
Risk Neutral Pricing

1 Introduction and History

A classical problem, coming up frequently in practical business, is the
valuation of future cash flows which are somewhat risky. By the term “risky”
we mean that the payment is not of a deterministic nature; rather there is
some uncertainty on the amount of the future cash flows. Of course, in real
life virtually everything happening in the future contains some elements of
riskiness.

As a first example let us think of an investment project, say, a company
plans to build a new factory. A classical way to proceed is to calculate a
net asset value. One tries to estimate the future cash flows generated by the
project in the subsequent periods. In the present example they will initially
be negative; this initial investment should be compensated by positive cash
flows in later periods. Having fixed these estimates of the future cash flows
for all periods, one calculates a net asset value by discounting these cash
flows to the present date. But, of course, there is uncertainty involved in the
estimation of the future cash flows and people doing these calculations are,
of course, aware of that. The usual way to compensate for this uncertainty
is to apply an interest rate which is higher than the riskless1 rate of return
corresponding to the rate of return of government bonds.

The spread between the riskless rate of return and the interest rate used
for discounting the future cash flows in the calculation of the net asset value
can be quite substantial in order to compensate for the riskiness. Only if
the net asset value, obtained by discounting with a rather high rate of re-
turn, remains positive, the management of the company will engage in the
investment project.

Mathematically speaking, the above procedure may be described as fol-
lows: first one determines the expected values of the future cash flows and
subsequently one discounts by using an elevated discount factor. However,
there is no systematic way of mathematically approaching the question of
how the degree of uncertainty in the determination of the expected values
can be quantified, and in which way this should be taken into account to
determine the spread between the interest rates.

We now turn to a different approach which interchanges the rôles of taking
expectations and discounting in taking the riskness of the cash flows into
account. This approach is used in modern mathematical finance, in particular

1In real life nothing is actually riskless: in practice, the riskless rate of return corre-
sponds to government bonds (provided that the government is reliable).
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in the Black Scholes formula. However, the idea goes back much further and
the method was used by actuaries for centuries.

Think of a life insurance contract. To focus on the essential point we
consider the simplest case: a one year death insurance. If the insured person
dies within the subsequent year, the insured sum S, say S = 1 Euro, is paid
out at the end of this year; if the insured person survives the year, nothing
is paid and the contract ends at the end of the year.

To calculate the premium2 for this contract, actuaries look up in their
mortality tables3 the probability that the insured person dies within one
year. The traditional notation for this probability is qx, where x denotes the
age of the insured person.

To calculate the premium for such a one year death insurance contract,
with S normalized to S = 1, actuaries apply the formula

P =
1

1 + i
qx. (1)

The term qx is just the expected value of the future cash flow and i denotes
“the” interest rate: hence the premium P is the discounted expected value of
the cash flow at the end of the year.

It is important to note that actuaries use a “conservative” value for the
interest rate, e.g. i = 3%. In practical terms this corresponds quite well to the
“riskless rate of return”. In any case, it is quite different, in practical as well
as in theoretical terms, from the discount factors used to calculate the net
asset value of a risky future cash flow according to the method encountered
above.

But, after all, the premium of our death insurance contract also corre-
sponds to the present value of an uncertain future cash flow! How do actuaries
account for the risk involved in this cash flow, if not via an appropriate choice
of the interest rate?

The answer is simple when looking at formula (1) above: apart from the
interest rate i the probability qx of dying within the next year also enters
the calculation of P . The art of the actuarial profession is to choose the
“good” value for qx. Typically actuaries know very well the actual mortality
probabilities in their portfolio of contracts, which often consists of several
hundred thousand contracts; in other words, they have a very good under-
standing what the “true value” of qx is. However, they do not apply this

2We do not consider costs, taxes etc, which are eventually added to this premium; we
only consider the “net premium”.

3A mortality table (horrible word!) is nothing but a list of probabilities qx, where x runs
through the relevant ages, say x = 18, ..., 110. The first mortality table was constructed
by Edmond Halley in 1693.
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“true value” in their premium calculations: in the above example (1) they
would apply a value for qx which is substantially higher than the “true” value
of qx. Actuaries speak about mortality tables of first and second kind.

Mortality tables of second kind reflect the “true probabilities”. They are
only used for the internal analysis of the profitability of the insurance com-
pany. On the other hand, in the daily life of actuaries only the mortality
tables of first kind come into play which display properly “modified” proba-
bilities qx. They are not only used for the calculation of premia, but also for
all quantities of relevance involved by an insurance policy, such as surrender
values, reserves etc. This constitutes a big strength of the actuarial tech-
nique: actuaries always remain in a perfectly coherent logic when doing all
these calculations. This logic is that of a fair game or, mathematically speak-
ing, of a martingale. Indeed, if the qx would correctly model the mortality of
the insured person and if i were the interest rate the insurance company could
precisely achieve when investing the premia, then the premium calculation
(1) would make the insurance contract a fair game.

It is important to note that this argument pertains only to a kind of vir-
tual world, as it is precisely the task of the actuaries to choose the mortalities
qx in a prudent way, which do not coincide with the “true” probabilities. In
the case of insurance contracts where the insurance company has to pay in
the case of death, actuaries choose the probabilities qx higher than the “true
ones”. This happens in the simple example considered above. On the other
hand, if the insurance company has to pay when the insured person is still
alive, e.g. in the case of a pension, actuaries use probabilities qx which are
lower than the “true ones”, in order to be on the safe side.

We took some time and space to elaborate on these actuarial techniques
as we believe that this is helpful to understand more clearly the essence of
the option pricing approach of Black, Scholes, and Merton. Their wellknown
model for the risky stock S and the riskfree bond are

dSt = Stµdt+ StσdWt,

dBt = Btrdt. (2)

The task is to value a (European) derivative on the stock S at expiration
time T , e.g. CT = (ST − K)+. As presumably everybody who read until
this point knows very well eqf04/006: The Black Scholes formula, the
solution proposed by Black, Scholes, and Merton is

C0 = e−rTEQ[CT ]. (3)
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The above formula is a perfect analogue to the premium of a death in-
surance contract (1) above. The first term, taking care of the discounting,
uses the “conservative” choice of a riskless interest rate r. The second term
gives the expected value of the future cash flow, taken under the risk neutral
probability measure Q. This probability measure Q is chosen in such a way
that the dynamics (2) of the stock under Q become

dSt = Strdt+ StσdWt. (4)

The point is that the drift term Strdt of S under Q is in line with the
growth rate of the riskfree bond

dBt = Btrdt. (5)

The interpretation of (4) is that if the market were correctly modelled
by the probability Q, then the market were risk neutral. The mathematical
formulation is that (e−rtSt)0≤t≤T , i.e. the stock price process discounted by
the riskfree interest rate r, is a martingale under Q.

Similarly as in the actuarial context above, the mathematical model of
a financial market under the risk neutral measure Q pertains to a virtual
world, not to the real world. In reality, i.e. under P, we would typically have
µ > r. Fixing this case, Girsanov’s formula (see eqf02/014: Equivalence
of probability measures, eqf02/022: Stochastic Exponentials) tells
us precisely that the probability measure Q represents a “prudent choice of
probability”. It gives less weight than the original measure P to events
which are favorable for the buyer of a stock, i.e. when ST is large. On the
other hand, Q gives more weight than P to unfavorable events, i.e. when ST
is small. This can be seen from Girsanov’s formula

dQ
dP = exp

[
− µ−r

σ
WT − (µ−r)2

2σ2 T
]

and the dynamics of the stock price process S under P resulting from (2)

ST = S0 exp
[
σWT +

(
µ− σ2

2

)
T
]
.

Fixing a random element ω ∈ Ω, the Radon–Nikodym derivative dQ
dP (ω)

is small iff WT (ω) is large, and the latter is large iff ST (ω) is large.

In many applications it is not even necessary to consider the original
“true” probability measure P. There are hundreds of papers containing the
sentence: “we work under the risk neutral measure Q”. This is parallel to
the situation of an actuary in her daily work: she does not bother about the
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“true” mortality probabilities, but only about the probabilities listed in the
mortality table of first kind.

The history of the valuation formula (3) goes, in fact, back much further
than Black, Scholes, and Merton. Already in 1900 L. Bachelier applied this
formula in his thesis [1] in order to price options. It seems worthwhile to
have a closer look. Bachelier did not use a discount factor, such as e−rT , in
(3). The reason is that in 1900 prices underlying the option were denoted in
forward prices at the Paris stock exchange (called “true prices” by Bachelier
who also carefully adjusted for coupon payments; see [10] for details). When
passing to forward prices the discount factor disappears as is well known. In
modern terminology this fact boils down to “Black’s formula”.

As regards the second term in (3), Bachelier started from the very be-
ginning with a martingale model, namely (scaled) Brownian motion (see,
e.g. [10])

St = S0 + σWt, 0 ≤ t ≤ T.

In other words, he also “works under the risk neutral probability”.
In fact, in the first pages of his thesis Bachelier does speak about two

kinds of probability. We quote from [1]:
(i) The probability which might be called “mathematical”, which can be de-
termined a priori and which is studied in games of chance.
(ii) The probability dependent on future events and, consequently impossible
to predict in a mathematical manner.
This last is the probability that the speculator tries to predict.

Admitting a large portion of good will and hindsight knowledge one might
interpret (i) as something like the risk neutral probability Q, while (ii) plays
the role of P.

2 Risk neutral pricing for general models

In the Black Scholes model (2) there is only one risk neutral measure Q under
which the discounted stock price process becomes a martingale.4

This feature characterizes complete financial markets eqf04/006: Com-
plete markets. In this case, we not only obtain from (3) a price C0 for the
derivative security CT , but we get much more: in addition, the derivative
can be perfectly replicated by starting at time t = 0 with the initial invest-
ment given by (3) and subsequent dynamical trading in the underlying stock
S eqf04/005: Replication. This is the essence of the approach of Black,

4To be precise: this result only holds true if for the underlying filtered probability
space (Ω,F , (Ft)0≤t≤T , P) we have F = FT and the filtration (Ft)0≤t≤T is generated by
(St)0≤t≤T .
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Scholes, and Merton; it has no parallel in the classical actuarial approach or
in the work of L. Bachelier.

What happens in incomplete financial markets, i.e. when there are more
than one risk neutral measure Q? It has been shown by M. Harrison and
S.R. Pliska [6] that formula (3) yields precisely all the consistent pricing rules
for derivatives on S, when Q runs through the set of risk neutral measures
equivalent to P. We denote the latter set by Me(S). The term consistent
means that there should be no arbitrage possibilities when all possible deriva-
tives on S are traded at the price given by (3).

But what is the good choice of Q ∈ Me(S)? In general this question
is as meaningless as the question: what is the good choice of an element in
some convex subset of a vector space? In order to allow for a more intelligent
version of this question one needs additional information. It is here that the
original probability measure P comes into play again: a popular approach is
to choose the element Q ∈Me(S) which is “closest” to P.

In order to make this idea precise, fix a strictly convex function V (y), e.g.

V (y) = y
(
ln(y)− 1

)
, y > 0,

or V (y) = y2

2
, y ∈ R.

Determine Q̂ ∈Me(S) as the optimizer of the optimization problem

E
[
V (dQ

dP )
]
→ min! Q ∈Me(S). (6)

To illustrate things at the hand of the above examples: For V (y) =
y
(
ln(y)−1

)
, this corresponds to choosing the element Q̂ ∈Me(S) minimizing

the relative entropy H(Q|P) = EQ

[
ln(dQ

dP )
]
; for V (y) = y2

2
, this corresponds

to choosing Q ∈Me(S) minimizing the L2-norm ‖dQ
dP ‖L2(P) = EP

[
(dQ
dP )2

]1
2 .

Under appropriate conditions the minimization problem (6) has a solu-
tion, which then is unique by the strict convexity assumption.

There is an interesting connection with the issue of eqf04/011: Indif-
ference pricing. Let U(x) be the (negative) Legendre–Fenchel transform
of V , i.e.

U(x) = inf
y
{−xy + V (y)}.

For the two examples above we obtain

U(x) = −e−x

or U(x) = −x2

2
,
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which may be interpreted as utility functions. It turns out that – under ap-
propriate assumptions – the optimizer Q̂ in (6) yields precisely the marginal
utility indifference pricing rule when plugged into (3) eqf04/011: Indiffer-
ence pricing.

In particular we may conclude that pricing by marginal utility (see e.g.,
[8, 3, 5]) is a consistent pricing rule in the sense of Harrison and Kreps.

Walter Schachermayer

References
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