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Abstract

This article consists of two parts. The first briefly discusses the his-
tory and the basic ideas of option pricing. Based on this background,
in the second part we critically analyze the role of academic research
in Mathematical Finance relating to the emergence of the 2007-2008
financial crisis.

1 Introduction

Mathematical Finance serves as a prime example of a flourishing application
of mathematical theory. It became an important tool for several tasks in the
financial industry and this “mathematization” of the financial business seems
to be irreversible. Therefore in many curricula of mathematics departments,
but also in business schools, mathematical finance is now regularly taught.

In this survey we want to summarize how these ideas developed, starting
from the seminal work of Louis Bachelier [2] who defended his thesis “Théorie
de la spéculation” in 1900 in Paris. Henri Poincaré was a member of the jury
and wrote a very positive report. Bachelier used probabilistic arguments,
thus introducing Brownian motion for the first time as a mathematical model,
in order to develop a rational theory of option pricing.

This theme subsequently remained dormant for almost 70 years until it
was taken up again by the eminent economist Paul Samuelson. In the sequel
Fisher Black, Robert Merton, and Myron Scholes applied a slightly modified
version of Bachelier’s model and the resulting “Black-Scholes formula” for
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the price of a European option quickly became very influential in the world
of finance. We shall sketch this development.

In the second part we want to give a critical view of the success or failure
of these mathematical insights in the real world. We shall argue that the
probabilistic approach turned out to be highly successful with respect to the
original goal of pricing options on a liquidly traded risky asset, e.g. a share
of a large company. On the other hand, the probabilistic approach was sub-
sequently applied to many other tasks, such as credit risk, risk management,
“real options” etc. We shall analyze to which extent mathematical models
were involved in the financial crisis of 2007-2008. It is sometimes claimed in
the public discourse that “nobody warned about the misuse of mathematical
models”. We shall see that such claims are not justified.

2 Louis Bachelier and Black-Scholes

We outline the remarkable work of L. Bachelier (1870 – 1946) by following
the more extensive presentation [18] which I gave at the summer school 2000
in St. Flour.

It is important to note that the young Louis Bachelier did not attend
any of the grandes écoles in Paris, apparently for economic reasons. In order
to make a living he worked as a subordinate clerk at the Bourse de Paris
where he was exposed on a daily basis to the erratic movements of prices of
financial securities.

L. Bachelier was interested in designing a rational theory for the prices
of term contracts. The two forms which were traded at the Bourse de Paris
at that time also play a basic role today: forward contracts and options. We
shall focus on the mathematically more interesting of these two derivatives,
namely options.

Definition 2.1. A European call (resp. put) option on an underlying security
S consists of the right (but not the obligation) to buy (resp. to sell) a fixed
quantity of the underlying security S, at a fixed price K and a fixed time T
in the future.

The underlying security S, usually called the stock, can be a share of a
company, a foreign currency, gold etc. In the case of Bachelier the underlying
securities were “rentes”, a form of perpetual bonds which were very common
in France in the nineteenth century (compare [18]). The nominal value was
100 francs and it would pay 3 francs of interest every year. But the nominal
capital was never paid. While the specifics of these assets are not relevant,
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it is worthwhile to note the following features (the terminology below will be
explained later):

• the underlying asset S (the “rentes” in the concrete case of Bachelier)
were liquidly traded.

• the value of the asset would typically not deviate too much from its
nominal value of 100 francs.

In addition, they had the following properties.

• low volatility of the underlying asset.

• short term to maturity of the option (maximum: 2 months).

• approximately “at the money” options.

We mention these features explicitly as it is important in many applications
to keep in mind for which purposes a mathematical model was originally
intended, in particular, if it is later also applied to quite different situations.

Fixing the letter K for the strike price of the option, one arrives — after
a moment’s reflection — at the usual “hockey-stick” shape for the pay-off
function of a call option at time T . We draw the value of the option as a
function of the price ST of the underlying asset S at time T .

Let Ĉ denote the upcounted (from time t = 0 to time t = T ) price C of
the option. We shall not elaborate on the rather boring aspects of upcounting
and discounting and assume that the riskless rate of interest equals zero so
that C = Ĉ.
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Figure 1: Pay-off function of a call option at time T .

The graph displayed in Figure 1 appears explicitly in Bachelier’s thesis.
It gives the profit or loss of the option at time t = T when we shall know
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the price ST of the underlying asset S. But we have to determine the price
C of the option which we have to pay at time t = 0. We note in passing that
the special form of the above payoff function is not really relevant. Its only
crucial feature is that it is not linear.

Louis Bachelier now passes to the central topic, Probabilities in Operations
on the Exchange. Somewhat ironically, he had already addressed the basic
difficulty of introducing probability in the context of the stock exchange
in the introduction to the thesis in a very sceptical way: “The calculus
of probabilities, doubtless, could never be applied to fluctuations in security
quotations, and the dynamics of the Exchange will never be an exact science.”

Nevertheless he now proceeds to model the price process of securities by
a probability distribution distinguishing “two kinds of probabilities”:

“1. The probability which might be called “mathematical”, which can
be determined a priori and which is studied in games of chance.
2. The probability dependent on future events and, consequently im-
possible to predict in a mathematical manner.

This last is the probability that the speculator tries to predict.”

My personal interpretation of this — somewhat confusing — definition
is the following: sitting daily at the stock exchange and watching the move-
ment of prices, Bachelier got the same impression that we get today when
observing price movements in financial markets, e.g., on the internet. The
development of the charts of prices of stocks, indices etc. on the screen or on
the blackboard resembles a “game of chance”. On the other hand, the second
kind of probability seems to refer to the expectations of a speculator who has
a personal opinion on the development of prices. Bachelier continues:

“His (the speculator’s) inductions are absolutely personal, since his coun-
terpart in a transaction necessarily has the opposite opinion.”

This insight leads Bachelier to the remarkable conclusion, which in today’s
terminology is called the “efficient market hypothesis”:

“It seems that the market, the aggregate of speculators, at a given instant
can believe in neither a market rise nor a market fall since, for each quoted
price, there are as many buyers as sellers.”

He then makes clear that this principle should be understood in terms
of “true prices”, i.e., discounted prices. Finally he ends up with his famous
dictum:

“In sum, the consideration of true prices permits the statement of this
fundamental principle:
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The mathematical expectation of the speculator is zero.”

This is a truly fundamental principle and the reader’s admiration for
Bachelier’s pathbreaking work will increase even more when continuing to
the subsequent paragraph of Bachelier’s thesis:

“It is necessary to evaluate the generality of this principle carefully: It
means that the market, at a given instant, considers not only currently ne-
gotiable transactions, but even those which will be based on a subsequent
fluctuation in prices as having a zero expectation.

For example, I buy a bond with the intention of selling it when it will have
appreciated by 50 centimes. The expectation of this complex transaction is
zero exactly as if I intended to sell my bond on the liquiditation date, or at
any time whatever.”

In my opinion, in these two paragraphs, the basic ideas underlying the
concepts of martingales, stopping times, trading strategies, and Doob’s op-
tional sampling theorem already appear in a very intuitive way. It also sets
the basic theme of the modern approach to option pricing which is based on
the notion of a martingale.

Let us look at the implications of the fundamental principle: In order
to draw conclusions from it, Bachelier had to determine the probability dis-
tribution of the random variable ST (the price of the underlying security
at expiration time T ) or, more generally, of the entire stochastic process
(St)0≤t≤T . It is important to note that Bachelier had the approach of con-
sidering this object as a process, i.e., by thinking of the pathwise behavior of
the random trajectories (St(ω))0≤t≤T ; this was very natural for him, as he
was constantly exposed to observing the behavior of the prices, as t “varies
in continuous time”.

To determine the law of the process S, Bachelier assumes that, for 0 ≤
t ≤ T , the probability px,tdx, that the price S of the underlying security,
starting at time t0 from St0 , lies at time t0 + t in the infinitesimal interval
(St0 + x, St0 + x+ dx) is symmetric around x = 0 and homogeneous in time
t0 as well as in space.

Bachelier notices that this creates a problem, as it gives positive proba-
bilities to negative values of the underlying security, which is absurd. But
one should keep in mind the proportions mentioned above: a typical yearly
standard deviation σ of the prices of the underlying stock S considered by
L. Bachelier was of the order of 2.4 %. Hence the region where the bond
price becomes negative after one year is roughly 40 standard deviations away
from the mean; anticipating that Bachelier uses the normal distribution, this
effect is — in his words — “considered completely negligible”. This was
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certainly justified as the horizons for the options were only fractions of a
year. On the other hand, we should be warned when considering Bachelier’s
results asymptotically for t→∞ (or σ →∞ which roughly amounts to the
same), as in these circumstances the effect of assigning positive probabilities
to negative values of St is not “completely negligible” any more. But this
was not Bachelier’s concern. As J.M. Keynes phrased so nicely: in the long
run we all are dead.

After these specifications, Bachelier argues that “by the principle of joint
probabilities” (apparently he means the independence of the increments), we
obtain

pz,t1+t2 =

∫ +∞

−∞
px,t1pz−x,t2dx. (1)

In other words, he obtains what we call today the Chapman-Kolmogoroff
equation. Then he observes that “this equation is confirmed by the function”

px,z =
1

σ
√

2πt
exp

(
− x2

2σ2t

)
, (2)

concluding that “evidently the probability is governed by the Gaussian law
already famous in the calculus of probabilities”.

Summing up, Bachelier derived from some basic principles the transi-
tion law of Brownian Motion and its relation to the Chapman-Kolmogoroff
equation.

Bachelier then gives an “Alternative Determination of the Law of Prob-
ability”. He approximates the continuous time model (St)t≥0 by a random
walk, i.e., a process which during a time interval ∆t moves up or down with
probability 1

2
by ∆x. He clearly works out that ∆x must be of the order

(∆t)
1
2 and — using only Stirling’s formula — he obtains the convergence of

the one-dimensional marginal distributions of the random walk to those of
Brownian motion.

Suming up, Bachelier arrives at the model for the stock price process

St = S0 + σWt, 0 ≤ t ≤ T, (3)

where, in modern terminology, (Wt)0≤t≤T denotes standard Brownian motion
and the constant σ > 0 is the “volatility”, which Bachelier has called the
“coefficient de nervosité du marché”.

Having fixed the model, Bachelier is now able to determine the price C of
an option appearing in Figure 1. Indeed, the probability distribution in this
picture is now given by a Gaussian distribution with mean S0 (the current
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price of the underlying S) and variance σ2T. The “fundamental principle”
(the mathematical expectation of the speculator is zero) states that the in-
tegral of the function depicted in Figure 1 with respect to this probability
distribution equals zero. This yields the equation

−C +

∫ ∞
K−S0

(x− (K − S0)) f(x)dx = 0, (4)

where

f(x) =
1

σ
√

2πT
e−

x2

2σ2T , (5)

which clearly determines the relation between the premium C of the option
and the strike price K. In other words, equation (4) determines the price for
the option and therefore solves the basic problem considered by Bachelier.

It is straightforward to derive from (4) an “option pricing formula” by
calculating the integral in (4): denoting by φ(x) the standard normal den-
sity function, i.e., φ(x) equals (5) for σ2T = 1, by Φ(x) the corresponding
distribution function, and using the relation φ′(x) = −xφ(x), an elementary
calculation reveals that

C =

∫ ∞
K−S0
σ
√
T

(
xσ
√
T − (S0 − F )

)
φ(x)dx (6)

= (S0 −K)Φ

(
S0 −K
σ
√
T

)
+ σ
√
Tφ

(
S0 −K
σ
√
T

)
,

which is a very explicit and tractable formula. Note that the only delicate
parameter is σ while all the other quantities are given.

Finally in Bachelier’s thesis a section follows, which is not directly needed
for the subsequent applications in finance, but which — retrospectively —
is of utmost mathematical importance: “Radiation of probability”. Consider
the discrete random walk model and suppose that the grid in space is given
by

. . . , xn−2, xn−1, xn, xn+1, xn+2, . . .

having the same distance

∆x = xn − xn−1,

for all n, and such that at time t these points have probabilities

. . . , ptn−2, p
t
n−1, p

t
n, p

t
n+1, p

t
n+2, . . .

for the random walk under consideration. What are the probabilities

. . . , pt+∆t
n−2 , p

t+∆t
n−1 , p

t+∆t
n , pt+∆t

n+1 , p
t+∆t
n+2 , . . .
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of these points at time t+ ∆t? A moment’s reflection reveals the rule which
is so nicely described by Bachelier in the subsequent phrases:

“Each price x during an element of time radiates towards its neighboring
price an amount of probability proportional to the difference of their proba-
bilities.

I say proportional because it is necessary to account for the relation of
∆x to ∆t.

The above law can, by analogy with certain physical theories, be called
the law of radiation or diffusion of probability.”

Passing formally to the continuous limit and denoting by Px,t the distri-
bution function associated to the density function (2)

Px,t =

∫ x

−∞
pz,tdz (7)

Bachelier deduces in an intuitive and purely formal way the relation

dP

dt
=

1

c2

dp

dx
=

1

c2

d2P

dx2
(8)

where c > 0 is a constant. Of course, the heat equation was known to
Bachelier: he claims that “this is a Fourier equation”.

Hence Bachelier in 1900 very explicitly discovered the fundamental re-
lation between Brownian motion and the heat equation; this fact was re-
discovered five years later by A. Einstein [8] and resulted in a goldmine
of mathematical investigation through the work of Kolmogoroff, Kakutani,
Feynman, Kac, and many others up to recent research. It is worth noting
that H. Poincaré in his (very positive) report on Bachelier’s thesis saw the
seminal importance of this idea when he wrote “On peut regretter que M.
Bachelier n’ait pas developpé d’avantage cette partie de sa thèse” (One may
regret that M. Bachelier did not further develop this part of his thesis.)g

But unfortunately the thesis of Bachelier obtained only a “mention bien”.
Apparently the two other jury members did not have the same positive opin-
ion as H. Poincaré towards this unusual student who was working at the
stock exchange. But in order to make an academic career a “mention très
bien” was an absolute must, just as it is today in France. Louis Bachelier
subsequently had a rather difficult life and his work was not well received
in France. On the other hand, A. Kolmogoroff or K. Itô did appreciate his
writings.

We focused on the early work by L. Bachelier as his contribution is less
known to a wider public than the “Black-Scholes option pricing formula”.
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After Bachelier’s pioneering work, it remained silent around the theme of
option pricing for many decades. This is in sharp contrast to the progress
made during this period in the mathematical theory of stochastic processes
and their applications in physics and biology.

Eventually in 1965 the eminent economist P. Samuelson rediscovered
Bachelier’s thesis in the library of Harvard University, following a request of
the statistician J. Savage. Samuelson was immediately fascinated by Bache-
lier’s work and started a line of research on option pricing and related top-
ics which at this time had much more repercussions than Bachelier’s thesis.
Samuelson [17] proposed a multiplicative version of Bachelier’s model defined
by the stochastic differential equation

dSt
St

= σdWt + µdt, 0 ≤ t ≤ T, (9)

where (Wt)0≤t≤T denotes a standard Brownian motion and σ ∈ R+, µ ∈ R
are constants.

Given the initial value S0 of the stock, Itô’s formula yields the solution

St = S0 exp
(
σWt +

(
µ− σ2

2

)
t
)
, 0 ≤ t ≤ T. (10)

The SDE (9) states that the relative increments dSt
St

of the price process
are driven by a Brownian motion with drift. Today, the model (9) is usually
called the Black-Scholes model.

In 1973, the papers by F. Black and M. Scholes [3] and R. Merton [15]
appeared. Departing from the no arbitrage principle and using the concept
of dynamic trading these authors derived the – by now famous – Black-
Scholes formula for the price of a call option. Maintaining for convenience
the above hypothesis that the riskless rate of interest equals zero (which
presently happens to be close to the actual economic situation), one obtains
the formula

C = S0Φ(d1)−KΦ(d2), (11)

with

d1 =
ln(S0

K
) + σ2

2
T

σ
√
T

, d2 =
ln(S0

K
)− σ2

2
T

σ
√
T

. (12)

This formula looks quite different from Bachelier’s result (6) above. How-
ever, for moderate values of T and σ, as was the case in Bachelier’s original
application, the difference of the numerical values of (6) and (12) is remark-
ably small. In [19] the difference for typical data used by Bachelier has been
estimated to be of the order of 10−8S0. In a way, this is not too surprising
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as the difference between Bachelier’s model (3) and the Black-Scholes model
(9) is analoguous to the difference between linear growth and exponential
growth. In the short run this difference is remarkably small.

We do not give the derivation of the Black-Scholes formula here as it may
be found in many textbooks (e.g. [6]). It is remarkable that the solution
(11) for the option pricing formula is eventually obtained by applying pre-
cisely Bachelier’s fundamental principle, i.e., by choosing µ = 0 in (9) and
calculating the expectation of the payoff of the option under the law of ST .

3 Mathematics and the Financial Crisis

The Black-Scholes formula and the related concepts of hedging and replication
of derivate securities had enormous impact on the paradigms of financial
markets. In particular, the use of stochastic models became ubiquitous in the
financial industry. In this section we shall have a critical look at the effects
of this probabilistic approach to the real world.

3.1 Value at Risk

Let us start with the concept of value at risk. The CEO of J.P. Morgan,
Dennis Weatherstone, asked the bank’s quants in the wake of the 1987 crash
to come up with a short daily summary of the market risk facing the bank.
He wanted one single number every day at 4:15 pm which indicates the risk
exposure of the entire bank. By that time the quants, i.e. the quantitative
financial analysts, disposed of mathematical models for “market risk”, such
as the above considered price movements of stocks, options etc. Stochastic
models were used to calculate the distribution of total profits or losses from
these sources during a fixed period, e.g., the consecutive 10 business days.
The “value at risk” was then defined as the 1 % quantile of this distribution,
i.e. the smallest number M ∈ R such that the probability of the total loss
being bounded by M, is at least 99 %. This was the famous “4:15 number”.

It was quickly noticed by the quants that the above models of Bachelier
and Black-Scholes are not well suited for the estimation of extreme events.
After all, they are based on the Gaussian distribution which is derived from
the central limit theorem.

As is very well known for almost 300 years, this theorem states that a
random variable X, in our case the change of a stock price, which is the sum
of “many” independent random variable Xn, where each of these random
variables has little individual influence on the total effect X =

∑
Xn, is

approximately normally distributed. But in the financial world it happens
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quite often that a price movement is due to one big event (think, e.g., of
9/11) rather than due to the sum of many small events.

This is well illustrated by the following comment on the use of the Black-
Scholes approach by a senior manager of an Austrian bank: “the Black-
Scholes theory works very well, in fact surprisingly well, in 99 % or even
99.5 % of the days!” He then continued: “except for the one or two days per
year which really matter.”

But let us come back to the concept of value at risk. By choosing dis-
tributions with heavier tails it is not too difficult to correct for the above
mentioned shortcomings of the Gaussian models. This was widely done, also
by practitioners, in the context of risk management. As a general rule, when
choosing a model it is always important to keep the applications in mind.
If the purpose is to deal with the day-to-day business of pricing and hedg-
ing options, the Black-Scholes model, or even Bachelier’s model, is a very
efficient tool. However, when it comes to issues like risk management which
deal with extreme events, the use of these models is highly misleading. After
all, we have to keep in mind that these models were not invented for such
purposes as risk management.

A similar fate of misuse happened to the “4:15 number” of Dennis Weath-
erstone which was originally designed as a very rough but focused information
for the senior management of a bank. But this magic number quickly became
very popular under the name of value at risk and used for to other purposes,
notably to the calculation of capital requirements. A risky portfolio of a bank
requires sufficient underlying capital as a buffer against potential losses. Ac-
cording to the Basel II regulation this capital requirement is determined by
calculating the value at risk of the portfolio and, in order to be on the safe
side, eventually multiplying this number by three. Compare [14] for a more
detailed discussion.

The use of value at risk for regulatory purposes is a prime example of what
has become known as “Goodhart’s law” which seems to hold true in many
contexts: when a measure becomes a target, it ceases to be a good measure.

If banks (or traders) get the incentive to design their portfolios in such
a way that the “value at risk” is kept low, this may lead to serious mis-
allocations. To sketch the idea we give a somewhat artificial example. Sup-
pose that a bank has a portfolio which causes a sure loss of one million Euros.
The bank can decompose this portfolio into 101 sub-portfolios where each of
these sub-portfolios makes a loss of one million with probability 1

101
, and

zero loss otherwise. While the value at risk of the entire portfolio obviously
is one million, each of the sub-portfolios has a value at risk of zero! Hence
no capital requirement is necessary for these sub-portfolios. This effect is,
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of course, in sharp contrast to the basic idea of “diversification”: by pooling
sub-portfolios into one big portfolio, the risk measure of the sum should be
less than or equal to the sum of the risk measures, and not vice versa.

Admittedly, the above example is too blunt to be realistic, but neverthe-
less it highlights what is happening in practice when value at risk is blindly
used as a risk measure for risk management purposes. Mathematically speak-
ing, the above effect is due to the fact that the value at risk map, which
assigns to each random variable X the 1 % -quantile of its distribution, fails
to be sub-additive.

This shortcoming was soon and severely criticized in the academic lit-
erature. In 1999, Ph. Artzner, F. Delbaen, J.-M. Eber, and D. Heath [1]
proposed a theory of “coherent risk measures” which do not suffer from this
defect. According to Google Scholar, this paper has been cited more than
7000 times and there has been ample literature on this topic since.

Nevertheless, in practice the concept of value at risk still plays a central
role for the determination of capital requirements.

3.2 The Gauss copula and CDO’s

We now pass to a specific financial product which caused much harm during
the financial crisis of 2007/2008, the so-called collateralized debt obligations,
abbreviated CDOs. The basic idea looks quite appealing. In the banking and
insurance business the notion of risk sharing plays a central role. If bank A
is exposed to the risk of default of loan A and bank B to the risk of default
of loan B, it is mutually beneficial if bank A passes over half of the risk of
loan A to bank B and vice versa. This practice has existed for centuries and
is the reason why, e.g., in the reinsurance business the financial damage of
major catastrophes can be absorbed relatively smoothly by distributing the
losses over several reinsurance companies.

Turning back to the example of bank A and B there is, however, a slight
problem. As bank A negotiates with the obligor of loan A it disposes of better
information on the status of this obligor than bank B. Of course, bank B is
aware of this asymmetry of information which might work in favor of bank
A, and therefore asks bank A for a higher recompensation when accepting
half of the risk of loan A.

The original idea of a CDO is to find a mechanism which neutralizes
this asymmetry of information. Suppose bank A has one thousand loans
A1, . . . , A1000 in its portfolio and wants to pass over part of the involved risk
to other financial institutions or investors. Bank A can pool these loans
into one big special vehicle and then slice it into tranches, e.g. a senior, a
mezzanine, and an equity tranche. The tranching might divide the collection
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of one thousand loans according to the proportion 70 : 20 : 10. When loans
fail to perform, the equity tranche is hit first. Only when the losses exceed
10 %, the mezzanine tranche is effected. When the losses exceed 30 %, also the
senior tranche has to start to absorb them. The basic idea is that the issuing
bank A keeps the equity tranche – which is most effected by the asymmetry
of information – in its own portfolio, while it tries to sell the senior tranche
and, possibly, the mezzanine tranche to other financial institutions.

So far, so good. In fact, similar instruments exist for a long time, e.g.,
the good old German “Pfandbriefe” which were intoduced in Prussia under
Frederick the Great. Their business model goes as follows: a bank gives
loans to communities which are secured by mortgages on their property. To
refinance, the bank then sells bonds (the “Pfandbriefe”), which are directly
secured by the entity of the underlying mortgages, to private or institutional
investors. It is worth noting that there is one essential difference to the
concept of CDOs: the issuing bank remains fully liable to the owners of the
Pfandbriefe. This seems to be an important reason why the Pfandbriefe have
safely survived so many financial crises. During the past hundred years there
was not a single failure of a Pfandbrief-bank.

Back to the CDOs: in order to determine e.g. the price of the senior
tranche one tries to estimate the probability distribution of the losses of this
tranche. Of course, if one assumes that the defaults of the one thousand
loans A1, . . . , A1000 are independent, the senior tranche has an extremely low
probability of loss, even if each of the individual loans bears a relatively
large default risk. But obviously nobody is so extremely naive to suppose
independence in this context. Rather we expect some positive correlation
of the failures of the individual loans. But how to model this dependence
structure precisely?

D. Li [11] proposed in 1999 the Gaussian copula to handle this issue. For
0 ≤ ρ ≤ 1, denote by Pρ the centered Gaussian distribution on Ω = R1000

defined in the following way. Denoting by (Xi)
1000
i=1 the coordinate projections,

we prescribe E[X2
i ] = 1, for each i, and E[XiXj] = ρ, for each i 6= j. This

covariance structure uniquely defines Pρ.
Now suppose that we know, for each i = 1, . . . , 1000, the individual de-

fault probability pi of loan Ai. This is not too problematic as banks have, of
course, a long experience dealing with the frequency of defaults of individual
loans. For simplicity we suppose that all loans have the same size and either
fully pay the loan (with probability 1−pi) or default totally (with probability
pi).

Denote by xi ∈ R the (1−pi)-quantile of the standard Gaussian distribu-
tion so that P[Xi > xi] = pi. We identify the event {loan Ai defaults} with
the event {Xi > xi}. Having fixed ρ ∈ [0, 1] as well as the pi’s we can now
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calculate all quantities of interest in an obvious and tractable way. For ex-
ample, the probability that more than 30 % of the loans default and therefore
the senior tranche suffers a loss is given by

Pρ[#{i : Xi > xi} > 300].

The delicate task is to determine the correlation parameter ρ. As regards
the senior tranche it is rather obvious that (for realistic choices of pi) its
expected loss is increasing in ρ ∈ [0, 1]. Therefore it seems at first glance a
reasonable approach to choose a realistic (i.e. sufficiently big) ρ by calibrating
to observed prices on the market. This allows to calculate the price of the
senior tranche as well as all the other quantities of relevance. In this way
the rating agencies often granted a AAA to such senior tranches and other
related products, obtained e.g. by pooling once again the mezzanine tranches
of different CDOs into a new CDO (called “CDO-squared”). At least, they
did so until 2007.

In 2007 it became very clear that the senior tranches of many CDOs
were prone to suffer much bigger losses than predicted by “Li’s formula”. A
Financial Times article in 2009 was entitled “The formula that felled Wall
street” [12].

What had gone wrong? The sad fact is that David Li and other people
applying the above method had not listened to people working in extreme
value theory. In this theory it is well known that correlations of random
variables tell only very little about the joint probabilities of extreme events.
Only in the case of a (centered) Gaussian random variable X on R1000 the
correlation matrix uniquely determines the law of X. As we shall presently
see, it does so by giving rather small probabilities to joint extreme events,
even if the correlation parameter ρ is close to 1.

This was made crystal clear in the paper [9] by P. Embrechts, A. McNeil,
D. Straumann which has circulated since 1998. We give a short outline of the
relevant concepts. Instead of one thousand random variables X1, . . . , X1000

we focus for simplicity on X1, X2.

Definition 3.1 ([9]). Let X1, X2 be random variables with distribution func-
tions F1, F2. The coefficient of tail dependence is defined as

λ := lim
α↗1

P[X2 > F−1
2 (α)|X1 > F−1

1 (α)],

provided the limit exists.

It is straightforward to calculate that for a Gaussian random variable
(X1, X2) with ρ(X1, X2) < 1, we have λ = 0. This property is called asymp-
totic independence and has an obvious interpretation: whatever choice of
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ρ ∈ [0, 1[ in the Gaussian case is made, the probability of joint extreme events
becomes small, as α ↗ 1, quicker than the probability of the corresponding
individual extreme events. This is in sharp contrast to what happened in the
real world of 2007 to the loans pooled in CDOs.

But, of course, the Gaussian copula is not the only way of modeling.
There are plenty of other ways to model the joint probability of a vector
(X1, X2) for given marginal distributions X1, X2 and correlation ρ(X1, X2).
As an example the Gumbel copula, for which we obtain a strictly positive
value of λ, is thoroughly analyzed in [9]. We note in passing that the word
“copula” refers to the rather obvious fact, observed by A. Sklar in 1959, that
for the specification of the joint law of (X1, X2) for given marginals, there is
no loss of generality to normalize the marginal distributions of X1 and X2 to
be uniform on [0, 1].

The subsequent highly instructive picture is taken from the paper [9].
For identical marginal distributions and identical correlation coefficient ρ the
choice of the copula can make a dramatic change to the probability of joint
extreme events (the upper right rectangle).
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Figure 2: Figures showing 2000 sample points from the named copulas.

As P. Embrechts told me (and as is documented in [7]), he presented the
paper [9] on March 27, 1999, at Columbia University. David Li was in the
audience and introduced himself during the break. So much for the comments
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claiming that “nobody has warned.”
To finish this subsection let me mention another highly respected math-

ematician in the field of Mathematical Finance, L.C.G. Rogers, who also
warned very outspokenly and long before 2007 about the misuse of the Gaus-
sian copula. The following quotation on the 2007/2008 crisis [16] dates from
2009:

“ The problem is not that mathematics was used by the banking industry,
the problem was that it was abused by the banking industry. Quants were
instructed to build models which fitted the market prices. Now if the market
prices were way out of line, the calibrated models would just faithfully re-
produce those wacky values, and the bad prices get reinforced by an overlay
of scientific respectability!”

3.3 An Academic Response to Basel II

In the previous subsections we have looked at two concrete and important
examples, value at risk and the Gauss copula. Academic criticism of their
misuse arose early and was well argued, but failed to sufficiently influence
the practitioners.

Actually, this did not only happen in these two specific examples, as the
paper [5] shows very clearly. This paper dates from 2001 and bears the title of
this subsection. Written by a number of highly renowned financial economists
and mathematicians, among them the above mentioned Ch. Goodhart and
P. Embrechts, it was an official response addressed to the Basel Committee
for Banking Supervision. It was extremely visible, not only within academia.

Let me quote from the Executive Summary of [5]:

• The proposed regulations fail to consider the fact that risk is endoge-
nous. Value-at-Risk can destabilize an economy and induce crashes
when they would not otherwise occur.

• Statistical models used for forecasting risk have been proven to give
inconsistent and biased forecasts, notably underestimating the joint
downside risk of different assets. The Basel Committee has chosen
poor quality measures of risk when better risk measures are available.

• Heavy reliance on credit rating agencies for the standard approach to
credit risk is misguided as they have been shown to provide conflict-
ing and inconsistent forecasts of individual clients’ creditworthiness.
They are unregulated and the quality of their risk estimates is largely
unobservable.
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• Operational risk modeling is not possible given current databases and
technology even if a meaningful definition of this risk were to be pro-
vided by Basel. No convincing argument for the need of regulation in
this area has yet been made.

• Financial regulation is inherently procyclical. Our view is that this set
of proposals will, overall, exacerbate this tendency significantly. In so
far as the purpose of financial regulation is to reduce the likelihood
of systemic crises, these proposals will actually tend to negate, not
promote this useful purpose.

From today’s perspective this reads like a clairvoyant description of the
key issues of what went wrong in 2007-2008.

Let me try to make some personal comments on these five bullets.

Bullet 1: We have seen that for Bachelier as well as Black, Scholes, and Mer-
ton it was perfectly legitimate to model the risk involved in the price
movements of a stock as exogenous and given by a stochastic model
which is independent of the behavior of the agent. But the picture
changes when all the agents believe in such a model or – making things
worse – are forced by regulation to apply them. Value at risk plays an
important negative role in this context.

Bullet 2 accurately summarizes what we have discussed in the above subsections
3.1 and 3.2.

Bullet 3 was strikingly confirmed by the crisis when the rating agencies, who
did the above sketched ratings for the CDOs etc, turned out to have
made very poor judgments of default probabilities. In addition, they
may have been influenced by conflicts of interest.

Bullet 4: This is the only point which did not lead astray in 2007-2008. While
the Basel II regulation of capital requirements for “operational risk”,
e.g. legal risks, IT failures etc, did not do much harm, it is important
to note that is also did not do any good during the crisis.

Bullet 5 addresses the most fundamental issue, the procyclicality of financial
regulation. While this is an inherent problem of regulation one should,
of course, try to design the rules in a way to mitigate this effect. The
prediction that, to the contrary, Basel II exacerbates the procyclicality
has materialized in 2007-2008 in a dramatic way.
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The final sentence of the introduction of the Academic Response to Basel
II [5] could not have been more outspoken: “Reconsider before it is too
late!” As we know today, the Basel Committee did not follow this urgent
advice from academia.

The bottom line of these facts is that academia has not succeeded to
influence financial practitioners sufficiently. Despite this rather sad story
I do believe that academic research has to continue to try to thoroughly
understand the problems at hand and to make itself understood in practice.
To quote Sigmund Freud [10]: “The voice of the intellect is soft. But it does
not rest before it has made itself understood. (Die Stimme des Intellekts ist
leise, aber sie ruht nicht, ehe sie sich Gehör verschafft hat.)”
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Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten
Teilchen, Annalen der Physik, Vol. 322, No. 8, pp. 549–560.

18



[9] P. Embrechts, A. McNeil, D. Straumann, (2002), Correlation and de-
pendence in risk management: properties and pitfalls, Risk management:
value at risk and beyond, pp. 176–223.

[10] S. Freud, (1913), Totem und Tabu, Internationaler Psychoanalytischer
Verlag, Wien.

[11] D.X. Li, (1999), On default correlation: A copula function approach,
Journal of Fixed Income, Vol. 9, No. 4, pp. 43-54.

[12] S. Jones, (2009), Of couples and copulas: the formula that felled Wall
Street, April 24 2009, Financial Times.

[13] P. Jorion,(2007), Value at risk: the new benchmark for managing finan-
cial risk, Vol. 3, McGraw-Hill New York.

[14] A. McNeil, R. Frey, P. Embrechts, (2015), Quantitative risk manage-
ment: Concepts, techniques and tools, Princeton university press.

[15] R.C. Merton, (1973), Theory of rational option pricing., Bell
J. Econom. Manag. Sci., Vol. 4, pp. 141–183.

[16] L.C.G. Rogers, (2009), Financial mathematics and the credit crisis. Doc-
ument in response to questions posed by Lord Drayson, UK Science and
Innovation Minister.

[17] P.A. Samuelson, (1965), Proof that properly anticipated prices fluctuate
randomly, Industrial Management Review, Vol. 6, pp. 41–50.

[18] W. Schachermayer, Introduction to the Mathematics of Financial Mar-
kets. In: S. Albeverio, W. Schachermayer, M. Talagrand: Lecture Notes
in Mathematics 1816 - Lectures on Probability Theory and Statistics,
Saint-Flour summer school 2000 (Pierre Bernard, editor), Springer Ver-
lag, Heidelberg (2003), pp. 111–177.

[19] W. Schachermayer, J. Teichmann, (2008), How close are the Option
Pricing Formulas of Bachelier and Black-Merton-Scholes? Mathematical
Finance, Vol. 18 (2008), No. 1, pp. 155-170.

19


