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Abstract. R. Dalang, A. Morton and W. Willinger have proved a beautiful version
of the Fundamental Theorem of Asset Pricing which pertains to the case of �nite dis-
crete time: In this case the absence of arbitrage opportunities already characterizes the
existence of an equivalent martingale measure.

The purpose of this paper is to give an elementary proof of this important theorem
which relies only on orthogonality arguments. In contrast, the original proof of Dalang,
Morton and Willinger uses heavy functional analytic machinery, in particular measur-
able selection and measure-decomposition theorems. We feel that the theorem (as well
as its proof) should be accessible to a wider public and we therefore made an e�ort to
keep the arguments as selfcontained as possible. In a �nal chapter we review and prove
the necessary tools for our presentation of the theorem.

1. Introduction

We consider an Rd -valued stochastic process (St)
N
t=0 which is indexed by the �nite

discrete time set f0; 1; : : : ; Ng. In mathamatical �nance the process S usually models
the (discounted) price process of d stocks.

The "Fundamental Theorem of Asset Pricing" states that the existence of an equiv-
alent martingale measure for the process S is "essentially" equivalent to the absence
of arbitrage opportunities. The theorem is rightly termed "fundamental" as it allows
to relate the concept of pricing by arbitrage { which has experienced increasing im-
portance since the seminal papers of F. Black and M. Scholes [B-S 73] and R. Merton
[M 73] { with the machinery of martingale theory. In particular it allows to reduce
the pricing of a contingent claim to calculating expectation values, just in the way
actuaries do for centuries. The (decisive) di�erence lies only in the fact that one does
not take the expectation with respect to the original probabilty measure P but with
respect to an arti�cial "risk-neutral" probability measure Q, i.e. with respect to a
measure under which the process (St)

N
t=0 is a martingale.
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The subtle point in the "Fundamental Theorem of Asset Pricing" is to give a precise
meaning to the word "essentially". In the general case of in�nite or continuous time
this problem turns out to be very delicate and needs notions such as "no free lunch"
or "no free lunch with bounded risk" generalizing the concept of "no arbitrage" in
order to obtain saisfactory theorems (compare [H-K 79], [H-P 81], [K 81], [D-H 86],
[St 90], [A-S 90],[F-S 90], [D 91], [S 92]).

But in the presently considered case of �nite discrete time Dalang, Morton and
Willinger showed that there is a nice and clear-cut theorem which may be phrased by
using only the classical notion of "no arbitrage".

Let us give some precise de�nitions: (
;F ; (Ft)
N
t=0; P ) will denote a �ltered prob-

ability space and we assume that the process (St)
N
t=0 is adapted to the �ltration

(Ft)
N
t=0.

A probability measure Q on F will be called equivalent to P if Q and P have the
same null sets or { equivalently { if the mutual Radon-Nikodym derivatives exist.

We say that an equivalent probability measure Q is an equivalent martingale mea-

sure for (St)
N
t=0 if (St)

N
t=0 is a martingale under Q, i.e., each St is Q-integrable and

for each t = 1; : : : ; N , we have

EQ((St � St�1) j Ft�1) � 0:

We say that the process (St)
N
t=0 satis�es the no arbitrage condition if for t =

1; : : : ; N and each Ft�1-measurable bounded R
d -valued function h such that

(h(!); St(!)� St�1(!)) � 0 P � a.s.

we have
(h(!); St(!)� St�1(!)) = 0 P � a.s.

Here (:; :) denotes the inner product on R
d .

The "no arbitrage condition" has a direct economic interpretation: It should not be
possible to perform a trading operation on the stock price process (St)

N
t=0 , described

by the random variable h, such that the net result is almost surely nonnegative without
being almost surely zero. It is reasonable to argue that a "good" model (St)

N
t=0 of

a �nancial market should satisfy this assumption. The argument is that otherwise
there would be economic agents taking advantage of this arbitrage opportunity which
would quickly make it disappear.

It is almost obvious that the existence of an equivalent martingale measure Q
implies that the process (St)

N
t=0 satis�es the no arbitrage condition. Indeed, if (St)

N
t=0

is a martingale with respect to Q then we have for each Ft�1-measurable bounded
R
d -valued function h that

EQ(h(!); St(!)� St�1(!)) = 0:

If we have in addition that (h(!); St(!)� St�1(!)) � 0 P -almost surely (and there-
fore Q-almost surely) we conclude that (h(!); St(!)� St�1(!)) = 0 Q-almost surely
(and therefore P -almost surely). This shows that the process (St)

N
t=0 satis�es the no

arbitrage condition.
The point of the Dalang-Morton-Willinger theorem lies in the fact that the reverse

implication also holds true:
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1.1 Theorem (Dalang, Morton and Willinger). An adapted R
d -valued pro-

cess (St)
N
t=0 satis�es the no arbitrage condition if and only if there exists an equivalent

martingale measure.

In this case the equivalent martingale measure Q may be chosen such that the

density dQ=dP is uniformly bounded.

Some comments on this theorem are in order: Of course, the theorem applies in
particular to the case d = 1, i.e., the classical case where only one stock is considered.
In this case the theorem was obtained by Back and Pliska [B-P 90] { who also conjec-
tured the theorem for general d 2 N { and the proof is substantially easier (compare
remark 2.8 below). The case d > 1 is much more delicate and needs some kind of
geometric argument. We have dealt with these di�culties by using orthogonality
arguments in properly chosen spaces.

One should note that the no arbitrage condition imposes no integrability assump-
tions on the process (St)

N
t=0 (compare [D-M-W 90] for a discussion of this remarkable

feature of the theorem).
The theorem breaks down in the present form if one passes to in�nite time (see

[D-M-W 90] remark 2.7 for an easy counterexample) and it also breaks down if one
passes to in�nitly many stocks (see 2.8 below; compare also [A-H 92] for the relevance
of considering the case of in�nitly many stocks).

Let us now give an outline of the paper: Section 2 is devoted to the proof of theorem
1.1. We shall see that the essential step is contained in the key lemma 2.1 which in
turn is similar to a lemma of C. Stricker [St 90]. Finally in section 3 we present some
wellknown results used in section 2 and provide proofs for them to keep the paper
entirely selfcontained.

To end the introductory section we shall reconsider the notion of no arbitrage
and cast it into more mathematical terms. By L0(
;F ; P ;Rd) we denote the space
of all (equivalence classes of) Rd -valued F -measurable random variables, which is a
complete topological vector space if equipped with the topology of convergence in
measure.

Denote by K the subspace of L0(
;F ; P ) formed by the stochastic integrals on the
process (St)

N
t=0, i.e.,

K = f
NX
i=1

(Si(!)� Si�1(!); hi(!)) : hi 2 L0(
;Fi�1; P ;R
d ) for 1 � i � Ng:

1.2 Lemma. The process (St)
N
t=0 satis�es the no arbitrage condition if and only

if

K \ L0+(
;F ; P ) = f0g:

Proof. As the functions (h(!); St(!) � St�1(!)) appearing in the de�nition of
the no arbitrage condition are elements of K it is clear K \ L0+ = f0g implies the no
arbitrage condition.
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Conversely we argue by induction on N . If N = 1 we deduce the validity of
K \ L0+ = f0g from the no arbitrage condition by simply observing that it makes no
di�erence to assume that the function h appearing in the de�nition of the no arbitrage
condition is assumed to be bounded or not.

Now suppose that the lemma holds true for N � 1 and consider a function

fN =
NX
i=1

(hi(!); Si(!)� Si�1(!))

wherehi 2 L0(
;Fi�1; P ;R
d) for 1 � i � N and suppose that fN � 0. We have to

show that fN � 0. To do so consider

fN�1 =
N�1X
i=1

(hi(!); Si(!)� Si�1(!))

If fN�1 � 0 the assertion fN � 0 follows from the above considered case N = 1. If
fN�1 6� 0 then by our inductive hypothesis A = ffN�1 < 0g is an element of FN�1
with strictly positive measure. Hence

f = (hN (!); SN(!)� SN�1(!)) � �A

satis�es f � 0 and f 6� 0 which again gives a contradiction to the case N = 1 thus
�nishing the proof. �

2. The Proof of the Theorem

We shall isolate the technical content of theorem 1.1 in the subsequent lemma 2.1.
This result will quickly imply the theorem (see 2.2 below).

2.1 Key Lemma. Let (
;F1; P ) be a probability space, Y an F1-measurable

R
d -valued function, i.e., Y 2 L0(
;F1; P ;R

d ) and F0 a sub{�{algebra of F1.
Similarly as above denote by K the subspace of L0(
;F1; P )

K = f(h; Y ) : h 2 L0(
;F0; P ;R
d )g :

and by K � L0+ the convex cone

K � L0+(
;F1; P ) = ff = (h; Y )� g : h 2 L0(
;F0; P ;R
d) ; g 2 L0+(
;F1; P )g:

If K \ L0+(
;F1; P ) = f0g then K � L0+(
;F1; P ) is closed in L0(
;F1; P ) with

respect to the topology of convergence in measure.

Let us show how the key lemma implies theorem 1.1.
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2.2 Proof of theorem 1.1. Assuming that the no arbitrage condition holds true
we have to construct a martingale measure Q with bounded density function.

We �rst show the theorem in the case N = 1, i.e., for the cases of of a two period
model. Let (S0; S1) be two R

d -valued random variables adapted to the pair of �-
algebras (F0;F1). Let Y (!) = (S1(!)� S0(!))=w(!) where w is the weight function
de�ned by

w(!) = max(kS0(!)kRd; kS1(!)kRd; 1) :

Using the notation of lemma 2.1 we have that K \ L0+(
;F1; P ) = f0g i� (S0; S1)
satis�es the no-arbitrage condition (NA) (lemma 1.2). Admitting the key lemma
we deduce that this implies that K � L0+ is closed in L0(
;F1; P ) whence a fortiori
(K � L0+) \ L

1(
;F1; P ) is closed in the space L1(
;F1; P ) with respect to the L1-
norm and disjoint from L1+(
;F1; P )nf0g. By Yan's theorem (see 3.1 below) there
is g 2 L1(
;F1; P ), g(!) > 0 almost surely such that g | regarded as a functional
on L1(
;F1; P ) | is less than or equal to 0 on the convex cone (K � L0+) \ L1. In

particular for each h 2 L1(
;F0; P ;R
d) we have

Z
(h(!); Y (!)) � g(!)dP (!) =

=

Z
(h(!); S1(!)� S0(!)) � (g(!)=w(!))dP (!)� 0 :

By repeating the argument with h replaced by �h we deduce that equality holds true
above. Let Q be the measure on F1 with density function c �g(!)=w(!) where the nor-
malizing factor c 2 R+ is chosen such that Q(
) = 1. Then Q is a probability measure
equivalent to P and for each h 2 L1(
;F0; P;R

d ) the function (h(!); S1(!)�S0(!))
is Q-integrable with Q-integral equal to 0. In other words (S1; S0) is a martingale
with respect to Q and the �ltration (F0;F1).

We now pass to the general case N 2 N and proceed by induction on N : Suppose
that the theorem holds true for all processes of length N � 1. Given the process
(St)

N
t=0 apply the induction hypothesis to (St)

N
t=1 to obtain a bounded function dN

such that the probability measure QN on F with density function dQN=dP = dN
is equivalent to P and turns (St)

N
t=1 into a martingale (with respect to the �ltration

(Ft)
N
t=1).

Observe that for any F1-measurable function d1 such that d1 > 0 almost surely
and satisfying the normalising condition EP (d1 � dN ) = 1 the measure Q with density
dQ=dP = d1 � dN still is an equivalent martingale measure for (St)

N
t=1.

Now apply the �rst step to the process (St)
1
t=0 relative to (
;F1; (Ft)

1
t=0; QN jF1)

to obtain a bounded F1-measurable function d1 such that the measure Q1 on F1 with
density dQ1=dQN = d1 turns (St)

1
t=0 into a martingale.

The measure Q on F with density dQ
dP

= dQ
dQN

� dQN

dP
= d1 � dN now turns the whole

process (St)
N
t=0 into a martingale, thus �nishing the proof. �

Let us now turn to the proof of lemma 2.1. This result should be compared to the
following result of C. Stricker ([St 90] lemma 2) which asserts that | in the setting
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of lemma 2.1 above | the linear space K is closed in L0. For the convinience of the
reader and in view of an irritating misprint in ([St 90] lemma 2) we restate this result
and prove it (3.4 below).

2.3 Stricker's Lemma [St 90]. Let again (
;F1; P ) be a probability space,

Y 2 L0(
;F1; P ;R
d), F0 a sub{�{algebra of F1 and denote by K the subspace

of L0(
;F1; P )
K = f(h; Y ) : h 2 L0(
;F0; P ;R

d )g :

Then K is closed in L0(
;F1; P ).

Note that in Stricker's lemma it is not necessary to make the assumption K\L0+ =
f0g.

To see why this assumption is indeed necessary in lemma 2.1 to conclude that the
convex cone K �L0+ is closed consider the following easy example: Let (
;F1; P ) be
[0; 1] equipped with the Lebesgue �-algebra F1 and Lebesgue measure P . Let F0 be
the trivial �-algebra and Y the identity function on [0; 1]. It is instructive to verify
that the closure of K � L0+ equals the whole space L0(
;F1; P ) while the function
f � 1 does not belong to K � L0+. Hence K � L0+ is not closed in this case.

Note that in this example the function Y takes only non-negative values. To rule
out the phenomenon occuring in this example we need the assumption K \L0+ = f0g
in lemma 2.1.

After this motivating example we now start the proof of lemma 2.1. The �rst step
2.4 is an easy reduction. Note that in the proof of theorem 1.1 we applied lemma 2.1
only to a bounded function Y . Hence a reader interested only in the proof of this
theorem may completely omit the next lemma.

2.4. Lemma. If lemma 2.1 holds true for each Y 2 L1(
;F1; P ;R
d ) then it

holds true for each Y 2 L0(
;F1; P ;R
d). In other words there is no loss of generality

in assuming Y to be bounded in proving lemma 2.1.

Proof. Let Y 2 L0(
;F1; P ;R
d ) and de�ne

'(!) = min(kY (!)k�1; 1) :

Note that the multiplication operator

M' : L0(
;F1; P ) 7! L0(
;F1; P )

M'(f)(!) = '(!) � f(!)

de�nes an orderpreserving isomorphism on the topological vector space L0(
;F1; P ).
Hence M'(K) \ L0+ = f0g i� K \ L0+ = f0g and K � L0+(
;F1; P ) is closed i�

M'(K � L0+) =M'(K)� L0+ is closed. But

M'(K) = f(h(!); '(!) � Y (!)) : h 2 L0(
;F0; P ;R
d)g

and ~Y (!) = '(!) � Y (!) is in L1(
;F1; P ;R
d ). �
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Let us �x from now on Y 2 L1(
;F1; P ;R
d). We de�ne the following subspaces

of L0:

N = fk 2 L0(
;F0; P ;R
d ) : (k(!); Y (!)) = 0 P � a.s.g

N? = fh 2 L0(
;F0; P ;R
d) : (k(!); h(!)) = 0 P � a.s. for each k 2 Ng

Intuitively N and N? form an "orthogonal" decomposition of the space L0 (which
is, of course, not a wellde�ned statement). What we mean by that is made precise in
the next statement.

2.5 Lemma. There is a continuous surjective projection

� : L0(
;F0; P ;R
d )! N?

with ker(�) = N . In other words

L0(
;F0; P ;R
d ) = N �N?:

We then have, for each h 2 L0(
;F0; P ;R
d ),

(h(!); Y (!)) = (�(h)(!); Y (!)) P -a.s.

Proof. Denote by H the Hilbert space L2(
;F0; P ;R
d) equipped with its usual

inner product < �; � >. Clearly N \H and N? \H are orthogonal subspaces of H.
To prove that N \ H and N? \ H spanH suppose to the contrary that there is

h 2 H, h orthogonal to N \ H and h =2 N? \ H. Then there is k 2 N such that
(k(!); h(!)) does not vanish a.s. By changing sign if necessary the set

A = f(k(!); h(!)) > 0g

is an element of F0 with positive P{measure. Letting

~k(!) = �A(!) � k(!)=kk(!)k

we have found an element of N \H for which

< ~k; h >= E ((~k(!); h(!)) > 0

a contradiction showing that

H = (N \H)� (N? \H) :

Denote by p : H 7! N? \H the orthogonal projection. To extend p to the space
L0(
;F0; P ;R

d ) note that N and N? are closed under multiplication with scalar{
valued F0{measurable functions. Hence we may unambigously de�ne

� : L0(
;F0; P ;R
d )! N?
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�(f)(!) = kf(!)k � �(f(!)=kf(!)k)(!)

with the understanding f(!)=kf(!)k = 0 if f(!) = 0. Clearly � has the properties
stated in the lemma. �

We now have decomposed L0(
;F0; P ;R
d ) into the space N "strongly orthogonal"

to Y and its "orthogonal complement" N?. Similarly we decompose 
 into the
elements 
N and 
cN of F0


N = fE(kY (!)k j F0) = 0g and 
cN = 
 n 
N = fE(kY (!)k j F0) > 0g:

For the rest of this section we shall assume that K \ L0+ = f0g holds true.

2.6 Lemma. For A 2 F0, A � 
cN de�ne

�(A) = inffE((h(!); Y (!))+) : h 2 N?; kh(!)k = 1 for ! 2 Ag:

Then � is well de�ned and P (A) > 0 implies �(A) > 0.

Proof. To show that the de�nition of � makes sense we shall show that there is
h 2 N? such that kh(!)k = 1 almost surely on 
cN .

For i = 1; : : : ; d de�ne hi 2 N? by

hi(!) = �(ei � 1)

where ei denotes the i
0th unit vector of Rd and 1 the constant function 1.

Let Si 2 F0 denote the support of hi and Ti 2 F0 denote the support of E(jYij j

F0), where Yi denotes the i
0th coordinate of Y . Clearly

dS
i=1

Ti = 
cN and we shall

show that Si = Ti for 1 � i � d (in the sense that the symmetric di�erence Si4Ti is
a null{set). This will imply that

h =
dX
i=1

(hi(!)=khi(!)k) � �(Sin
S

j<i

Sj)

is an element of N? such that kh(!)k = 1 a.s. on 
F .
To verify that Si � Ti note that ei�
nTi is an element of N which clearly implies

that the support of hi is disjoint from 
nTi.
To see that Si � Ti suppose to the contrary that P (TinSi) > 0. Then ei�TinSi is

an element of N as � maps it to zero. By de�nition (ei�TinSi ; Y (!))= �TinSiYi(!)
vanishes a.s. contradicting the fact that

E(�TinSi jY j) = E(�TinSiE(jYij j F0)) > 0 :

Hence we have shown that � is well de�ned.
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We now turn to the proof of the fact that �(A) > 0 for A 2 F0, A � 
cN ,
P (A) > 0. Suppose to the contrary that there is a sequence (hn)

1
n=1 2 N? supported

by A, khn(!)k = 1 for ! 2 A such that

(1) lim
n!1

E ((hn(!); Y (!))+) = 0 :

We claim that this implies

(2) lim
n!1

E ((hn(!); Y (!))�) = 0 :

Indeed, otherwise we may �nd | by passing to a subsequence | some � > 0 such
that

E ((hn(!); Y (!))�) � � :

By lemma 3.2 below we may �nd a sequence of convex combinations of (hn)
1
n=1

{ still denoted by (hn)
1
n=1 { such that (hn)

1
n=1 converges a.s. to some h0 2 N? for

which we get by Lebesgue's theorem (using the boundedness of (hn)
1
n=1 and Y ) that

E((h0(!); Y (!))+) = 0 while E((h0(!); Y (!))�) � � > 0 :

Hence �(h0(!); Y (!)) is in (L0+nf0g) \K, a contradiction proving (2).

Equalities (1) and (2) imply that (hn(!); Y (!))
1
n=1 tends to zero in mean, hence

| by passing to a subsequence | almost surely.
On the other hand lemma 3.3 implies that there is a bounded sequence gn 2

L1(
;F0; P ) and a sequence fn 2 conv(gnhn; gn+1hn+1; : : : ) such that fn converges
a.s. to some f0 6� 0.

This gives the desired contradiction proving that �(A) > 0: On one hand side
f0 2 N? as each gnhn is in N?; on the other hand f0 2 N as (f0(!); Y (!)) = 0
almost surely. �

2.7. Lemma. Let (hn)
1
n=1 be a sequence in N? such that

	(!) = sup
n
(hn(!); Y (!))+

is �nite almost surely. Then

�(!) = sup
n
khn(!)k

is �nite almost surely too.

Proof. Suppose to the contrary that for A = f�(!) = +1g we have that P (A) >
0. For n;m 2 N , let

An;m = A \ fkhmk � ng:

By our assumption we have, for each n 2 N ,

1[
m=n

An;m = A:
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De�ne, for n 2 N

~hn =
1X

m=n

(hm=khmk)�An;mn
Sm�1
j=n An;j

;

to obtain a sequence (~hn)
1
n=1 in N

? supported by A such that k~hn(!)k = 1 for almost
all ! 2 A and such that

lim
n!1

((~hn(!); Y (!))+) = 0 P{a.s.

Hence by Lebesgue's theorem

lim
n!1

E((~hn; Y )+) = 0

contradicting lemma 2.6 �

We now have assembled all the ingredients for the proof of the key lemma.

Proof of lemma 2.1. We have to show that K � L0+(
;F1; P ) is closed.

Let f 2 L0(
;F1; P ), (hn)
1
n=1 2 L0(
;F0; P ;R

d ) and (kn)
1
n=1 2 L0+(
;F1; P ) be

such that
lim
n!1

((hn(!); Y (!))� kn(!)) = f(!)

the limit taken with respect to convergence in measure. We have to show that f is
contained in K � L0+(
;F1; P ), i.e. that there is h 2 L0(
;F0; P ) such that

(h(!); Y (!)) � f(!) P -a.s.

By passing to a subsequence we may assume that the above sequence converges
almost surely and by lemma 2.5 we may suppose | by passing from hn to �(hn) |
that hn 2 N?. Note that

sup
n
(�hn(!); Y (!)) < +1 P -a.s.

whence by lemma 2.6

�(!) = sup
n
khn(!)k < +1 P -a.s.

By lemma 3.2 there is a sequence of convex combinations fn 2 conv (hn; hn+1; : : : )
converging a.s. to some h 2 L0(
;F0; P ;R

d). As

(h(!); Y (!)) � f(!) P -a.s.;

we have completed the proof of the key lemma 2.1. �
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2.8. Remark. It may be instructive to check the above arguments in the (easier)
case d = 1: Using the notation of the above lemmata we then have that N? (resp.
N) is the subspace of L0(
;F0; P ) of functions supported by 
cN (resp. 
N ) and the
projection � is simply multiplication by �
c

N
. The set function � on F0 j
c

N
is just

the measure whose density is given, for ! 2 
cN , by

(d�=dP )(!) = min(E(Y+ j F0); E(Y� j F0)) :

In the case d � 2 there is no such simple interpretation. The reader interested in
getting additional motivation might compare the above developed notions with the
geometric concepts used in [D-M-W 90].

Finally we give a very easy example showing that theorem 1.1 breaks down in the
case of in�nitly many securities, i.e., d = 1. Consider the space RN of all sequences
of real numbers which is in natural duality with the space R(N) of sequences of real
numbers with �nite support. Let 
 = N , F0 = f�;
g, F = F1 the power set of N
and P =

P1
n=1 2

�n�n. Let the R
N -valued process (St)

1
t=0 be given by S0 � 0 and the

j-th coordinate of S1 given by

Sj1(!) =

8<
:

1; for ! = j
�1; for ! = j + 1
0; elsewhere:

Clearly there is no equivalent martingale measure Q on F turning (St)
1
t=0 into a

martingale as such a measure Q would have to verify Q(j) = Q(j + 1) for all j 2 N ,
which is clearly absurd.

On the other hand it is just as obvious that for every R
(N) -valued F0-measurable

(i.e., constant) function h we have that the function

f(!) = hh(!); S1(!)� S0(!)i

=
1X
j=1

hj(!) � Sj1(!)

is nonnegative i� it is identically zero, which shows that S satis�es the no arbitrage
condition.

3. Some wellknown results

In this section we recall some results which we have used in the above proof. For
the convenience of the reader we provide proofs for them.

The �rst result is a fundamental tool in the theory of semimartingales. It is due
to Yan [Y 80] but a similar result has been obtained independently by Kreps [K 81]
in the context of �nancial mathematics (compare [St 90], [A-S 90], [L 92], [S 92] [K
92] for other versions of this teorem). We formulate an easy version appropriate for
our present setting.

11



3.1 Theorem (Yan). Let C be a closed convex cone in L1(P ) containing L1� and

such that C \ L1+ = f0g. Then there is g 2 L1 with g(!) > 0 for almost all ! 2 

and gjC � 0.

Proof. The proof is a combination of a Hahn-Banach and an exhaustion argu-
ment.

Step 1 (Hahn{Banach argument):
For each �xed f 2 L1+, f 6= 0, there is g 2 L1+ which is less than or equal to zero on
C such that

hf; gi = E(fg) > 0 :

Indeed, apply the separation theorem ( Schaefer (71), th. II, 9.2) to the closed convex
set C and the compact set ffg to �nd g 2 L1 and � < � such that

g jC � � and hf; gi > � :

As 0 2 C we have � � 0 and therefore hf; gi > 0. On the other hand g is bounded
from above on C and therefore on L1�, i.e. g 2 L1+ . This proves step 1.

Step 2 (Exhaustion Argument):

Denote by G the set of all elements g 2 L1+ , g being less than or equal to zero on
C. As 0 2 G (or by Step 1), G is nonempty.

Let S be the family of (equivalence classes of ) subsets of 
 formed by the supports
of the elements g 2 G. Note that S is closed under countable unions, as for a sequence

(gn)
1
n=1 2 G we may �nd strictly positive scalars (�n)

1
n=1, such that

1P
n=1

�ngn 2 G.

Hence there is g0 2 G such that for S0 = fg0 > 0g we have

P (S0) = supfP (S) : S 2 Sg:

We shall show that P (S0) = 1 which readily shows that g0 is strictly positive
almost surely. If P (S0) < 1 then we could apply step 1 to f = �
nS0 to �nd g1 2 G
with

hf; g1i =

Z


nS0

g1(!)dP (!) > 0

Hence g0+ g1 would be an element of G whose support has P{measure strictly bigger
than P (S0), a contradiction. �

The next lemma is of folklore type and very useful. It may be viewed as a substitute
of compactness, if one is ready to pass to convex combinations, which usually does
not do much harm. Let us point out that the use of convex combinations allows for
remarkable 
exibility (compare [D-R-S 92]). Similarly as in Yan's theorem 3.1 above
we only present an easy version and refer to [S 92] and [D-S 92] for more sophisticated
versions of this result.
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3.2 Lemma. Let (fn)
1
n=1 be a sequence in L0(
;F ; P ;Rd) with supn kfn(!)kRd

almost surely �nite. Then there exists a sequence (gn)
1
n=1 of convex combinations

gn 2 convffn; fn+1; : : :g which converges almost surely.

Proof. First assume that the sequence (fn)
1
n=1 is uniformly bounded with respect

to the norm of Rd . In particular this sequence is bounded in the Hilbert space
L2(P ;Rd ) and by the re
exivity of Hilbert spaces there is a subsequence converging
in the weak topology of L2(P ;Rd ). By the Hahn-Banach theorem the weak limit is
in the norm closure of the convex hull of (fj)

1
j=n, for each n 2 N , and therefore there

is a sequence gn 2 convffn; fn+1; : : :g which converges with respect to the norm of
L2(P ;Rd ). Extracting once more a subsequence, if necessary, we may conclude that
(gn)

1
n=1 converges almost surely.

We now pass to the general case: De�ne the weight function

w(!) = sup
n
kfn(!)kRd

which by hypothesis is almost surely �nite. Apply the �rst step to the uniformly
bounded sequence (fn=w)

1
n=1 to �nd a sequence of convex combinations that converges

almost surely. But then obviously the same sequence of convex combinations taken
from the sequence (fn)

1
n=1 converges almost surely too. �

Finally we prove a technical result which we needed in the proof of lemma 2.6 above.
To get some motivation consider the sequence (rn)

1
n=1 of Rademacher functions on

[0; 1]. It is instructive to apply lemma 3.2 to this situation: It is not hard to construct
directly convex combinations gn 2 conv(rn; rn+1; : : : ) converging almost surely to
some g0. Obviously there are many ways to choose such sequences (gn)

1
n=1 but one

easily veri�es that the limit function g0 necessarily equals 0.
In lemma 2.6 above we needed a limit di�erent from zero and this is achieved by

the following easy ad hoc argument:

3.3 Lemma. Let (hn)
1
n=1 be a bounded sequence in L2(
;F ; P ;Rd) which stays

bounded away from zero in probability, i.e., there is � > 0 such that Pfkhnk � �g �
�, for all n 2 N .

Then there is a bounded sequence (gn)
1
n=1 2 L1(
;F ; P ) and a sequence of convex

combinations fn 2 conv(gnhn; gn+1hn+1; : : : ) such that fn converges almost surely to

some f0 2 L2(
;F ; P ;Rd ) with f0 6� 0.

Proof. Denoting by hin the i'th coordinate of hn we may �nd some 1 � i � d
such that

lim sup
n!1

E(jhinj) � d�1�2 > 0:

Let gn(!) = sign(hin(!)) and �nd a subsequence (hnk) such that

lim
k!1

E(jhink j) = lim
k!1

E (gnk � h
i
nk
) > 0 :

Finally apply the argument used in the �rst part of the proof of the preceding
lemma 3.2 to choose a sequence (fk)

1
k=1 such that fk 2 conv (gnkhnk ; gnk+1hnk+1 ; : : : )

13



and such that (fk)
1
k=1 converges a.s. to some f0. As (fk)

1
k=1 is uniformly integrable

we infer from Vitali's theorem that E(f i0) > 0, whence in particular that f0 6� 0. �

To end this section we shall show how the concepts developed for the proof of
lemma 2.1 also allow to give an easy proof of Stricker's lemma 2.3 above.

3.4 Proof of Stricker's lemma 2.3. Let (hn)
1
n=1 be a sequence in L

0(
;F0; P ;R
d)

such that (hn(!); Y (!))
1
n=1 converges in measure. We have to show that there is

h0 2 L0(
;F0; P ;R
d) such that (h0(!); Y (!)) = limn!1(hn(!); Y (!)).

We claim that the sequence (�(hn))
1
n=1 converges in measure which will �nish the

proof in view of lemma 2.5.
To prove the claim suppose to the contrary that there are sequences (nj)

1
j=1 and

(mj)
1
j=1 tending to in�nity such that the sequence (kj)

1
j=1 = (�(hnj ) � �(hmj

))1j=1
stays bounded away from zero in measure. Note that the sequence

~kj(!) = kj(!)=max(kkj(!)k; 1)

is a uniformly bounded sequence in N? staying bounded away from zero in measure
and such that (~kj; Y )

1
j=1 tends to zero in measure and { by passing to a subsequence

{ almost surely.
Apply lemma 3.3 to �nd a uniformly bounded sequence (gj)

1
j=1 2 L1(
;F0; P ) and

a sequence of convex combinations fj 2 conv(gj~kj ; gj+1~kj+1; : : : ) such that (fj)
1
j=1

converges almost surely to some f0 6� 0. Then f0 2 N \ N? as (f0; Y ) � 0, a
contradiction �nishing the proof. �
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