϕ0, ϕ1, s, tq ” 8 which yields no information.

The authors of [85] and [28] therefore assume that there is a constant
δ ą 0 such that, by discounting the value of the portfolio ϕ0

T ` ϕ1
TST with

the factor eδT , we get a finite limit below.

upϕ0, ϕ1, s, tq : “ lim
TÑ8

suptErlogpe´δT pϕ0
T ` ϕ

1
TST qq|St “ ssu (142)

“ lim
TÑ8

suptErlogpϕ0
T ` ϕ

1
TST q|St “ ssu ´ δT.

According to our calculations we already know that the above δ ą 0
must be the optimal growth rate which we have found in (136). But in the
primal approach of [85] and [28], the number δ ą 0 is a free parameter which
eventually has to be determined by analyzing the boundary conditions of the
differential equations related to the indirect utility function upϕ0, ϕ1, s, tq.

To analyze the indirect utility function u, we start by making some sim-
plifications. From definition (142) we deduce that

upϕ0, ϕ1, sq :“ upϕ0, ϕ1, s, 0q “ upϕ0, ϕ1, s, tq ` δt, for t ě 0 (143)

where the left hand side does not depend on t anymore. We also use the
scaling property of the logarithm

upµϕ0, µϕ1, sq “ upϕ0, ϕ1, sq ` logpµq,

to reduce to the case where we may normalize ϕ0 to be one. To eventually
reduce the two remaining variables ϕ1 and s to simply one dimension, make
the economically obvious observation that the variables ϕ1 and s only enter
into the function u via the product ϕ1s. Introducing the new variable y “ ϕ1s

ϕ0 ,
which describes the ratio of the value of the stock investment to the bond
investment, we therefore may write u in (142) as

upϕ0, ϕ1, s, tq “ logpϕ0
q ` h

ˆ

ϕ1s

ϕ0

˙

´ δt (144)

“ logpϕ0
q ` hpyq ´ δt

for some function h : R` Ñ R to be determined.
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Let us find the Hamilton-Jacobi-Bellman equation satisfied by u. Ac-
cording to the basic principle of stochastic optimization [73], we must have
that, for any self-financing R2

`-valued trading strategy pϕ0
t , ϕ

1
t qtě0, the pro-

cess pupϕ0
t , ϕ

1
t , St, tqqtě0 is a super-martingale, which becomes a true (local)

martingale if we plug in the optimal strategy pϕ̂0, ϕ̂1q.
First consider the possible control of keeping pϕ0

t , ϕ
1
t q “ pϕ

0, ϕ1q simply
constant: this yields via (69), (142) and (144)

dupϕ0
t , ϕ

1
t , St, tq “ usdSt `

uss
2
dxSyt ´ δdt

“
ϕ1
t

ϕ0
t
h1pytqpStσdWt ` Stµdtq `

pϕ1
t q

2

pϕ0
t q

2h
2
pytq

ˆ

S2
t σ

2

2
dt

˙

´ δdt,

hence, by taking expectations and using the formal identity ErdWts “ 0,

Erdupϕ0
t , ϕ

1
t , St, tqs “

„

Stµ
ϕ1
t

ϕ0
t

h1pytq `
S2
t σ

2

2

pϕ1
t q

2

pϕ0
t q

2
h2pytq ´ δ



dt.

The term in the bracket has to be non-positive. We know already that,
within the no-trade region, it is indeed optimal to keep ϕ0

t and ϕ1
t constant.

Hence, by replacing yt “
Stϕ1

t

ϕ0
t

by the real variable y ą 0, we expect that the

function h will satisfy the ODE

h2pyq
y2σ2

2
` h1pyqyµ´ δ “ 0, (145)

where y “ ϕ1s
ϕ0 ranges in the no-trade region, which should be a compact

interval rl, rs contained in s0,8r, which we still have to determine.
Equation (145) is an elementary ODE which, by passing to logarithmic

coordinates z “ logpyq, can be reduced to a linear ODE. In particular, it has
a closed form solution. For θ “ µ

σ2 P R`zt1
2
u, the general solution is given

by

hpyq “
δ

µ´ σ2

2

logpyq ` C1y
2θ´1

` C2, (146)

while for the case θ “ µ
σ2 “

1
2

we obtain

hpyq “
δ

σ2
logpyq2 ` C1 logpyq ` C2, (147)

where the constants C1, C2 still are free.
Plugging (146) into the utility function (144) with t “ 0 we obtain

upϕ0, ϕ1, sq “ logpϕ0
q ` hpyq (148)

“ logpϕ0
q `

δ

µ´ σ2

2

logpyq ` C1y
2θ´1, (149)

61



for θ P R`zt1
2
u, and a similar expression is obtained for θ “ 1

2
. We have

set C2 “ 0 above, as an additive constant does not matter for the indirect
utility. The parameters C1 and δ are still free.

In [85] and [28] the idea is to analyze the above function and to determine
the free boundaries l, r, such that y P rl, rs is the no-trade region, where the
indirect utility function is given by (149) above. We therefore have to deal
with 4 free parameters and to find boundary conditions, involving again
smooth pasting arguments, to determine them.

We refer to [85] and [28] for the further analysis of this delicate free
boundary problem. Eventually these authors achieve numerical solutions of
the free boundary problem, but do not try to obtain analytical results, e.g.,
to develop the quantities in fractional Taylor series in λ1{3 as we have done
above.

Our concern of interest is the relation of the primal approach, in particular
the ODE (145), with the dual approach, in particular with the shadow price
process S̃.

This link is given by the economic idea of the marginal rate of substitution.
Fix t and suppose that the triple pϕ0, ϕ1, sq is such that y “ ϕ1s

ϕ0 lies in the

no-trade region. The indirect utility then is given by (144). Changing the
position ϕ0 of holdings in bond from ϕ0 to ϕ0 ` dϕ0, for some small dϕ0,
the indirect utility changes (of first order) by the quantity uϕ0dϕ0, where by
differentiating (144) and using (146) we have

uϕ0 “
1

ϕ0
´

δ

µ´ σ2

2

1

y

y

ϕ0
´ C1 y

2θ´2 y

ϕ0
.

Similarly, changing the position of ϕ1 units of stock to ϕ1` dϕ1 units for
some small dϕ1, this change of first order equals dϕ1 uϕ1 , where

uϕ1 “
δ

µ´ σ2

2

1

y

y

ϕ1
` C1 y

2θ´2 y

ϕ1
.

The natural economic question is the following: what is the price s̃ “
s̃pϕ0, ϕ1, sq for which an economic agent is — of first order — indifferent
of buying/selling stock against bond? The obvious answer is that the ratio

s̃ “ dϕ0

dϕ1 must satisfy the equality uϕ0dϕ0 “ uϕ1dϕ1. In other words, s̃ is given
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by the “marginal rate of substitution”

s̃ “
uϕ1pϕ0, ϕ1, sq

uϕ0pϕ0, ϕ1, sq
(150)

“
ϕ0

ϕ1
¨

δ

µ´
σ2

2

` C1y
2θ´1

p1´ δ

µ´
σ2

2

q ´ C1y2θ´1
. (151)

This formula for S̃ looks already reminiscent of the function S̃ “ gpsq in (87).
To make this relation more explicit, recall that we have made the following
normalizations in subsection 3.2 above: the variable s ranges in the interval
r1, s̄s and the ratio ϕ0

ϕ1 of holdings in bond and stock equals the parameter c

in formula (104), if we have the normalization mt “ 1, so that S̃t “ gpStq.

Hence y “ ϕ1s
ϕ0 “

s
c

so that in (151) we get

s̃ “ Gpsq :“

cδ

µ´
σ2

2

` C1c
2´2θs2θ´1

p1´ δ

µ´
σ2

2

q ´ C1c1´2θs2θ´1
, (152)

Using the relation

δ “ δpcq “
p2θ ´ 1qσ2s̄pcq

2p1` cqps̄` p´2´ c` 2θp1` cqs̄2θq

obtained in (136) above, we conclude that the function Gp¨q defined in (152)
above indeed equals the function g in (87) if we choose the free parameter
C1 properly. As the variable s ranges in the interval r1, s̄s, we find that
the no trade interval rl, rs for the variable y equals r1

c
, s̄
c
s and we can use

the Taylor expansions in powers of λ1{3 to explicitly determine the values of
these boundaries. We thus can provide explicit formulae for all the quantities
involved in the solution of the primal problem where the PDE approach only
could give numerical solutions.

We now understand better why we found a closed form solution for the
ODE (85). As regards the function h solving the ODE (145), there is, of
course, the closed form solution (146), as this ODE is linear (after passing
to logarithmic coordinates). Therefore the indirect utility u in (144) again
is given by an explicit formula. Hence the function G “ g, which is deduced
from the “martingale rate of substitution relation” (150), has to be so too.
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3.10 Rogers’ qualitative argument

We finish this section by recalling a lovely “back of an envelope calculation”
due to Ch. Rogers [76]. It shows that the leading term for the size s̄pλq´1 of

the no trade region is of the order λ
1
3 (compare (98)) and that the difference

of the growth rate δpλq obtained in (137) to the frictionless growth rate µ2

2σ2

is of the order λ
2
3 . In fact, these relations were already obtained in the early

work of G. Constantinides [11].
The starting point is the rather obvious assumption that, given trans-

action costs λ ą 0, the log optimal investor will keep the ratio of stock to
the total wealth investment in an interval of width w around the Merton
proportion θ “ µ

σ2 .
Taking the frictionless market as benchmark, what are the (negative) ef-

fects of transaction costs λ when choosing the width w? There are two causes.
On the one hand side one has to pay transaction costs TRC. From scaling it
is rather obvious, at least asymptotically, that these costs are proportional
to the size of transaction costs λ and indirectly proportional to the width w,
i.e. TRC « c1λw

´1 for some constant c1. Indeed, the local time spent at the
boundary of the no trade region, where trading takes place, is of the order
w´1.

The second negative influence is the cost of misplacement: in comparison
to the ideal ratio of the Merton proportion one typically is of the order w away
from it. As the utility function attains its optimum at the Merton proportion
(and assuming sufficient smoothness), the effect of the misplacement on the
performance should be proportional to the square of the misplacement. This
is, at least heuristically, rather obvious. Actually, the fact that a function
decreases like a square when it is close to its maximum was already observed
as early as in 1613 by Johannes Kepler in the context of the volume of wine
barrels. Hence the misplacement cost MPC caused by the width w of the no
trade region should asymptotically satisfy MPC « c2w

2, for some constant
c2.

The total cost TC of these two causes therefore has an asymptotic ba-
havior of the form

TC “ TRC `MPC « c1λw
´1
` c2w

2.

We have to minimize this expression as a function of w. Setting the derivative
of this function equal to zero gives for the optimal width ŵ the asymptotic

relation ŵ « cλ1{3, where c “
´

c1
2c2

¯1{3

.

As regards the effect of the transaction costs λ on the asymptotic growth
rate, we conclude from the above argument that this is the order of the square
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of the typical misplacement ω̂ which in turn is of the order λ1{3. Therefore the
difference of the frictionless growth rate µ2

2σ2 to the rate involving transaction

costs is of the oder λ2{3 (compare (137)).
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