
5 The local duality theory

In this section we extend the duality theory to the setting where the corre-
sponding concepts such as no arbitrage, existence of consistent price systems
etc. only hold locally. For example, this situation arises naturally in the
stochastic portfolio theory as promoted by R. Fernholz and I. Karatzas. We
refer to the paper [60] by I. Karatzas and C. Kardaras (compare also [63])
where the local duality theory is developed in the classical frictionless setting.

Recall that a property pP q of a stochastic process S “ pStq0ďtďT holds
locally if there is a sequence of stopping times pτnq

8
n“1 increasing to infinity

such that each of the stopped processes Sτn “ pSt^τnq0ďtďT has property pP q.
We say that pP q is a local property if the fact that S has property pP q

locally implies that S has property pP q.
In the subsequent definition we formulate the notion of a super-martingale

deflator in the frictionless setting. The tilde super-scripts indicate that we
are in the frictionless setting.

Definition 5.1. (see [60]) Let S̃ “ pS̃tq0ďtďT be a semi-martingale based on
and adapted to pΩ,F , pFtq0ďtďT ,P.q The set of equivalent super-martingale
deflators Z̃e are defined as the s0,8r-valued processes pZ̃tq0ďtďT , starting at
Z̃0 “ 1, such that, for every S̃-integrable predictable process H̃ “ pH̃tq0ďtďT

verifying
1` pH̃ ¨ S̃qt ě 0, 0 ď t ď T, (203)

the process
Z̃tp1` pH̃ ¨ S̃qtq, 0 ď t ď T (204)

is a super-martingale under P. Dropping the super-script e we obtain the
corresponding class Z̃ of r0,8r-valued super-martingale deflators.

We call Z̃ P Z̃ a local martingale deflator if, in addition, Z̃ is a local
martingale.

We say that S̃ satisfies the property pESDq (resp. pELDq) of existence
of an equivalent super-martingale (resp. local martingale) deflator if Z̃e ‰ H
(resp. there is a local martingale Z̃ in Z̃e).

We remark that, for a probability measure Q equivalent to P under which
S̃ is a local martingale, we have that the density process Z̃t “ ErdQ

dP |Fts de-
fines a local martingale deflator.

We first give an easy example of a process S̃, for which (NFLVR) fails
while there does exist a super-martingale deflator (see [60, Ex. 4.6] for a more
sophisticated example, involving the three-dimensional Bessel process). In
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fact, we formulate this example in such a way that it also highlights the
persistence of this phenomenon under transaction costs.

Proposition 5.2. There is a continuous semi-martingale S “ pStq0ďtď1,
based on a Brownian filtration pFtq0ďtď1, such that there is an equivalent
super-martingale deflator pZtq0ďtď1 for S. On the other hand, for 0 ď λ ă 1

2
,

there does not exist a λ-consistent price system pS̃, Qq associated to S.

Proof: Let W “ pWtqtě0 be an pFtqtě0-Brownian motion, where pFtqtě0

is the natural (right-continuous, saturated) filtration generated by W.
Define the martingale Z “ Ep´W q

Zt “ expp´Wt ´
t
2
q, t ě 0,

and let N “ Z´1, i.e.

Nt “ exppWt `
t
2
q, t ě 0,

so that N satisfies the SDE

dNt
Nt
“ dWt ` dt.

Define the stopping time τ as

τ “ inftt : Zt “
1
2
u “ inftt : Nt “ 2u,

and note that τ is a.s. finite. Define the stock price process S as the time-
changed restriction of N to the stochastic interval J0, τK, i.e.

St “ N
tanp

π
2
pt^τqq

, 0 ď t ď 1.

By Girsanov there is only one candidate for the density process of an

equivalent martingale measure, namely
´

Z
tanp

π
2
pt^τqq

¯

0ďtď1
. But the example

is cooked up in such a way that
´

Z
tanp

π
2
pt^τqq

¯

0ďtď1
only is a local martingale.

Of course,
´

Z
tanp

π
2
pt^τqq

¯

0ďtď1
is an equivalent local martingale deflator.

As regards the final assertion, fix 0 ď λ ă 1
2
, and suppose that there

is a λ-consistent price system pS̃, Qq. As S̃ P rp1 ´ λqS, Ss we have S̃0 ď 1
and S̃1 ě 2p1 ´ λq ą 1, almost surely. On the other hand, assuming that
S̃ is a Q-super-martingale implies that EQrS̃1s ď EQrS̃0s, and we arrive at a
contradiction.
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Remark 5.3. For later use we note that St “ N
tanp

π
2
pt^τqq

is the so-called

numéraire portfolio (see, e.g. [60]), i.e., the unique process of the form 1`H¨S
verifying 1` pH ¨ Sq ě 0, and maximizing the logarithmic utility

up1q “ suptErlogp1` pH ¨ Sq1qsu.

The value function u above has a finite value, namely up1q “ logp2q, and,
more generally, upxq “ logp2q` logpxq, although the process S does not admit
an equivalent martingale measure. In other words, log-utility optimization
does make sense although the process S obviously allows for an arbitrage as
S0 “ 1 while S1 “ 2.

We next resume two notions from [66]. The tilde indicates again that we
are in the frictionless setting.

Definition 5.4. Let S̃ “ pS̃tq0ďtďT be a semi-martingale.
For x ą 0, y ą 0, define the sets

C̃pxq “ tX̃T : 0 ď X̃T ď x` pH̃ ¨ S̃qT u

where H̃ runs through the predictable, S̃-integrable processes such that
pH̃ ¨ S̃qt ě ´x, for all 0 ď t ď T , and let

D̃pyq “ tyZ̃T u

where Z̃T now runs through the terminal values of super-martingale deflators
pZ̃tq0ďtďT P Z̃.

Let us comment on the issue of non-negativity versus strict positivity
in the definition of D̃pyq. This corresponds to the difference between local
martingale measures Q for the process S̃ which are either assumed to be
equivalent or absolutely continuous with respect to P. It is well-known in
this more classical context that the closure of the set MepS̃q of equivalent
local martingale measures Q involves the passage to absolutely continuous
martingale measures. Similarly, to obtain the closedness of D̃p1q in the above
theorem we have to allow for non-negative processes pZ̃tq0ďtďT P Z̃ rather
than strictly positive processes pZ̃tq0ďtďT P Z̃e.

We now formulate the analogue of the results of [60] in the context of
transaction costs. To stay in line with the present setting we continue to
suppose that S “ pStq0ďtďT is a continuous process based on and adapted to
pΩ,F ,Pq equipped with a Brownian filtration pFtq0ďtďT .

We present a local version of the fundamental theorem of asset pric-
ing (Theorem 5.6 below) which pertains to the notion of equivalent super-
martingale deflators. Here is the corresponding primal notion in terms of
arbitrage in the frictionless setting.
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Definition 5.5. [60, Def. 4.1] Let S̃ “ pS̃tq0ďtďT be a semi-martingale. We
say that S̃ allows for an unbounded profit with bounded risk if there is α ą 0
such that, for every C ą 0, there is a predictable, S̃-integrable process H̃ such
that

pH̃ ¨ S̃qt ě ´1, 0 ď t ď T,

while
P
”

pH̃ ¨ S̃qT ě C
ı

ě α.

If S̃ does not allow for such profits, we say that S̃ satisfies the condition
pNUPBRq of no unbounded profit with bounded risk.

We now turn to the central result form the paper [60] of I. Karatzas and
C. Kardaras. While these authors deal with the more complicated case of
general semi-martingales (even allowing for convex constraints) we only deal
with the case of continuous semi-martingales S̃. This simplifies things consid-
erably as the problem then boils down to a careful inspection of Girsanov’s
formula.

Fix the continuous semi-martingale S̃. By the Bichteler-Dellacherie the-
orem (see, e.g., [75] or [3]), S̃ uniquely decomposes into

S̃ “M ` A

where M is a local martingale starting at M0 “ S̃0, and A is predictable
and of bounded variation starting at A0 “ 0. These processes M and A are
continuous too and the quadratic variation process xMyt is well-defined and
a.s. finite. The so-called “structure condition” introduced by M. Schweizer
[83] states that A is a.s. absolutely continuous with respect to xMy, i.e.,

dS̃t
S̃t
“ dMt ` %tdxMyt (205)

for some predictable process p%tq0ďtďT .
If S̃ fails to be representable in the form (205), it is well-known and easy

to prove that S̃ allows for arbitrage (in a very strong sense made precise,
e.g., in [60, Def. 3.8]). The underlying idea goes as follows: if dAt fails to
be absolutely continuous with respect to dxMyt then one can well-define a
predictable trading strategy H “ pHtq0ďtďT which equals `1 where dAt ą 0
and dxMyt “ 0 and equals ´1 where dAt ă 0 and dxMyt “ 0. The strategy
H clearly yields an arbitrage.

We therefore may and shall assume the “structure condition”(205) in
the sequel. The reader who is not so keen about the formalities of general
continuous semi-martingales may very well think of the example of an SDE

dS̃t
S̃t
“ σtdWt ` %tdt, (206)
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where W is a Brownian motion σ and % are predictable process such that σt “
0 implies that %t “ 0 without missing anything essential in the subsequent
arguments.

Assuming the integrability condition

ż T

0

%2
tdxMyt ă 8, a.s. (207)

we may well-define the Girsanov density process

Z̃t “ exp

"

´

ż t

0

%udMu ´
1
2

ż t

0

%2
udxMyu

*

0 ď t ď T. (208)

By Itô this is a strictly positive local martingale, such that Z̃S̃ is a local
martingale too (compare, e.g., [67]). In particular (208) yields an equivalent
super-martingale deflator.

The reciprocal Ñ “ Z̃´1 is called the numéraire portfolio, i.e.

Ñt “ exp

"
ż t

0

%udMu `
1
2

ż t

0

%2
udxMyu

*

. (209)

By Itô’s formula Ñ is a stochastic integral on S̃, namely dÑt
Ñt
“ %t

dS̃t
S̃t
, and en-

joys the property of being the optimal portfolio for the log-utility maximizer.
For much more on this issue we refer, e.g., to [2].

Our aim is to characterize condition (207) in terms of the condition
pNUPBRq of Definition 5.5. Essentially (207) can fail in two different ways.
We shall illustrate this with two proto-typical examples (compare [27]) of
processes S̃, starting at S̃0 “ 1. First consider

dS̃t
S̃t
“ dWt ` p1´ tq

´
1
2dt, 0 ď t ď 1, (210)

so that
ş1´ε

0
%2
tdt ă 8, for all ε ą 0, while

ş1

0
%2
tdt “ 8 almost surely. In

this case it is straightforward to check directly that the sequence pÑ
1´

1
n
q8n“1,

where Ñ is defined in (209), yields an unbounded profit with bounded risk,
as Ñ ą 0 and limtÑ1 Ñt “ 8, a.s.

The second example is

dS̃t
S̃t
“ dWt ` t

´
1
2dt, 0 ď t ď 1, (211)

so that
şε

0
%2
tdt “ 8, for all ε ą 0. This case is trickier as now the singularity

is at the beginning of the interval r0, 1s, and not at the end. This leads to
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the concept of immediate arbitrage as anlayzed in [27]. Using the law of the
iterated logarithm, it is shown there (Example 3.4) that in this case, one
may find an S̃-integrand H̃ such that H̃ ¨ S̃ ě 0 and PrpH̃ ¨ S̃qt ą 0s “ 1, for
each t ą 0. For the explicit construction of H̃ we refer to [27]. As one may
multiply H̃ with an arbitrary constant C ą 0 this again yields an unbounded
profit with bounded risk.

Summing up, in both of the examples (210) and (211) we obtain an un-
bounded profit with bounded risk. These two examples essentially cover the
general case.

We have thus motivated the following local version of the Fundamental
Theorem of Asset Pricing (see [60, Th. 4.12] for a more general result).

Theorem 5.6. Let S̃ “ pS̃tq0ďtďT be a continuous semi-martingale of the
form

dS̃t
S̃t
“ dMt ` %tdxMyt,

where pMtq0ďtďT is a local martingale. The following assertions are equiva-
lent.

piq The condition pNUPBRq of no unbounded profit with bounded risk
holds true (Def. 5.5).

pi1q Locally, S̃ satisfies the condition pNFLV Rq of no free lunch with
vanishing risk.

pi2q The set C̃p1q is bounded in L0pΩ,F ,Pq.

piiq The process % verifying (205) and (207) exists and satisfies
şT

0
%2
tdxMyt ă

8, a.s.

pii1q The Girsanov density process Z̃

Z̃t “ exp

"

´

ż t

0

%udMu ´
1
2

ż t

0

%2
udxMyu

*

, 0 ď t ď T,

is well-defined and therefore a strictly positive local martingale.

pii2q The numéraire portfolio Ñ “ Z̃´1

Ñt “ exp

"
ż t

0

%udMu `
1
2

ż t

0

%2
udxMyu

*

, 0 ď t ď T,

is well-defined (and therefore a.s. finite).
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piiiq The set of equivalent super-martingale deflators Z̃e is non-empty
(ESD).

piii1q The set of equivalent local martingale deflators in Z̃e, is non-empty
pELDq.

piii2q Locally, the set of equivalent martingale measures is non-empty.

Proof: piiq ô pii2q ô pii1q ñ piii1q ô piii2q ñ piiiq is obvious, and
pi2q ô piq holds true by Definition 5.5.
piiiq ñ pi2q : By definition, C̃p1q fails to be bounded in L0 if there is α ą 0

such that, for each M ą 0, there is X̃T “ 1` pH̃ ¨ S̃qT P C̃p1q such that

PrX̃T ěM s ě α. (212)

Fix Z̃ P Z̃e. The strict positivity of Z̃T , implies that

β :“ inftErZ̃T1As : PrAs ě αu

is strictly positive. Letting M ą 1
β

in (212) we arrive at a contradiction to
the super-martingale assumption

1 “ ErZ̃0X̃0s ě ErZ̃T X̃T s ě βM ą 1.

piq ñ piiq This is the non-trivial implication. It is straightforward to
deduce from piq that there is a predictable process % satisfying (205) (compare
[83] and the discussion preceding Theorem 5.6 .) We have to show that (207)
is satisfied. The reader might keep the examples (210) and (211) in mind.
Define the stopping time

τ “ inf

$

&

%

t P r0, T s :

t
ż

0

%2
udxMyu “ 8.

,

.

-

.

Condition piiq states that Prτ ă 8s “ 0. Assuming the contrary, the set
tτ ă 8u then splits into the two Fτ -measurable sets

Ac “ tτ ă 8u X

"

lim
tÕτ

ż t

0

%2
udxMyu “ 8

*

,

Ad “ tτ ă 8u X

"

lim
tÕτ

ż t

0

%2
udxMyu ă 8

*

,

where c refers to “continuous” and d to “discontinuous”.
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If PrAcs ą 0 it suffices to define the stopping times

τn “ inf

"

t :

ż t

0

%2
udxMyu ě 2n

*

.

For each n P N, the numéraire portfolio Ñτn at time τn is well-defined and
given by

Ñτn “ exp

"
ż τn

0

%udMu `
1
2

ż τn

0

%2
udxMyu

*

.

It is straightforward to check that Ñτn tends to `8 a.s. on Ac, which gives
a contradiction to piq.

We still have to deal with the case PrAcs “ 0 in which case we have
PrAds ą 0. This is the situation of the “Immediate Arbitrage Theorem”. We
refer to [27, Th. 3.7] for a proof that in this case we may find an S̃-integrable,
predictable process H̃ such that pH̃ ¨ S̃qt ą 0, for all τ ă t ď T almost surely
on Ad. This contradicts assumption piq.
pii1q ñ pi1q : Suppose that the Girsanov density process Z̃ is well-defined

and strictly positive. We may define, for ε ą 0, the stopping time

τε “ inf
!

t : Z̃t ě ε´1
)

so that Prτε ă 8s ď ε. The stopped process S̃τε then admits an equivalent
martingale measure, namely dQ

dP “ Z̃τε .
pi1q ñ piq obvious as pNUPBRq is a local property.

We now give a similar local version of the Fundamental Theorem of Asset
Pricing in the context of transaction costs.

Definition 5.7. Let S “ pStq0ďtďT be a strictly positive, continuous process.
We say that S allows for an obvious arbitrage if there are α ą 0 and r0, T sY
t8u-valued stopping times σ ď τ with Prσ ă 8s “ Prτ ă 8s ą 0 such that
either

paq Sτ ě p1` αqSσ, a.s. on tσ ă 8u,

or
pbq Sτ ď

1
1`α

Sσ, a.s. on tσ ă 8u.

We say that S allows for an obvious immediate arbitrage if, in addition,
we have

paq St ě Sσ, for t P Jσ, τK, a.s. on tσ ă 8u,

or
pbq St ď Sσ, for t P Jσ, τK, a.s. on tσ ă 8u.
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We say that S satisfies the condition pNOAq (resp. pNOIAq) of no obvi-
ous arbitrage (resp. no obvious immediate arbitrage) if no such opportunity
exists.

It is indeed rather obvious how to make an arbitrage if pNOAq fails,
provided the transaction costs 0 ă λ ă 1 are smaller than α. Assuming
e.g. condition paq, one goes long in the asset S at time σ and closes the
position at time τ. In case of an obvious immediate arbitrage one is in addition
assured that during such an operation the stock price will never fall under the
initial value Sσ. In particular this gives an unbounded profit with bounded
risk under transaction costs λ.

In the case of condition pbq one does a similar operation by going short
in the asset S.

Next we formulate an analogue of Theorem 5.6 in the setting of transac-
tion costs.

Theorem 5.8. Let S “ pStq0ďtďT be a strictly positive, continuous process.
The following assertions are equivalent.

piq Locally, there is no obvious immediate arbitrage pNOIAq.

pi1q Locally, there is no obvious arbitrage pNOAq.

pi2q Locally, for each 0 ă λ ă 1, the process S does not allow for an
arbitrage under transaction costs λ, i.e.

C X L0
` “ t0u, (213)

where C is the cone given by Definition 4.6 for the stopped process Sτ .
pi3q Locally, for each 0 ă λ ă 1, the process S does not allow for a free

lunch with vanishing risk under transaction costs λ, i.e.

C X L8 X L8` “ t0u, (214)

where the bar denotes the closure with respect to the norm topology of L8.

pi4q Locally, for each 0 ă λ ă 1, the process S does not allow for a free
lunch under transaction costs λ, i.e.

C X L8 X L8` “ t0u, (215)

where now the bar denotes the closure with respect to the weak star topology
of L8.
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piiq Locally, for each 0 ă λ ă 1, the condition pCPSλq of existence of a
λ-consistent price system holds true.

pii1q For each 0 ă λ ă 1 the condition pCLDλq of existence of a λ-
consistent local martingale deflator holds true.

Proof: pi4q ñ pi3q ñ pi2q ñ pi1q ñ piq is straight-forward, as well as
piiq ô pii1q.
piq ñ piiq: As assumption piiq is a local property we may assume that S
satisfies (NOIAq.

To prove piiq we do a similar construction as in ([41], Proposition 2.1):
we suppose in the sequel that the reader is familiar with the proof of [41],
Proposition 2.1 and define the – preliminary – stopping time %̄1 by

%̄1 “ inf
!

t ą 0 : St
S0
ě 1` λ or St

S0
ď 1

1`λ

)

.

In fact, in [41] we wrote ε
3

instead of λ which does not matter as both quan-
tities are arbitrary small.

Define the sets Ā`1 , Ā
´
1 , and Ā0 as

Ā`1 “ t%̄1 ă 8, S%̄1 “ p1` λqS0u , (216)

Ā´1 “
 

%̄1 ă 8, S%̄1 “
1

1`λ
S0

(

, (217)

Ā0
1 “ t%̄1 “ 8u . (218)

It was observed in [41] that assumption pNOAq by definition rules out the
cases PrĀ`1 s “ 1 and PrĀ´1 s “ 1. But under the present weaker assumption
pNOIAq we cannot a priori exclude the possibilities PrĀ`1 s “ 1 and PrĀ´1 s “
1. To refine the argument from [41] in order to apply to the present setting,
we distinguish two cases. Either we have PrĀ`1 s ă 1 and PrĀ´1 s ă 1; in this
case we let %1 “ %̄1 and proceed exactly as in the proof of ([41], Proposition
2.1) to complete the first inductive step.

The second case is that one of the probabilities PrĀ`1 s or PrĀ´1 s equals
one. We assume w.l.g. PrĀ`1 s “ 1, the other case being similar.

Define the real number β ď 1 as the essential infimum of the random
variable min0ďtď%̄1

St
S0
. We must have β ă 1, otherwise the pair p0, %̄1q would

define an immediate obvious arbitrage. We also have the obvious inequality
β ě 1

1`λ
.

We define, for 1 ą γ ě β the stopping time

%̄γ1 “ inf
!

t ą 0 : St
S0
ě 1` λ or St

S0
ď γ

)

.
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Defining Āγ,`1 “ tS%̄γ1 “ p1 ` λqS0u and Āγ,´1 “
 

S%̄γ1 “ γS0

(

we find an

a.s. partition of Ā`1 into the sets Āγ,`1 and Āγ,´1 . Clearly PrĀγ,´1 s ą 0, for
1 ą γ ą β. We claim that lim

γŒβ
PrĀγ,´1 s “ 0. Indeed, supposing that this limit

were positive, we again could find an obvious immediate arbitrage as in this
case we have that PrĀβ,´1 s ą 0. Hence the pair of stopping times

σ “ %̄β1 .1tS
%̄
β
1

“βS0u `81tS
%̄
β
1

“p1`λqS0u

and
τ “ %̄1.1tS

%̄
β
1

“βS0u `81tS
%̄
β
1

“p1`λqS0u

would define an obvious immediate arbitrage.
We thus may find 1 ą γ ą β such that PrĀγ,´1 s ă 1

2
. After having found

this value of γ we can define the stopping time %1 in its final form as

%1 :“ %̄γ1 .

Next we define, similarly as in (216) and (217) the sets

A`1 “ t%1 ă 8, S%1 “ p1` λqS0u

A´1 “ t%1 ă 8, S%1 “ γS0u

to obtain a partition of Ω into two sets of positive measure.
As in [41] we define a probability measure Q1 on F%1 by letting dQ1

dP
to be constant on these two sets, where the constants are chosen such that
Q1rA

`
1 s “

1´β
1`λ´β

andQ1rA
´
1 s “

λ
1`λ´β

.We then may define theQ1-martingale

pS̃tq0ďtď%1 by
S̃t “ EQ1rS%1 |Fts, 0 ď t ď %1,

to obtain a process remaining in the interval rγS0, p1` λqS0s.
The above weights for Q1 were chosen in such a way to obtain

S̃0 “ EQ1rS%1s “ S0.

This completes the first inductive step similarly as in [41]. Summing up,
we obtained %1, Q1 and pS̃tq0ďtď%1 precisely as in the proof of ([41], Propo-
sition 2.1) with the following additional possibility: it may happen that %1

does not stop when St first hits p1 ` λqS0 or S0

1`λ
, but rather when St first

hits p1` λqS0 or βS0, for some 1
1`λ

ă β ă 1. In this case we have PrA0
1s “ 0

and we made sure that PrA´1 s ă 1
2
, i.e., we have a control on the probability

of tS%1 “ βS0u.
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We now proceed as in [41] with the inductive construction of %n, Qn and
pS̃tq0ďtď%n . The new ingredient is that again we have to take care (condi-
tionally on F%n´1) of the additional possibility PrA`n s “ 1 or PrA´n s “ 1.
Supposing again w.lg. that we have the first case, we deal with this possibil-
ity precisely as for n “ 1 above, but now we make sure that PrA´n s ă 2´n.

This completes the inductive step and we obtain, for each n P N, an
equivalent probability measure Qn on F%n and a Qn-martingale pS̃tq0ďtď%n
taking values in the bid ask spread pr 1

1`λ
St, p1 ` λqStsq0ďtď%n . We note in

passing that there is no loss of generality in having chosen this normalization
of the bid ask spread instead of the usual normalization rp1 ´ λ1qS 1, S1s by
passing from S to S 1 “ p1´ λ

2
qS and from λ to λ1 “ λ

2
.

There is one more thing to check to complete the proof of piiq : we have to
show that the stopping times p%nq

8
n“1 increase almost surely to infinity. This

is verified in the following way: suppose that p%nq
8
n“1 remains bounded on a

set of positive probability. On this set we must have that
S%n`1

S%n
equals p1`λq

or 1
1`λ

, except for possibly finitely many n1s. Indeed, the above requirement
PrA´n s ă 2´n makes sure that a.s. the novel possibility of moving by a value
different from p1`λq or 1

1`λ
can only happen finitely many times. Therefore

we may, as in [41], conclude from the continuity and strict positivity of the
trajectories of S that %n increases a.s. to infinity which completes the proof
of piiq.

piiq ñ pi4q As piiq as well as pi4q are local properties holding true for
each 0 ă λ ă 1, it will suffice to show that pCPSλq implies (215), for fixed
0 ă λ ă 1.

Let pS̃, Qq be a λ-consistent price system and define the half-space H of
L8pΩ,F ,Pq

H “
 

ϕ0
T P L

8 : EQrϕ0
T s ď 0

(

,

which is σ˚-closed and satisfies H X L8` “ t0u. It follows from Proposition
4.5 that, for all self-financing, admissible trading strategies pϕ0

t , ϕ
1
t q0ďtďT we

have that pϕ0
tZ

0
t ` ϕ

1
tZ

1
t q0ďtďT is a super-martingale under Q, which implies

that C X L8. Hence (215) holds true.

Recall Theorem 4.22 from the previous section. It states the polarity
between the sets Cpxq and Dpyq in L0

`. This result which will turn out to be
the basis of the duality theory of portfolio optimization in the next.

The crucial hypothesis in Theorem 4.22 is the assumption of pCPSλ
1

q, for
each 0 ă λ1 ă 1. It turns out that it is sufficient to impose this hypothesis
only locally i.e. under one of the conditions listed in Theorem 5.8. The proof
is rather standard but somewhat lengthy and was carried out in detail in
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[18] and [21]. Here we content ourselves to simply stating this result without
going through the proof.

Theorem 5.9. Suppose that the continuous, strictly positive process S “

pStq0ďtďT satisfies condition pCPSλ
1

q locally, for each 0 ă λ1 ă 1. Fix
0 ă λ ă 1.

piq The sets Apxq,Cpxq,Bpyq,Dpyq defined in Definition 4.21 are convex,
closed (w.r to convergence in measure) subsets of L0pR2q and L0

`pRq respec-
tively. The sets Cpxq and Dpyq are also solid.

piiq Fix x ą 0, y ą 0 and ϕ0
T P L

0
`pRq. We have ϕ0

T P Cpxq iff

xϕ0
T , Z

0
T y ď xy, (219)

for all Z0
T P Dpyq. In fact, we also have

sup
pS̃,QqP CPSλ

EQrϕ0
T s “ xy. (220)

pii1q We have Z0
T P Dpyq iff

xϕ0
T , Z

0
T y ď xy (221)

for all ϕ0
T P Cpxq.

piiiq The sets Ap1q and Cp1q are bounded in L0pR2q and L0pRq respectively
and contain the constant functions p1, 0q (resp. 1).
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