
4 General Duality Theory

In this section we continue the line of research of Section 2 where we have
refrained ourselves to the case of finite Ω.

We now consider a stock price process S “ pStq0ďtďT in continuous time
with a fixed horizon T. The process is assumed to be based on a filtered prob-
ability space pΩ,F , pFtq0ďtďT ,Pq, satisfying the usual conditions of complete-
ness and right continuity. We assume that S is adapted and has continuous,
strictly positive trajectories, i.e. the function t Ñ Stpωq is continuous, for
almost each ω P Ω. The extension to the case of càdlàg (right continuous,
left limits) processes is more technical and we refer the reader to [18] for a
thorough treatment.

To make life easier, we even assume that the filtration pFtq0ďtďT is gener-
ated by a d-dimensional Brownian motion pWtq0ďtďT . This convenient (but
not really necessary, see [21]) assumption eases the presentation as it has the
following pleasant consequence: if pS̃tq0ďtďT is a local martingale under some
measure Q „ P, then S̃ has P-a.s. continuous paths.

Definition 4.1. Fix λ ą 0. A process S “ pStq0ďtďT as above satisfies the
condition pCPSλq of having a consistent price system under transaction costs
λ ą 0, if there is a process S̃ “ pS̃tq0ďtďT , adapted to pΩ,F , pFtq0ďtďT ,Pq such
that

p1´ λqSt ď S̃t ď St, 0 ď t ď T,

as well as a probability measure Q on F , equivalent to P, such that pS̃tq0ďtďT
is a local martingale under Q.

We say that S admits consistent price systems for arbitrarily small trans-
action costs if pCPSλq is satisfied, for all λ ą 0.

As in section 1 we observe that a λ-consistent price system can also be
written as a pair Z “ pZ0

t , Z
1
t q0ďtďT , where now Z0 is a P-martingale and

Z1 a local P-martingale. The identification again is given by the formulas
Z0
T “

dQ
dP and S̃ “ Z1

Z0 .
In [41] we related the condition of admitting consistent price systems for

arbitrarily small transaction costs to a no arbitrage condition under arbi-
trarily small transaction costs, thus proving a version of the Fundamental
Theorem of Asset Pricing under (small) transaction costs.

It is important to note that we do not assume that S is a semi-martingale
as one is forced to do in the frictionless theory [26, Theorem 7.2]. However,
the process S̃ appearing in Definition 4.1 always is a semi-martingale, as it
becomes a local martingale after passing to an equivalent measure Q.
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The notion of self-financing trading strategies pϕ0
t , ϕ

1
t q0ďtďT , starting at

pϕ0
0´
, ϕ1

0´
q “ p0, 0q as well as the notion of admissibility have been given in

Definition 3.8. For the convenience of the reader we recall it.

Definition 4.2. Fix a stock price process S “ pStq0ďtďT with continuous
paths, as well as transaction costs λ ą 0.

A self-financing trading strategy starting with zero endowment is a pair
of right continuous, adapted finite variation processes pϕ0

t , ϕ
1
t q0ďtďT such that

piq ϕ0
0´ “ ϕ1

0´ “ 0

piiq Denoting by ϕ0
t “ ϕ0,Ò

t ´ϕ
0,Ó
t and ϕ1

t “ ϕ1,Ò
t ´ϕ

1,Ó
t , the canonical decompo-

sitions of ϕ0 and ϕ1 into the difference of two increasing processes, starting
at ϕ0,Ò

0´ “ ϕ0,Ó
0´ “ ϕ1,Ò

0´ “ ϕ1,Ó
0´ “ 0, these processes satisfy

dϕ0,Ò
t ď p1´ λqStdϕ

1,Ó
t , dϕ0,Ó

t ě Stdϕ
1,Ò
t , 0 ď t ď T. (153)

The trading strategy ϕ “ pϕ0, ϕ1q is called admissible if there is M ą 0 such

that the liquidation value V
liq
t satisfies

V
liq
t pϕ0, ϕ1

q :“ ϕ0
t ` pϕ

1
t q
`
p1´ λqSt ´ pϕ

1
t q
´St ě ´M, (154)

a.s., for 0 ď t ď T.

Remark 4.3. p1q We have chosen to define the trading strategies by explic-
itly specifying both accounts, the holdings in bond ϕ0 as well as the holdings
in stock ϕ1. It would be sufficient to only specify one of the holdings, e.g. the
number of stocks ϕ1. Given a (right continuous, adapted) finite variation
process ϕ1 “ pϕ1

t q0ďtďT starting at ϕ1
0´
“ 0, which we canonically decompose

as the difference ϕ1 “ ϕ1,Ò ´ ϕ1,Ó, we may define the process ϕ0 by

dϕ0
t “ p1´ λqStdϕ

1,Ó
t ´ Stdϕ

1,Ò
t .

The resulting pair pϕ0, ϕ1q obviously satisfies (153) with equality holding true
rather than inequality. However, it is convenient in (153) to consider trading
strategies pϕ0, ϕ1q which allow for an inequality, i.e. for “throwing away
money”. But it is clear from the preceding argument that we may always
pass to a dominating pair pϕ0, ϕ1q where equality holds true in (153).

We still note that we also might start from a (right continuous, adapted)
process pϕ0

t q0ďtďT “ pϕ
0,Ò
t ´ ϕ0,Ó

t q0ďtďT and define ϕ1 via

dϕ1
t “

dϕ0,Ó
t

St
´

dϕ0,Ò
t

p1´ λqSt
.
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p2q Now suppose that, in assumption piiq above, the processes ϕ0,Ò, ϕ0,Ó,
ϕ1,Ò and ϕ1,Ó are right continuous, adapted, and starting at zero, but not
necessarily the canonical decompositions of ϕ0 “ ϕ0,Ò´ϕ0,Ó (resp. ϕ1 “ ϕ1,Ò´

ϕ1,Ó). In other words suppose that ϕ0,Ò and ϕ0,Ó (resp. ϕ1,Ò and ϕ1,Ó) may
“move simultaneously”. If the four processes satisfy the inequalities (153),
then these inequalities are also satisfied for the canonical decompositions as
one easily checks (and as is economically obvious). Summing up: in piiq above
the requirement that ϕ0,Ò, ϕ0,Ó, ϕ1,Ò and ϕ1,Ó are the canonical decompositions
could be dropped.

p3q We allow the finite variation process pϕ0
t , ϕ

1
t q0ďtďT to have jumps

which we define to be of right continuous (i.e. càdlàg) type (note that a
finite variation process automatically has left and right limits at every point
t P r0, T s). Unfortunately, we have a little problem3 at t “ 0. In fact, we
have already encountered this problem in the discrete time setting in section
1 above. In order to model a possible (right continuous) jump at t “ 0,
we have to enlarge the time index set r0, T s by adding the point 0´ which
now takes the role of the point t “ ´1 in the discrete time setting of section
1. Hence whenever we write pϕ0

t , ϕ
1
t q0ďtďT we mean, strictly speaking, the

process pϕ0
t , ϕ

1
t qtPt0´uYr0,T s.

We could avoid the problem at t “ 0 by passing to the left continuous
modification pϕ0

t´
, ϕ1

t´
q0ďtďT where pϕ0

t´
, ϕ1

t´
q “ limuÕtpϕ

0
u, ϕ

1
uq denotes the

left limits, for 0 ă t ď T. In fact, this would be quite natural, as the adapted,
càglàd (i.e. left continuous, right limits) process pϕ0

t´
, ϕ1

t´
q0ďtďT is predictable,

while the càdlàg process pϕ0
t , ϕ

1
t q0ďtďT may in general fail to be predictable

(it only is optional). In the general stochastic integration theory predictable
processes are the natural class of integrands for general semi-martingales.
However, this passage to the càglàd version shifts the “jump” problem at
t “ 0 to a similar problem at the end-point t “ T, where we would be forced
to add a point T` to r0, T s.

We have therefore decided to choose the càdlàg version pϕ0
t , ϕ

1
t qtPt0´uYr0,T s

in the above definition for the following reasons:
piq as long as we restrict ourself to the case of continuous processes S “

pStq0ďtďT , it does not make a difference whether we consider the integral
şT

0
ϕ1
tdSt or

şT

0
ϕ1
t´
dSt,

piiq most of the preceding literature uses the càdlàg versions pϕ0
t , ϕ

1
t q, and

piiiq the addition of a point T` to r0, T s seems even more awkward than the
addition of a point 0´. We refer to [18] for a thorough discussion of these
issues in the case of a general càdlàg process S.

3P. A. Meyer once observed that 0´ “plays the role of the devil” in stochastic integration
theory.
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p4q Finally, we observe for later use that in the definition piiiq of admissibility
it does not matter whether we require (154), for all 0 ď t ď T, or for all
r0, T s-valued stopping times τ.

Similarly as in (3) the simple strategies are particularly easy cases.

Proposition 4.4. Fix the continuous process S and 1 ą λ ą 0. For a
right continuous, adapted, finite variation process pϕ0

t , ϕ
1
t q0ďtďT starting at

pϕ1
0´
, ϕ0

0´
q “ p0, 0q we again denote by ϕ0,Ò

t , ϕ0,Ó
t , ϕ1,Ò

t , ϕ1,Ó
t its canonical de-

composition into differences of increasing processes.
The following assertions are equivalent (in an almost sure sense):

piq The process pϕ0
t , ϕ

1
t q0ďtďT is self-financing, i.e.

dϕ0
t ď p1´ λqStdϕ

1,Ó
t ´ Stdϕ

1,Ò
t , a.s. for 0 ď t ď T. (155)

piiq For each pair of reals 0 ď a ă b ď T, as well as for a “ 0´, b “ 0,

ϕ0,Ò
b ´ ϕ0,Ò

a ď

ż b

a

p1´ λqSudϕ
1,Ó
u , ϕ0,Ó

b ´ ϕ0,Ó
a ě

ż b

a

Sudϕ
1,Ò
u . (156)

piiiq For each pair of rationals 0 ď a ă b ď T , as well as for a “ 0´ and b “ 0

ϕ0,Ò
b ´ϕ

0,Ò
a ď pϕ1,Ó

b ´ϕ
1,Ó
a qp1´λq max

aďuďb
tSuu, ϕ0,Ó

b ´ϕ
0,Ó
a ě pϕ1,Ò

b ´ϕ
1,Ò
a q min

aďuďb
tSuu.

(157)
Proof: piq ô piiq : Inequality (155) states that the process

p

ż t

0

rp1´ λqSudϕ
1,Ó
u ´ Sudϕ

1,Ò
u ´ dϕ0

usq0ďtďT

is non-decreasing; this statement is merely reformulated in (156). Note that
the integrals in (156) make sense in a pointwise manner as Riemann-Stieltjes
integrals.
piiq ô piiiq We only have to proof piiiq ñ piiq. Suppose that piiq fails to be
true, say,

ϕ0,Ò
b ´ ϕ0,Ò

a ą

ż b

a

p1´ λqSudϕ
1,Ó
u ` δpb´ aq

for some real numbers 0 ď a ă b ď T and δ ą 0 holds true with probability
bigger than ε ą 0. Then we can approximate a and b by rationals α, β such
that the above inequality still holds true. Using the continuity of S we can
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break the integral
şβ

α
into a sum of finitely many integrals

şβi
αi

, with rational
endpoints αi, βi, such that the oscillation of S on each rαi, βis is smaller than
δ{2 on a set of probability bigger than 1 ´ ε

2
. Then (157) fails to hold true

almost surely, for some pair pαi, βiq.

Proposition 4.5. Fix S “ pStq0ďtďT and λ ą 0 as above and suppose that
pCPSλq holds true. Let pϕ0, ϕ1q “ pϕ0

t , ϕ
1
t q0ďtďT be a self-financing, admis-

sible trading strategy, and pS̃, Qq be a consistent price system.
The process

Ṽt “ ϕ0
t ` ϕ

1
t S̃t, 0 ď t ď T (158)

is a local Q-super-martingale which is uniformly bounded from below, and
therefore a super-martingale.

Proof: As pϕ1
t q0ďtďT is of bounded variation and S̃ is continuous, the

product rule applied to (158) yields

dṼt “ dϕ0
t ` S̃t dϕ

1
t ` ϕ

1
t dS̃t. (159)

As S̃ takes values in rp1´λqS, Ss, we conclude from (155) that the process
p
şt

0
pdϕ0

u ` S̃udϕ
1
uqq0ďtďT is non-increasing. The second term in (159) defines

the local Q-martingale p
şt

0
ϕ1
udS̃uq0ďtďT “ pϕ1 ¨ S̃q0ďtďT . By (154) and the

admissibility assumption, the process Ṽ is uniformly bounded from below.
It therefore is a super-martingale under Q.

Remark 4.6. The interpretation of the process Ṽ is the value of the portfolio
process pϕ0, ϕ1q if we evaluate the position ϕ1 in stock at price S̃. Note that

Ṽ ě V liq, where V liq is defined in (154).

Definition 4.7. Let S “ pStq0ďtďT and 1 ą λ ą 0 be fixed as above.
We denote by A the set of random variables pϕ0

T , ϕ
1
T q in L0pΩ,F ,P;R2q

such that there is an admissible, self-financing, process pϕ0
t , ϕ

1
t q0ďtďT , as in

Definition 4.2 starting at pϕ0
0´
, ϕ1

0´
q “ p0, 0q, and ending at pϕ0

T , ϕ
1
T q.

We denote by C the set of random variables

C “ tϕ0
T P L

0
pΩ,F ,Pq : pϕ0

T , 0q P Au. (160)

“ tV liq
pϕ0

T , ϕ
1
T q : pϕ0

T , ϕ
1
T q P Au (161)

We denote by AM , resp. CM the corresponding subsets of M-admissible
elements, i.e. for which there is a process pϕ0

t , ϕ
1
t q0ďtďT satisfying (154), for

fixed M ą 0.
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Definition 4.8. Fix S and λ ą 0 as above, let τ : Ω Ñ r0, T s Y t8u be
a stopping time, and let fτ , gτ be Fτ -measurable R`-valued functions. We
define the corresponding ask and bid processes as the R2-valued processes

at “ p´Sτ , 1q fτ 1Jτ,T Kptq, 0 ď t ď T, (162)

bt “ pp1´ λqSτ ,´1q gτ 1Jτ,T Kptq, 0 ď t ď T. (163)

We call a process pϕ0
t , ϕ

1
t q0ďtďT a simple, self-financing process, if it is a

finite sum of ask and bid processes as above. Admissibility is defined as in
Definition 4.2.

The interpretation of at is the following: an investor does nothing until
time τ and then decides to buy fτ many stocks and to hold them until time
T . The resulting holdings in bond and stock are ϕ0

t “ ´Sτfτ1Jτ,T Kptq and
ϕ1
t “ fτ1Jτ,T Kptq. The case of bt is analogous.

In the above definition we also allow for τ “ 0 in the above definition:
this case models the trading between time t “ 0´ and time t “ 0 at bid
ask prices tp1 ´ λqS0, S0u. In this case we interpret the function 1J0,T K as
1J0,T Kp0´q “ 0, while 1J0,T Kptq “ 1, for 0 ď t ď T.

We denote by As the set of R2-valued random variables pϕ0, ϕ1q such
that there is a simple (see Definition 4.8, admissible, self-financing, process
pϕ0

t , ϕ
1
t q0ďtďT satisfying pϕ0, ϕ1q ď pϕ0

T , ϕ
1
T q.

Lemma 4.9. Fix the continuous process S and λ ą 0 as above. The set As
is a convex cone in L0pΩ,F ,P;R2q which is dense in A with respect to the
topology of convergence in measure.

More precisely, let M ą 0 and pϕ0, ϕ1q “ pϕ0
t , ϕ

1
t q0ďtďT be a self-financing

process as in Definition 4.7, starting at pϕ0
0´
, ϕ1

0´
q “ p0, 0q which is M-

admissible, i.e.

Vtpϕ
0, ϕ1

q :“ ϕ0
t ` pϕ

1
t q
`
p1´ λqSt ´ pϕ

1
t q
´St ě ´M, 0 ď t ď T.

Then there is a sequence pϕ0,n, ϕ1,nq8n“1 of simple, self-financing, M-
admissible processes starting at pϕ0,n

0´
, ϕ1,n

0´
q “ p0, 0q, such that pϕ0,n

T ^ϕ
0
T , ϕ

1,n
T ^

ϕ1
T q converges to pϕ0

T , ϕ
1
T q almost surely.

Proof: The idea of the approximation is simple: the strategy pϕ0,n, ϕ1,nq

does the same buying and selling operations as pϕ0, ϕ1q, but always waits
until pStq0ďtďT has moved by some δ ą 0; then the pϕ0,n, ϕ1,nq-strategy does
the same buying/selling in one lump sum, which the strategy pϕ0, ϕ1q has
done during the preceding time interval. In this way the approximation
pϕ0,n, ϕ1,nq still is adapted to the filtration pFtq0ďtďT as it only uses past
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information; the terms of trade for the strategies pϕ0, ϕ1q and pϕ0,n, ϕ1,nq are
close to each other, as the continuous process S has only moved by at most
δ during the preceding (stochastic) time interval.

Here are the more formal details: fix the self-financing, M -admissible
strategy pϕ0, ϕ1q and 1 ą ε ą 0. As pϕ0, ϕ1q is of finite variation we may
find a constant Vε ą 1 such that the probability of pϕ0

t q0ďtďT having total
variation VarT pϕ

0q bigger than Vε, has probability less than ε ą 0.
Let σ be the stopping time

σ “ inftt P r0, T s : Vartpϕ
0
q ě Vεu, (164)

so that Prσ ă 8s ă ε, and let δ “ minp ε
Vε
, λ

3
q. Define a sequence of stopping

times pτkq
8
k“0 by τ0 “ 0 and, for k ě 0,

τk`1 “ inftt P Jτk, T K : St
Sτk

“ p1` δq or p1´ δqu ^ σ, (165)

where, as in (164), the inf over the empty set is infinity.
As the trajectories of S “ pStq0ďtďT are continuous and strictly positive,

the sequence pτkq
8
k“0 increases to infinity a.s. on tσ “ 8u. Fix K P N such

that PrτK ă 8s ă 2ε. Now construct inductively the approximating simple
process pϕ0,n, ϕ1,nq, where n P N will correspond to some εn ą 0 and δn ď

εn
Vεn

to be specified below.
At time t “ 0 we observe that pϕ0

0, ϕ
1
0q1J0,T Kptq is the sum of the terms

(162) and (163),i.e.

pϕ0
0, ϕ

1
0q1J0,T Kptq “ a0

t ` b
0
t

“ pp´S0, 1qfτ0 ` pp1´ λqS0,´1q gτ0q1J0,T Kptq,

where fτ0 “ pϕ
1
0 ´ ϕ

1
0´
q` “ pϕ1

0q
` and gτ0 “ pϕ

1
0 ´ ϕ

1
0´
q´ “ pϕ1

0q
´.

At time τ1 we want to adjust our holdings in bond and stock to have
ϕ1,n
τ1
“ ϕ1

τ1
, i.e. that the holding in stock at time τ1 are the same, for the

strategy pϕ0, ϕ1q and pϕ0,n, ϕ1,nq. This can be done by defining

a1
t`b

1
t “ rp´Sτ1 , 1qfτ1 ` pp1´ λqSτ1 ,´1qgτ1s1Jτ1,T Kptq, 0 ď t ď T, (166)

where fτ1 “ pϕ1
τ1
´ ϕ1

τ0
q` and gτ1 “ pϕ1

τ1
´ ϕ1

τ0
q´, where τ0 “ 0 so that

ϕ1
τ0
“ ϕ1

0 (as opposed to ϕ1
0´

). We add this process to a0
t ` b

0
t , i.e. we define

pϕ0,n,1
t , ϕ1,n,1

t q “ pa0
t ` b

0
t q ` pa

1
t ` b

1
t q, 0 ď t ď T.

We then have that the process pϕ0,n,1, ϕ1,n,1q jumps at times 0 and τ1 only,
and satisfies

ϕ1,n,1
τ1

“ ϕ1
τ1
.

72



As regards the holdings ϕ0,n,1
τ1

in bond at time τ1, we cannot assert that
ϕ0,n,1
τ1

“ ϕ0
τ1
, but we are not far off the mark: speaking economically, the

strategy pϕ0, ϕ1q has changed the position in bond during the interval Jτ0, τ1K
from ϕ0

0 to ϕ0
τ1

by buying pϕ1
τ1
´ϕ1

τ0
q`, resp. selling pϕ1

τ1
´ϕ1

τ0
q´, numbers of

stock. These are figures accumulated over the interval Jτ0, τ1K. As the stock
price St is in the interval rp1 ´ δqS0, p1 ` δqS0s for t PKτ0, τ1K and δ ă λ

3
, we

may estimate by (155)

pϕ0,n,1
τ1

´ ϕ0,n,1
τ0

q ´ pϕ0
τ1
´ ϕ0

τ0
q “ ϕ0,n,1

τ1
´ ϕ0

τ1
ě ´3δ |ϕ0

τ1
´ ϕ0

τ0
|. (167)

Now continue in an analogous way on the intervals Kτk´1, τkK, for k “
1, . . . , K, to find akt ` b

k
t as in (166)

akt ` b
k
t “ rp´Sτk , 1qfτk ` pp1´ λqSτk ,´1qgτks1Jτk,T Kptq, 0 ď t ď T,

(168)
so that the process

pϕ0,n,k
t , ϕ1,n,k

t q “

k
ÿ

j“0

pajt ` b
j
tq, 0 ď t ď T,

satisfies ϕ1,n,k
τj

“ ϕ1
τj
, for j “ 0, . . . , k, and

ϕ0,n,k
τk

´ ϕ0
τk
ě ´3δ

k
ÿ

j“1

|ϕ0
τj
´ ϕ0

τj´1
|. (169)

Finally define the process pϕ0,n, ϕ1,nq :“ pϕ0,n,K , ϕ1,n,Kq.
We have not yet made precise what we do, when, for the first time k “

1, . . . , K, we have τk “ 8. In this case we interpret (168) by letting τk :“ T
rather than τk “ 8, i.e. as a final trade at time T, to make sure that ϕ1,n,k

T “

ϕ1
T on tτk “ 8u.

Hence the process pϕ0,n, ϕ1,nq is such that, on the set tτK “ 8u, we have
ϕ1,n
T “ ϕ1

T so that
Prϕ1,n

T “ ϕ1
T s ą 1´ 2ε. (170)

By (169) we may also estimate on tτK ă 8u Ď tσ ă 8u

ϕ0,n
τK
´ ϕ0

τK
ě ´3δ

K
ÿ

j“1

|ϕ0
τj
´ ϕ0

τj´1
|

ě ´3δ rVε ` 2δs,

so that
Prϕ0,n

T ě ϕ0
T ´ 4εs ě 1´ 2ε. (171)
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As regards the admissibility of pϕ0,n, ϕ1,nq : this process is not yet M -
admissible, but it is straightforward to check that it is M ` 3δpVε ` 2δq-
admissible. Hence by multiplying pϕ0,n, ϕ1,nq by the factor c :“ M

M`3δpVε`2δq

we obtain an M -admissible process pcϕ0,n, cϕ1,nq such that pcϕ0,n
T ^ϕ1

T , cϕ
1,n
T q

is close to pϕ0
T , ϕ

1
T q in probability.

Finally, we have to specify ε “ εn : it now is clear that it will be sufficient
to choose εn “ 2´n in the above construction to obtain the a.s. convergence
of pϕ0,n

T ^ ϕ0
T , ϕ

1,n
T q to pϕ0

T , ϕ
1
T q.

The following lemma was proved by L. Campi and the author [11] in the
more general framework of Kabanov’s modeling of d-dimensional currency
markets. Here we spell out the proof for a single risky asset model. In
Definition 4.2 we postulated as a qualitative — a priori — assumption that
the strategies pϕ0, ϕ1q have finite variation. The next lemma provides — a
posteriori — quantitative control on the size of the finite variation.

Lemma 4.10. Let S and λ ą 0 be as above, and suppose that pCPSλ
1

q

is satisfied, for some 0 ă λ1 ă λ, i.e., there is a consistent price system
for transaction costs λ1. Fix M ą 0. Then the total variation of the process
pϕ0

t , ϕ
1
t q0ďtďT remains bounded in L0pΩ,F ,Pq, when pϕ0, ϕ1q runs through all

M-admissible, self-financing strategies.
More explicitly: for M ą 0 and ε ą 0, there is C ą 0 such that, for all M-

admissible, self-financing strategies pϕ0, ϕ1q, starting at pϕ0
0´
, ϕ1

0´
q “ p0, 0q,

and all partitions 0´ “ t0 ă t1 ă . . . ă tK “ T we have

P

«

K
ÿ

k“1

|ϕ0
tk
´ ϕ0

tk´1
| ě C

ff

ă ε, (172)

P

«

K
ÿ

k“1

|ϕ1
tk
´ ϕ1

tk´1
| ě C

ff

ă ε. (173)

Proof: Fix 0 ă λ1 ă λ as above. By the hypothesis pCPSλ
1

q there is a
probability measure Q „ P, and a local Q-martingale pS̃tq0ďtďT such that
S̃t P rp1´ λ

1qSt, Sts.
Fix M ą 0 and a self-financing (with respect to transaction costs λ),

M -admissible process pϕ0
t , ϕ

1
t qtě0, starting at pϕ0

0´
, ϕ1

0´
q “ p0, 0q. Write ϕ0 “

ϕ0,Ò ´ ϕ0,Ó and ϕ1 “ ϕ1,Ò ´ ϕ1,Ó as the canonical differences of increasing
processes, as in Definition 4.2. We shall show that

EQ
”

ϕ0,Ò
T

ı

ď
M

λ´ λ1
. (174)
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Define the process ppϕ0q1, pϕ1q1q by

`

pϕ0
q
1
t, pϕ

1
q
1
t

˘

“

ˆ

ϕ0
t `

λ´ λ1

1´ λ
ϕ0,Ò
t , ϕ1

t

˙

, 0 ď t ď T .

This is a self-financing process under transaction costs λ1: indeed, whenever
dϕ0

t ą 0 so that dϕ0
t “ dϕ0,Ò

t , the agent sells stock and receives dϕ0,Ò
t “

p1 ´ λqStdϕ
1,Ó
t (resp. p1 ´ λ1qStdϕ

1,Ó
t “ 1´λ1

1´λ
dϕ0,Ò

t ) under transaction costs λ

(resp. λ1). The difference between these two terms is λ´λ1

1´λ
dϕ0,Ò

t ; this is the
amount by which the λ1-agent does better than the λ-agent. It is also clear
that ppϕ0q1, pϕ1q1q under transaction costs λ1 still is M -admissible.

By Proposition 4.5 the process ppϕ0q1t ` ϕ1
t S̃tq0ďtďT “ pϕ0

t `
λ´λ1

1´λ
ϕ0,Ò
t `

ϕ1
t S̃tq0ďtďT is a Q-super-martingale. Hence EQrϕ0

T `ϕ
1
T S̃T s`

λ´λ1

1´λ
EQrϕ0,Ò

T s ď

0. As ϕ0
T ` ϕ

1
T S̃T ě ´M we have shown (174).

To obtain a control on ϕ0,Ó
T too, we may assume w.l.g. in the above reason-

ing that the strategy pϕ0, ϕ1q is such that ϕ1
T “ 0, i.e. the position in stock is

liquidated at time T. We then must have ϕ0
T ě ´M so that ϕ0,Ó

T ď ϕ0,Ò
T `M.

Therefore we obtain the following estimate for the total variation ϕ0,Ò
T ` ϕ0,Ó

T

of ϕ0

EQ
”

ϕ0,Ò
T ` ϕ0,Ó

T

ı

ďM

ˆ

2

λ´ λ1
` 1

˙

. (175)

The passage from the L1pQq-estimate (175) to the L0pPq-estimate (172) is
standard: for ε ą 0 there is δ ą 0 such that for a subset a P F with QrAs ă δ
we have PrAs ă ε. Letting C “ M

δ
p 2
λ´λ1

` 1q and applying Tschebyschoff to
(175) we get

P
”

ϕ0,Ò
T ` ϕ0,Ó

T ě C
ı

ă ε,

which implies (172).
As regards (173) we note that, by the continuity and strict positivity

assumption on S, for ε ą 0, we may find δ ą 0 such that

P
„

inf
0ďtďT

St ă δ



ă
ε

2
.

Hence we may control ϕ1,Ò
T by using the second inequality in (157); then

we can control ϕ1,Ó
T by a similar reasoning as above so that we obtain (173)

for a suitably adapted constant C.
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Remark 4.11. In the above proof we have shown that the elements ϕ0,Ò
T , ϕ0,Ó

T ,
ϕ1,Ò
T , ϕ1,Ó

T remain bounded in L0pΩ,F ,Pq, when pϕ0, ϕ1q runs through the M -
admissible self-financing process and ϕ0 “ ϕ0,Ò ´ ϕ0,Ó and ϕ1 “ ϕ1,Ò ´ ϕ1,Ó

denote the canonical decompositions. For later use we remark that the proof
shows, in fact, that also the convex combinations of these functions ϕ0,Ò

T

etc. remain bounded in L0pΩ,F ,Pq. Indeed the estimate (174) shows that
the convex hull of the functions ϕ0,Ò

T is bounded in L1pQq and (175) yields
the same for ϕ0,Ó

T . For ϕ1,Ò
T and ϕ1,Ó

T the argument is similar.

In order to prove the subsequent Theorem 4.13 we still need one more
preparation (compare [79]).

Proposition 4.12. Fix S and 1 ą λ ą 0 as above, and suppose that S
satisfies pCPSλ

1

q, for each λ1 ą 0.
Let pϕtq0ďtďT “ pϕ

0
t , ϕ

1
t q0ďtďT be a self-financing and admissible process

under transaction costs λ, and suppose that there is M ą 0 s.t. for the
terminal value VT we have

VT pϕ
0, ϕ1

q “ ϕ0
T ` pϕ

1
T q
`
p1´ λqST ´ pϕ

1
T q
´ST ě ´M. (176)

Then we also have

Vτ pϕ
0
τ , ϕ

1
τ q “ ϕ0

τ ` pϕ
1
τ q
`
p1´ λqSτ ´ pϕ

1
τ q
´Sτ ě ´M, (177)

a.s., for every stopping time 0 ď τ ď T, i.e. ϕ is M-admissible.

Proof: We start with the observation, that by liquidating the stock posi-
tion at time T , we may assume in (176) w.l.g. that ϕ1

T “ 0, so that ϕ0
T ě ´M.

Supposing that (177) fails, we may find λ
2
ą α ą 0, a stopping time

0 ď τ ď T, such that either A “ A` or A “ A´ satisfies PrAs ą 0, where

A` “ tϕ
1
τ ě 0, ϕ0

τ ` ϕ
1
τ

1´λ
1´α

Sτ ă ´Mu, (178)

A´ “ tϕ
1
τ ď 0, ϕ0

τ ` ϕ
1
τ p1´ αq

2Sτ ă ´Mu. (179)

Choose 0 ă λ1 ă α and a λ1-consistent price system pS̃, Qq. As S̃ takes
values in rp1´ λ1qS, Ss, we have that p1´αqS̃ as well as 1´λ

1´α
S̃ take values in

rp1 ´ λqS, Ss so that pp1 ´ αqS̃, Qq as well as p 1´λ
1´α

S̃, Qq are consistent price
systems under transaction costs λ. By Proposition 4.5 we obtain that

´

ϕ0
t ` ϕ

1
t p1´ αqS̃t

¯

0ďtďT
, and pϕ0

t ` ϕ
1
t

1´λ
1´α

S̃tq0ďtďT

76



are Q-supermartingales. Arguing with the second process and using that
S̃ ď S we obtain from (178) the inequality

EQ
„

ϕ0
T ` ϕ

1
T

1´ λ

1´ α
S̃T |A`



ď EQ
„

ϕ0
τ ` ϕ

1
τ

1´ λ

1´ α
S̃τ |A`



ă ´M.

Arguing with the first process and using that S̃ ě p1´λ1qS ě p1´αqS (which
implies that ϕ1

τ p1 ´ αqS̃τ ď ϕ1
τ p1 ´ αq2Sτ on A´) we obtain from (179) the

inequality

EQ
”

ϕ0
T ` ϕ

1
T p1´ αqS̃T |A´

ı

ď EQ
”

ϕ0
τ ` ϕ

1
τ p1´ αqS̃τ |A´

ı

ă ´M.

Either A` or A´ has strictly positive probability; hence we arrive at a con-
tradiction, as ϕ1

T “ 0 and ϕ0
T ě ´M.

The assumption CPSλ
1

, for each λ1 ą 0, cannot be dropped in Proposition
4.12 as shown by an explicit example in [79].

We now can state the central result from [11] in the present framework.
Recall Definition 4.7 of the sets AM and CM . Proposition 4.12 has the fol-
lowing important consequence concerning these definitions. We may equiv-
alently define AM as the set of random variables pϕ0

T , ϕ
1
T q in A such that

V liqpϕ0
T , ϕ

1
T q ě ´M. The point is that the requirement ϕ “ pϕ0

T , ϕ
1
T q P A

only implies that ϕ is the terminal value of an M̄ -admissible strategy, for
some M̄ ą 0 which – a priori – has nothing to do with M . But Proposition

4.12 tells us that V liqpϕ0
T , ϕ

1
T q ě ´M already implies that we may replace

the a priori constant M̄ by the constant M . In other words, if the liquidation
value of an admissible ϕ is above the threshold ´M at the terminal time T ,
it also is so at all previous times 0 ď t ď T.

Theorem 4.13. Fix S “ pStq0ďtďT and λ ą 0 as above, and suppose that
pCPSλ

1

q is satisfied, for each 0 ă λ1 ă λ. For M ą 0, the convex set AM Ď

L0pΩ,F ,P;R2q as well as the convex set CM Ď L0pΩ,F ,Pq are closed with
respect to the topology of convergence in measure.

For the proof we use the following well-known variant of Komlos’ theo-
rem. This result ([26, Lemma A 1.1]) turned out to be very useful in the
applications to Mathematical Finance.

For the convenience of the reader we reproduce the proof.

Lemma 4.14. Let pfnq
8
n“1 be a sequence of R`-valued, measurable functions

on pΩ,F ,Pq.
There is a sequence gn P conv pfn, fn`1, . . .q of convex combinations which

converges a.s. to some r0,8s-valued function g0.
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If pfnq
8
n“1 is such that the convex hull conv pf1, f2, . . .q is bounded in the

space L0pΩ,F ,Pq, the function g0 takes a.s. finite values.

Proof: Choose gn P conv pfn, fn`1, . . .q such that

lim
nÑ8

Erexpp´gnqs “ lim
nÑ8

inf
gPconv pfn,fn`1,...q

Erexpp´gqs. (180)

For fixed 1 ą ε ą 0 we claim that

lim
n,mÑ8

PrpAn Y Amq XBn,ms “ 0, (181)

where

An “ tgn P r0,
1
ε
su

Am “ tgm P r0,
1
ε
su

Bn,m “ t|gn ´ gm| ě
ε
2
u.

Indeed, the function x Ñ e´x is strictly convex on r0, 1
ε
` ε

2
s so that, for

given ε ą 0, there is δ ą 0 such that, for x, y P r0, 1
ε
` ε

2
s satisfying px´yq ě ε

2

we have
expp´x`y

2
q ď

expp´xq`expp´yq
2

´ δ.

For ω P pAn Y Amq XBn,m we therefore have

expp´gnpωq`gmpωq
2

q ď
expp´gnpωqq`expp´gmpωqq

2
´ δ.

Using the convexity of x Ñ e´x on r0,8r (this time without strictness)
we get

E
“

expp´gn`gm
2
q
‰

ď Er expp´gnq`expp´gmq
2

s

´ δPrpAn Y Amq XBn,ms.

The negation of (181) reads as

lim sup
n,mÑ8

PrpAn Y Amq XBn,ms “ α ą 0.

This would imply that

lim inf
n,mÑ8

Erexpp´gn`gm
2
qs ď lim

nÑ8
inf

gPconv pfn,fn`1,...q
Erexpp´gqs ´ αδ,

in contradiction to (180), which shows (181).
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By passing to a subsequence, still denoted by pgnq
8
n“1, we may suppose

that, for fixed 1 ą ε ą 0,

8
ÿ

n“1

PrpAn Y An`1q XBn,n`1s ă 8, (182)

and, by passing to a diagonal sequence, that this holds true for each 1 ą
ε ą 0. Taking a subsequence once more and applying Borel-Cantelli we get
that, for almost each ω P Ω, either gnpωq Ñ 8 or pgnpωqq

8
n“1 is a Cauchy

sequence in R`.
As regards the second assertion, the condition on the L0-boundedness

states that, for η ą 0, we may find M ą 0 such that Prg ěM s ă η, for each
g P conv pfn, fn`1, . . .q. This L0-boundedness condition prevents pgnq

8
n“1 from

converging to `8 with positive probability.

Convex combinations work very much like subsequences. For example,
one may form sequences of convex combinations of sequences of convex com-
binations: if gn P convpfn, fn`1, . . .q and hn P convpgn, gn`1, . . .q, then hn
is a sequence of convex combinations of the original sequence pfnq

8
n“1, i.e.

hn P convpfn, fn`1, . . .q. Similarly, the concept of a diagonal subsequence car-
ries over in an obvious way. This will repeatedly used in the subsequent proof.

Proof of Theorem 4.13: Fix M ą 0 and let pϕnT q
8
n“1 “ pϕ

0,n
T , ϕ1,n

T q
8
n“1 be

a sequence in AM . We may find self-financing, M -admissible strategies
pϕ0,n

t , ϕ1,n
t q0ďtďT , starting at pϕ0,n

0´
, ϕ1,n

0´
q “ p0, 0q, with given terminal val-

ues pϕ0,n
T , ϕ1,n

T q. As above, decompose canonically these processes as ϕ0,n
t “

ϕ0,n,Ò
t ´ ϕ0,n,Ó

t , and ϕ1,n
t “ ϕ1,n,Ò

t ´ ϕ1,n,Ó
t . By Lemma 4.10 and the subsequent

remark we know that pϕ0,n,Ò
T q8n“1, pϕ

0,n,Ó
T q8n“1, pϕ

1,n,Ò
T q8n“1, and pϕ1,n,Ó

T q8n“1 as
well as their convex combinations are bounded in L0pΩ,F ,Pq too, so that
by Lemma 4.14 we may find convex combinations converging a.s. to some
elements ϕ0,Ò

T , ϕ0,Ó
T , ϕ1,Ò

T , and ϕ1,Ó
T P L0pΩ,F ,Pq. To alleviate notation we de-

note the sequences of convex combinations still by the original sequences.
We claim that pϕ0

T , ϕ
1
T q “ pϕ

0,Ò
T ´ϕ0,Ó

T , ϕ1,Ò
T ´ϕ1,Ó

T q is in AM which will readily
show the closedness of AM with respect to the topology of convergence in
measure.

By inductively passing to convex combinations, still denoted by the orig-
inal sequences, we may, for each rational number r P r0, T r, assume that
pϕ0,n,Ò

r q8n“1, pϕ
0,n,Ó
r q8n“1, pϕ

1,n,Ò
r q8n“1, and pϕ1,n,Ó

r q8n“1 converge a.s. to some ele-
ments ϕ̄0,Ò

r , ϕ̄0,Ó
r , ϕ̄1,Ò

r , and ϕ̄1,Ó
r in L0pΩ,F ,Pq. By passing to a diagonal sub-

sequence, we may suppose that this convergence holds true for all rationals
r P r0, T r.
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Clearly the four processes ϕ̄0,Ò
rPQXr0,T r etc, indexed by the rationals r in

r0, T r, still are increasing and define an M -admissible process, indexed by
r0, T rXQ, in the sense of (154). They also satisfy (157), where we define
ϕ̄0,Ò

0´
“ 0 and ϕ̄0,Ò

T “ ϕ0,Ò
T (etc. for the other three cases).

We still have to pass to a right continuous version and to extend the
processes to all real numbers t P r0, T s. This is done by letting

ϕ0,Ò
t “ lim

rŒt
rPQ

ϕ̄0,Ò
r , 0 ď t ă T, (183)

and ϕ0,Ò
0´
“ 0. Note that the terminal value ϕ0,Ò

T is still given by the first step

of the construction. The three other cases, ϕ0,Ó, ϕ1,Ò, and ϕ1,Ó are, of course,
defined in an analogous way. These continuous time processes again satisfy
the self-financing conditions (157).

Finally, define the process pϕ0
t , ϕ

1
t q0ďtďT as pϕ0,Ò

t ´ ϕ0,Ó
t , ϕ1,Ò

t ´ ϕ1,Ó
t q0ďtďT .

From Proposition 4.4 piiiq we obtain that this defines a self-financing trad-
ing strategy in the sense of Definition 4.2 with the desired terminal value
pϕ0

T , ϕ
1
T q. The M -admissibility follows from Proposition 4.12.

We thus have shown that AM is closed. The closedness of CM is an
immediate consequence.

In fact we have not only proved a closedness of AM with respect to the
topology of convergence in measure. Rather we have shown a convex com-
pactness property (compare [64], [89]). Indeed, we have shown that, for any
sequence pϕnT q

8
n“1 P AM , we can find a sequence of convex combinations

which converges a.s., and therefore in measure, to an element ϕT P AM .

Passage from L0 to appropriate Banach spaces

The message of Theorem 4.13 is stated in terms of the topological vector
space L0pR2q and with respect to convergence in measure. We now translate
it into the setting of appropriately defined Banach spaces. This needs some
preparation. For a fixed, positive number S ą 0 we define the norm | ¨ |S on
R2 by

|px0, x1
q|S “ maxt|x0

` x1S|, |x0
` x1

p1´ λqS|u. (184)

Its unit ball is the convex hull of the four points tp1, 0q, p´1, 0q, p2´λ
λ
,´ 2

λS
q,

p´2´λ
λ
, 2
λS
q.

To motivate this definition we consider for a fixed number S ą 0, similarly
as in p1q, the solvency cone KS “ tpx

0, x1q : x0 ě maxp´x1S,´x1p1´λqSqu.
For ξ P R, let KSpξq be the shifted solvency cone KSpξq “ KS´ξ “ tpx

0, x1q :
px0`ξ, x1q P KSqu. With this notation, the unit ball of pR2, |¨|Sq is the biggest
set which is symmetric around 0 and contained in KSp1q.
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The dual norm | ¨ |˚S is given, for pZ0, Z1q P R2, by

|pZ0, Z1
q|
˚
S “ maxt|Z0

|, |2´λ
λ
Z0
´ 2

λS
Z1
|u, (185)

as one readily verifies by looking at the extreme points of the unit ball of
pR2, | ¨ |Sq. The unit ball of pR2, | ¨ |˚Sq is the convex hull of the four points
tp1, Sq, p´1,´Sq, p1, p1´ λqSq, p´1,´p1´ λqSqu.

These norms on R2 are tailor-made to define Banach spaces L1
S and L8S

in isometric duality where S will depend on ω P Ω. Let S “ pStq0ďtďT now
denote an R`-valued process. We define the Banach space L1

S as

L1
S “ L1

SpΩ,F ,P;R2
q “ (186)

!

ZT “ pZ
0
T , Z

1
T q P L

0
pΩ,F ,P;R2

q : }ZT }L1
S
“ E

“

|pZ0
T , Z

1
T q|

˚
ST

‰

ă 8

)

Its dual L8S then is given by

L8S “ L8S pΩ,F ,P;R2
q “ (187)

 

ϕT “ pϕ
0
T , ϕ

1
T q P L

0
pΩ,F ,P;R2

q : }ϕT }L8S “ ess sup
“

|pϕ0
T , ϕ

1
T q|ST

‰

ă 8
(

.

These spaces are designed in such a way that AXL8S is “Fatou dense” in
A. We do not elaborate in detail on the notion of “Fatou closedness” which
was introduced in [81] but only present the idea which is relevant in the
present context.

For ϕT “ pϕ
0
T , ϕ

1
T q P AM we have (154)

V
liq
T “ ϕ0

T ` pϕ
1
T q
`
p1´ λqST ´ pϕ

1
T q
´ST ě ´M, (188)

which may be written as

min
 

pϕ0
T ` ϕ

1
T p1´ λqST q, pϕ

0
T ` ϕ

1
TST q

(

ě ´M (189)

or
max

 

´pϕ0
T ` ϕ

1
T p1´ λqST q,´pϕ

0
T ` ϕ

1
TST q

(

ďM. (190)

In order to obtain |pϕ0
T , ϕ

1
T q|ST ďM we still need the inequality

max
 

pϕ0
T ` ϕ

1
T p1´ λqST q, pϕ

0
T ` ϕ

1
TST q

(

ďM. (191)

In general, there is little reason why (191) should be satisfied, for an
element ϕT “ pϕ0

T , ϕ
1
T q P AM . Indeed, the agent may have become “very

rich” which may cause (191) to fail to hold true. But there is an easy remedy:
just “get rid of the superfluous assets”
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More formally: fix M ą 0, and ϕT “ pϕ
0
T , ϕ

1
T q P AM , as well as a number

C ě M. We shall define the C-truncation ϕCT of ϕT in a pointwise way: if
|ϕT pωq|ST pωq ď C we simply let

ϕCT pωq “ ϕT pωq.

If |ϕT pωq|ST pωq ą C we define

ϕCT “ µpϕ0
T pωq, ϕ

1
T pωqq ` p1´ µqp´M, 0q (192)

which is a convex combination of ϕT pωq and the lower left corner p´M, 0q
of the M´ ball of pR2, | ¨ |ST pωqq; for µ P r0, 1s above we choose the biggest
number in r0, 1s such that |ϕCT pωq|ST pωq ď C. Note that, for C 1 ě C ě M we
have ϕC

1

T pωq ´ ϕCT pωq P KST pωq, i.e. we can obtain ϕCT from ϕC
1

T (as well as
from ϕT ) by a self-financing trade at time T .

By construction ϕCT lies in the Banach space L8S , its norm being bounded
by C. Sending C to infinity the random variables ϕ0,C

T increase (with respect
to the order induced by the cone KT ) a.s. to ϕ0

T .
Summing up: the intersection AXL8S is dense in A in the sense that, for

ϕT P A there is an increasing sequence pϕkT qkě0 in AXL8S converging a.s. to
ϕT . This is what we mean by “Fatou-dense”.

Following a well-known line of argument (compare [26]), Theorem 4.13
thus translates into the following result.

Theorem 4.15. Fix S and λ ą 0, and suppose that pCPSλ
1

q is satisfied, for
each 0 ă λ1 ă λ. The convex cone AX L8S Ď L8S pΩ,F ,P;R2q, as well as the
convex cone C X L8 Ď L8pΩ,F ,Pq are closed with respect to the weak-star
topology induced by L1

S (resp. L1).

Proof: By the Krein-Smulian theorem [82] the cone A X L8S is σ˚-closed
iff its intersection with the unit ball of L8S is σ˚-closed. Hence it suffices to
show that A X (ball pL8S q) is σ˚-compact. By a result of A. Grothendieck
([38], see also the version [26, Prop.5.2.4] which easily extends to the present
2-dimensional setting), the σ˚-compactness of a bounded, convex subset of
L8 is equivalent to the following property: for every sequence pϕnT q

8
n“1 P A X

(ball pL8S q) converging a.s. to ϕT , we have that the limit again is in A X ball
pL8S q. By the definition of the norm of L8S and using Proposition 4.12 we
have that ϕnT P A1, for each n, so that Theorem 4.13 implies that the limit
ϕT again is in A1. As the inequalities (190) and (191) clearly remain valid
by passing from pϕnT q

8
n“1 to the limit ϕT we obtain that ϕT P A X (ball L8S ).

This shows the σ˚-closedness of AX L8S .
The σ˚-closedness of C follows from the σ˚-closedness of A and the fact

that L8 is a σ˚-closed subset of L8S .
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Theorem 4.15 allows us to apply the duality theory to the dual pairs
xL1

S, L
8
S y and xL1, L8y respectively. Denoting as above by pA X L8S q

˝ (resp.
pC X L8q˝) the polar of A X L8 in L1

S (resp. of C X L8 in L1), the bipolar
theorem ([82]; see also Proposition A.1 in the appendix) as well as Theorem
4.15 imply that pAXL8S q˝˝ “ AXL8S and pC XL8q˝˝ “ C XL8. In fact, we
shall be able to characterize the polars pAXL8S q˝ and pC XL8S q˝ in terms of
consistent price systems.

We remark that the distinction between A and A X L8S (resp. C and
C X L8) is rather a formality; the passage to these intersections only serves
to put us into the well-established framework of the duality theory of Banach
spaces. For example, we shall consider the polar set

pC X L8q˝ “ tZ0
T P L

1 : xϕ0
T , Z

0
T y “ Erϕ0

TZ
0
T s ď 0, for every ϕ0

T P C X L8u
(193)

and an analogous definition for pA X L8S q
˝ Ď L1

S. We note that we could
equivalently define

C˝ “ tZ0
T P L

1 : xϕ0
T , Z

0
T y “ Erϕ0

TZ
0
T s ď 0 for every ϕ0

T P Cu

Indeed, as each ϕ0
T P C is uniformly bounded from below, the expectation

appearing above is well-defined (possibly assuming the value infinity) and it
follows from monotone convergence that

Erϕ0
TZ

0
T s ď 0 iff Erpϕ0

T ^ nqZ
0
T s ď 0,

for every n ě 0. A similar remark applies to pAXL8S q˝. To alleviate notation
we shall therefore write C˝ and A˝ instead of pC X L8q˝ and pAX L8S q˝.

The dual variables

To characterize the polars of A and C, let pS̃, Qq be a consistent price system
(Def. 4.1) for the process S under transaction costs λ. As usual, we denote by
pZ0

t q0ďtďT the density process Z0
t “ ErdQ

dP |Fts and by pZ1
t q0ďtďT the process

pZ0
t S̃tq0ďtďT , so that Z0 (resp. Z1) is a martingale (resp. a local martingale)

under P.

Definition 4.16. Given S and λ ą 0 as above, we denote by Bp1q the convex,
bounded set of non-negative random variables tZT “ pZ

0
T , Z

1
T qu such that ZT

is the terminal value of a consistent price process as above. Denote by Bp1q
the norm closure of Bp1q in L1

S, and by B the cone generated by Bp1q, i.e.

B “ Y
yě0
Bpyq,
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where Bpyq “ yBp1q.
We denote by Dp1q the projection of Bp1q onto L1pRq (via the canonical

projection of L1
S onto its first coordinate), and by Dp1q and D its norm closure

and the cone generated by Dp1q, respectively.

Proposition 4.17. Let S and λ ą 0 be as in Theorem 4.13, and suppose
again that pCPSλ

1

q holds true, for all 0 ă λ1 ă λ.
Then B (resp. D) is a bounded set in L1

S (resp. L1) and B (resp. D) equals
the polar cone A˝ of A (resp. C˝ of C) in L1

S (resp. in L1).

Proof: To obtain the inclusion B Ď A˝, we shall show that

xpϕ0
T , ϕ

1
T q, pZ

0
T , Z

1
T qy “ Erϕ0

TZ
0
T ` ϕ

1
TZ

1
T s ď 0, (194)

for all ϕT “ pϕ
0
T , ϕ

1
T q P A and for all ZT “ pZ

0
T , Z

1
T q P Bp1q.

Indeed, associate to ϕT an admissible trading strategy pϕtq0ďtďT “ pϕ
0
t , ϕ

1
t q0ďtďT

and to ZT a consistent price system pS̃, Qq “ pp
Z1
t

Z0
t
q0ďtďT , Z

0
T q. By Proposition

4.5 the process

Ṽt “ ϕ0
t ` ϕ

1
t S̃t, 0 ď t ď T,

is a Q-supermartingale, starting at Ṽ0´ “ 0, so that

EPrϕ
0
TZ

0
T ` ϕ

1
TZ

1
T s “ EQrϕ0

T ` ϕ
1
T S̃T s ď 0.

This shows (194) which, by continuity and positive homogeneity, also holds
true, for all ZT “ pZ

0
T , Z

1
T q P B. We therefore have shown that B is contained

in the polar A˝ of A.

As regards the reverse inclusion A˝ Ď B, we have to show that, for ϕT “
pϕ0

T , ϕ
1
T q P L

8
S , such that (194) is satisfied, for all ZT “ pZ

0
T , Z

1
T q P Bp1q, we

have that ϕT P A.
Fix ϕ̄T “ pϕ̄

0
T , ϕ̄

1
T q R A. By Theorem 4.15 and the Hahn-Banach theorem

we may find an element Z̄T “ pZ̄
0
T , Z̄

1
T q P L

1
S such that (194) holds true, for

Z̄T and all ϕT P A while

@

pϕ̄0
T , ϕ̄

1
T q, pZ̄

0
T , Z̄

1
T q
D

ą 0. (195)

As A contains the non-positive functions, we have that pZ̄0
T , Z̄

1
T q takes values

a.s. in R2
`. In fact, we may suppose that Z̄0

T and Z̄1
T are a.s. strictly positive.

Indeed, by the assumption CPSλ there is a λ-consistent price system Ẑ “
pẐ0, Ẑ1q. For ε ą 0, the convex combination p1 ´ εqZ̄T ` εẐT still satisfies
(194), for each ϕ1

T P A. For ε ą 0 sufficiently small, (195) is satisfied too.
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Hence, by choosing ε ą 0 sufficiently small, we may assume that Z̄0
T and Z̄1

T

are strictly positive.
We also may assume that ErZ̄1

T s “ 1 so that dQ̄
dP :“ Z̄0

T defines a proba-
bility measure Q̄ which is equivalent to P. We now have to work towards a
contradiction.

To focus on the essence of the argument, let us assume for a moment that
S “ pStq0ďtďT is uniformly bounded. We then may define the R2

`-valued
martingale Z̄ “ pZ̄0, Z̄1q by

Z̄t “ pZ̄
0
t , Z̄

1
t q “ ErpZ̄0

T , Z̄
1
T q|Fts, 0 ď t ď T. (196)

Indeed by (185) and (186), we have Z̄1
T ď CZ̄0

T ď C˚|Z̄T |
˚
ST

almost surely,
for some constants C,C˚, depending on the uniform bound of S. Hence Z̄T
is integrable so that Z̄t in (196) is well-defined. We shall verify that Z̄ “

pZ̄tq0ďtďT indeed defines a consistent price system. To do so, we have to show
that, for 0 ď t ď T ,

S̃t :“
Z̄1
t

Z̄0
t

P rp1´ λqSt, Sts , a.s. (197)

Negating (197) we may find some 0 ď u ď T such that one of the following
two sets has strictly positive measure

A` “

"

Z̄1
u

Z̄0
u

ą Su

*

, A´ “

"

Z̄1
u

Z̄0
u

ă p1´ λqSu

*

.

In the former case, define the process ϕ1 “ pϕ0, ϕ1q as in (162) by

pϕ0
t , ϕ

1
t q “ p´Su, 1q1A`1Ju,T Kptq, 0 ď t ď T.

Using the boundedness of S, we conclude that pϕ0
T , ϕ

1
T q “ pϕ

0
u, ϕ

1
uq “ p´Su, 1q1A`

is an element of A for which we get

E
“

ϕ0
T Z̄

0
T ` ϕ

1
T Z̄

1
T

‰

“E
“

E
“

ϕ0
uZ̄

0
T ` ϕ

1
uZ̄

1
T |Fu

‰‰

“E
“

ϕ0
uZ̄

0
u ` ϕ̄

1
uZ̄

1
u

‰

“E
”

Z̄0
u

´

´Su `
Z̄1
u

Z̄0
u

¯

1A`

ı

ą 0,

a contradiction to (194).
If PrA´s ą 0 we apply a similar argument to (163).
Summing up: we have arrived at the desired contradiction proving the

inclusion A˝ Ď B, under the additional assumption that S is uniformly
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bounded.

Now we drop the boundedness assumption on S. By the continuity of S we
may find a localizing sequence pτnq

8
n“1 of r0, T sY t8u-valued stopping times,

increasing a.s. to 8, such that each stopped processes Sτn “ pSt^τnq0ďtďT is
bounded. Indeed, it suffices to take τn “ inftt : St ą nu.

Denote by Aτn “ AX L8S pΩ,Fτn ,Pq the subset of AX L8S formed by the
elements ϕT “ pϕ

0
T , ϕ

1
T q which are Fτn-measurable. We then have that Aτn

is the cone corresponding to the stopped process Sτn via Definition 4.7. By
stopping, we also have that

Ť8

n“1Aτn X L8S pΩ,F ,P;R2q is weak-star dense
in AX L8S pΩ,F ,P;R2q.

Denote by Z̄τn the restriction of the functional Z̄T “ pZ̄
0
T , Z̄

1
T q to L8S pFτnq

which we may identify with a pair pZ̄0
τn , Z̄

1
τnq of Fτn-measurable functions.

By taking conditional expectations as in (196), we may associate to the
random variables pZ̄0

τn , Z̄
1
τnq the corresponding martingales, denoted by Z̄n “

pZ̄0,n
t , Z̄1,n

t q0ďtďτn^T .
Of course, this sequence of processes is consistent, i.e., for n ď m, the

process Z̄m, stopped at τn, equals the process Z̄n. As regards the first co-
ordinate, it is clear that pZ̄0

τn^T
q8n“1 converges in the norm of L1pPq to Z̄0

T ,
which is the density of the probability measure Q̄. The associated density
process is Z̄0

t “ ErZ̄0
T |Fts. The slightly delicate issue is the second coordinate

of Z̄. The sequence pZ̄1
τn^T

q only converges a.s. to Z̄1
T , but not necessarily

with respect to the norm of L1pPq. In other words, by pasting together the
processes pZ̄1,n

t q0ďtďτn^T , and letting

Z̄1
t “ lim

nÑ8
Z̄1,n
t ,

the limit holding true a.s., for each 0 ď t ď T , we well-define a local P-
martingale pZ̄1

t q0ďtďT . This process may fail to be a true P-martingale. But
this does not really do harm: the process pZ̄0

t , Z̄
1
t q0ďtďT still is a consistent

price system under transaction costs λ in the sense of Definition 4.1. Indeed,
by the first part of the proof we have that, for t P r0, T s and n P N,

Z̄1
t

Z̄0
t

P rp1´ λqSt, Sts, a.s. on tt ď τnu.

As
Ť8

n“1tt ď τnu “ Ω a.s., for each fixed 0 ď t ď T, we have obtained (197).
We note in passing that Definition 4.1 was designed in a way that we allow
for local martingales in the second coordinate pZ̄1

t q0ďtďT .
Summing up: we have found a consistent price system Z̄ “ pZ̄0

t , Z̄
1
t q0ďtďT

in the sense of Definition 4.1 such that the terminal value pZ̄0
T , Z̄

1
T q satisfies
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(195). This contradiction shows that the cones A and B are in polar duality
and finishes the proof of the first assertion of the theorem.

The corresponding assertion for the cones CXL8 and D now follows. For
ϕ0
T P C we have, by definition, that pϕ0

T , 0q P A so that xpϕ0
T , 0q, pZ

0
T , Z

1
T qy “

xϕ0
T , Z

0
T y ď 0, for each consistent price system Z “ pZ0, Z1q. This yields

the inclusion D Ď pC X L8q˝. Conversely, if pϕ0
T , 0q R A we may find by the

above argument a consistent price system Z̄ such that xpϕ0
T , 0q, pZ̄

0
T , Z̄

1
T qy ą 0,

which yields the inclusion pC X L8q˝ Ď D.
The proof of Proposition 4.17 now is complete.

We now are in a position to state and prove the central result of this
section, the super-replication theorem (compare Corollary 1.11).

Theorem 4.18. Suppose that the continuous, adapted process S “ pStq0ďtďT
satisfies pCPSλ

1

q, for each 0 ă λ1 ă 1, and fix 0 ă λ ă 1.
Suppose that the R2-valued random variable ϕT “ pϕ

0
T , ϕ

1
T q satisfies

V
liq
T pϕ0

T , ϕ
1
T q “ ϕ0

T ` pϕ
1
T q
`
p1´ λqST ´ pϕ

1
T q
´ST ě ´M. (198)

For a constant x0 P R the following assertions then are equivalent:

piq ϕT “ pϕ
0
T , ϕ

1
T q is the terminal value of some self-financing, admissible

trading strategy pϕtq0ďtďT “ pϕ
0
t , ϕ

1
t q0ďtďT under transaction costs λ, starting

at pϕ0
0´
, ϕ1

0´
q “ px0, 0q.

piiq EQrϕ0
T ` ϕ

1
T S̃T s ď x0, for every λ-consistent price system pS̃, Qq.

Proof: First suppose that ϕT “ pϕ
0
T , ϕ

1
T q P L

8
S . Then piq is tantamount

to pϕ0
T ´ x

0, ϕ1
T q being an element of AXL8S . By Proposition 4.17, Theorem

4.15, and the Bipolar Theorem (Proposition A.1 in the Appendix), this is
equivalent to

EQrϕ0
T ´ x

0
` ϕ1

T S̃T s ď 0,

holding true for all λ-consistent price systems pS̃, Qq which amounts to piiq.
Dropping the assumption ϕT P L8S , we consider, for C ě M, the C-

truncations ϕCT defined after (192) which are well-defined in view of (198).
Recall that ϕCT P L

8
S and pϕCT qCěM increases to ϕT , as C Ñ 8. We may

apply the first part of the argument to each ϕCT and then send C to infinity:
assume that piq (and therefore, equivalently, piiq) holds true, for each ϕCT ,
where C is sufficiently large. Then piiq also holds true for ϕT by monotone
convergence, and piq also holds true for ϕT by Theorem 4.13.
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Corollary 4.19. Under the assumptions of Theorem 4.18, let ϕ0
T P L

0pΩ,F ,Pq
be a random variable bounded from below, i.e.

ϕ0
T ě ´M, a.s.

for some real number M. For a real constant x0 the following are equivalent.

piq ϕT “ pϕ
0
T , 0q is the terminal value of some self-financing, admissible

trading strategy pϕtq0ďtďT “ pϕ
0
t , ϕ

1
t q0ďtďT under transaction costs λ, starting

at pϕ0
0´
, ϕ1

0´
q “ px0, 0q.

piiq EQrϕ0
T s ď x0, for every λ-consistent price system pS̃, Qq.

Proof: Apply Theorem 4.18 to pϕ0
T , 0q.

Non-negative Claims

We shall need the following generalisation of the notion of λ-consistent price
systems (compare Def. 5.1 below).

Definition 4.20. Fix the continuous, adapted, strictly positive process S “
pStq0ďtďT , and λ ą 0. The λ-consistent equivalent super-martingale defla-
tors are defined as the set Ze “ Zep1q of strictly positive processes Z “

pZ0
t , Z

1
t q0ďtďT , starting at Z0

0 “ 1, such that, for every x-admissible, λ-self-
financing process ϕ “ pϕ0

t , ϕ
1
t q0ďtďT , starting at pϕ0

0´
, ϕ1

0´
q “ p0, 0q, we have

that the process

px` ϕ0
t qZ

0
t ` ϕ

1
tZ

1
t , 0 ď t ď T,

is a non-negative supermartingale. For y ą 0 we write Zepyq “ yZe. By
dropping the super-script e we define the sets Zpyq of λ-consistent super-
martingale deflators, where we only impose the non-negativity of the elements
Z.

We note that Proposition 4.5 implies that Ze contains the λ-consistent
price systems, where we identify pS̃, Qq with the process pZ0

t , Z
1
t q0ďtďT given

by Z0
t “ ErdQ

dP |Fts and Z1
t “ S̃tZ

0
t .

For the applications in the next chapter, which concerns utility maxi-
mization, we shall deal with positive elements ϕ0

T only. For this setting we
now develop a similar duality theory as in Theorem 4.18 and Corollary 4.19.
We start with a definition relating the cones A,B, C and D defined in 4.8 and
4.16 above to bounded subsets of L0pR2q and L0

`pRq respectively.
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Definition 4.21. For x ą 0, we define

Apxq “ tpϕ0
T , ϕ

1
T q : ϕ0

T ` pϕ
1
T q
`
p1´ λqST ´ pϕ

1
T q
´ST ě 0,

and pϕ0
T ´ x, ϕ

1
T q P Au,

Cpxq “ tϕ0
T ě 0 : ϕ0

T ´ x P Cu “ tϕ0
T : pϕ0

T , 0q P Apxqu.

For y ą 0, we define

Bpyq “ tpZ0
T , Z

1
T q : there is Z P Zpyq with terminal value pZ0

T , Z
1
T qu,

Dpyq “ tZ0
T : there is Z P Zpyq with a terminal value pZ0

T , Z
1
T q,

for some Z1
T u.

Theorem 4.22. Suppose that the continuous, strictly positive process S “
pStq0ďtďT satisfies condition pCPSλ

1

q, for each 0 ă λ1 ă 1. Fix 0 ă λ ă 1.

piq The sets Apxq,Cpxq,Bpyq,Dpyq defined in Definition 4.20 are convex,
closed (w.r to convergence in measure) subsets of L0pR2q and L0

`pRq respec-
tively. The sets Cpxq and Dpyq are also solid.

piiq Fix x ą 0, y ą 0 and ϕ0
T P L

0
`pRq. We have ϕ0

T P Cpxq iff

xϕ0
T , Z

0
T y ď xy, (199)

for all Z0
T P Dpyq. In fact, we also have

sup
pS̃,QqP CPSλ

EQrϕ0
T s “ xy. (200)

pii1q We have Z0
T P Dpyq iff

xϕ0
T , Z

0
T y ď xy (201)

for all ϕ0
T P Cpxq.

piiiq The sets Ap1q and Cp1q are bounded in L0pR2q and L0pRq respectively
and contain the constant functions p1, 0q (resp. 1).

Proof: piq The convexity of the four sets is obvious. As regards the solidity
recall that a set C Ď L0

`pRq is solid if 0 ď ψ0
T ď ϕ0

T P C implies that ψ0
T P C.

As regards Cpxq, this property clearly holds true as one is allowed to “throw
away bonds” at terminal time T . As regards the solidity of Dpyq: if there is
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Z “ pZ0
t , Z

1
t q0ďtďT P Zpyq, and Y 0

T satisfies 0 ď Y 0
T ď Z0

T , we may define an
element Y “ pY 0

t , Y
1
t q0ďtďT P Zpyq by letting

pY 0
t , Y

1
t q “

#

pZ0
t , Z

1
t q, 0 ď t ă T,

pY 0
T , Z

1
T
Y 0
T

Z0
T
q, t “ T,

which shows the solidity of Dpyq.
The L0-closedness of Apxq and Cpxq, follows from Theorem 4.13. Indeed

x ą 0 corresponds to the admissibility constant M ą 0 in Theorem 4.13
and the operations of shifting these sets by the constant vector px1, 0q and
intersecting them with the positive orthant preserves the L0-closedness.

Let us now pass to the closedness of Bpyq and Dpyq. Fix a Cauchy
sequence Zn

T “ pZ
0,n
T , Z1,n

T q in Bpyq and associate to it the supermartingales
Zn “ pZ0,n

t , Z1,n
t q0ďtďT as in Def 4.21. Applying Lemma 4.14 and passing to

convex combinations similarly in the proof of Theorem 4.13 we may pass to
a limiting càdlàg process Z “ pZ0

t , Z
1
t q0ďtďT in the following way (the “Fatou

Limit” construction from [20]).
First pass to pointwise limits of convex combinations of pZ0,n

r , Z1,n
r q8n“1,

where r ranges in the rational numbers in r0, T s and then pass to the càdlàg
versions, which exist as the limiting process pZ0

r , Z
1
r qrPr0,T sXQ is a super-

martingale (we suppose w.l.g. that T is rational). The fact that, for every
1-admissible λ-self-financing ϕ “ pϕ0

t , ϕ
1
t q0ďtďT the process

Vt “ p1` ϕ
0
t qZ

0
t ` ϕ

1
tZ

1
t , 0 ď t ď T,

is a super-martingale, now follows from Fatou’s lemma. The argument for
Dpyq is similar.

We thus have proved assertion piq.

piiq Let ϕ “ pϕ0
t , ϕ

1
t q0ďtďT be an admissible, self-financing process starting

at ϕ0´ “ px, 0q and ending at pϕ0
T , 0q. Let Z “ pZ0

t , Z
1
t q0ďtďT be a super-

martingale deflator starting at Z0 “ py, Z
1
0q, for some Z1

0 P rp1´ λqyS0, yS0s.
By definition

ϕ0
tZ

0
t ` ϕ

1
tZ

1
t , 0 ď t ď T,

is a super-martingale so that inequality (219) holds true.
Conversely, assertion (220) follows from Theorem 4.18 and Corollary 4.19.

pii1q If Z0
T P Dpyq and ϕ0

T P Cpxq, we have already shown the inequality
(221). As regards the “only if” assertion, condition (221) may be rephrased
abstractly as the assertion that Dp1q “ 1

y
Dpyq equals the polar set of Cp1q “
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1
x
Cpxq as defined in (202) below. On the other hand it follows from Proposi-

tion 4.17 and Corollary 4.19 that the polar of the set

Dp1q “ tZ0
T P L

0
` : dQ

dP “ Z0
T for a consistent price pS̃, Qqu

equals Cp1q. Hence by the subsequent version of the bipolar theorem we have
that, if Z0

T satisfies (221), it is an element of the closed, convex, and solid hull
of Dp1q. As Dp1q Ď Dp1q we conclude from piq that this implies Z0

T P Dp1q.

piiiq By hypothesis pCPSλq there is a λ-consistent price system pS̃, Qq.
We denote by Z “ pZ0

t , Z
1
t q0ďtďT the corresponding density process in Ze.

For each ε ą 0 there is δ ą 0 such that, for a subset A P F with PrAs ě ε
we have Er1AZ0

T s ě δ and Er1AZ1
T s ě δ. This shows that Ap1q is bounded in

L0. The L0-boundedness of Cp1q follows and the final assertion is obvious.

We have used in the proof of pii1q above the subsequent version of the
bipolar theorem pertaining to subsets of the positive orthant L0

` of L0.

Proposition 4.23. ([10], compare also [89]) For a subset D Ď L0
`pΩ,F ,Pq

we define its polar in L0
` as

D˝ “ tg P L0
` : Erghs ď 1, for all h P Du. (202)

Then the bipolar D˝˝ equals the closed, convex, solid hull of D.

91


