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Abstract

We consider weak convergence of a sequence of asset price models (Sn) to a limiting
asset price model S. A typical case for this situation is the convergence of a sequence of
binomial models to the Black-Scholes model, as studied by Cox, Ross, and Rubinstein.

We put emphasis on two di�erent aspects of this convergence: �rstly we consider
convergence with respect to the given "physical" probability measures (Pn) and secondly
with respect to the "risk-neutral" measures (Qn) for the asset price processes (Sn). (In the
case of non-uniqueness of the risk-neutral measures also the question of the "good choice"
of (Qn) arises.) In particular we investigate under which conditions the weak convergence
of (Pn) to P implies the weak convergence of (Qn) to Q and thus the convergence of
prices of derivative securities.

The main theorem of the present paper exhibits an intimate relation of this question
with contiguity properties of the sequences of measures (Pn) with respect to (Qn) which
in turn is closely connected to asymptotic arbitrage properties of the sequence (Sn) of
security price processes.

We illustrate these results with general homogeneous binomial and some special tri-
nomial models.

Key Words: weak convergence, option prices, asymptotic arbitrage, contiguity, binomial
models

1 Introduction

Since the seminal paper by Cox, Ross, and Rubinstein (1979) the approximation of continuous
time asset price models by discrete time models is a well-known theme in Mathematical
Finance. Rachev and R�uschendorf (1994) investigated in a systematic way the question
which continuous time models may occur as limits of binomial models.

We shall address the following issue: there are two di�erent aspects of weak convergence
of a sequence (Sn) of discrete time models which are relevant in the context of Mathematical
Finance: �rstly it is the usual question of convergence with respect to the original, sometimes

�This piece of research was supported by the Austrian Science Foundation (FWF) under grant SFB#10
('Adaptive Information Systems and Modelling in Economics and Management Science').
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called "physical", probability measures (Pn); but secondly there is also the question of con-
vergence with respect to the so-called "risk-neutral" measures (Qn), which, e.g., in the case
of binomial models are unique (provided they exist). This sequence of probability measures
is relevant for the convergence of the prices of derivative securities on the underlying stock
price process (Sn).

The general theme of this paper is: How is convergence of (Pn) related to convergence
of (Qn) ? More precisely: Under what conditions does the convergence of (Pn) imply the
convergence of (Qn) ?

Bearing in mind that the equivalent martingale measures Qn de�ne (via taking discounted
expectations) a pricing rule for derivatives (such as options) a rough reformulation of this
question is formulated in the title of the present paper: When does convergence of asset price
processes imply convergence of option prices?

Our aim is to make these intuitively formulated questions mathematically precise and
to provide su�cient conditions for an a�rmative answer. (We consider here convergence of
processes in distribution, or equivalently with respect to weak convergence of the laws of the
processes, exclusively. Related results and further references can be found in Jakubowski,
M�emin, and Pag�es (1989), Du�e and Protter (1991), Kurtz and Protter (1991), Cutland,
Kopp, and Willinger (1993), Kurtz (1991), Madan, Milne, and Shefrin (1989), Nelson and Ra-
maswamy (1990), He (1990), Avram (1988), M�emin and Slominski (1991), Stricker (1984/85).
An overview regarding various convergence concepts used in Mathematical Finance is Will-
inger and Taqqu (1991). The reader interested in pathwise approximation should also consult
Eberlein (1991), Delbaen and Schachermayer (1996).)

The starting point is a puzzling and at �rst sight amazing example, which is due to Th.
Schlumprecht and, independently, to K. P�otzelberger.

1.1 Example For � 2 R, � > 0, �̂ > 0 there is a sequence of binomial asset price mod-
els with discounted asset price processes (Sn), physical probabilities (Pn), and risk-neutral
probabilities (Qn), such that

(i) the sequence (SnjPn) converges weakly to (SjP ), which is geometric Brownian motion
with parameters � and �2,

(ii) the sequence (SnjQn) converges to (SjQ), which is geometric Brownian motion with
parameters ��̂2=2 and �̂.

As a consequence the (unique arbitrage-free) price of a European option on S may be di�erent
(and, indeed, very di�erent!) from the limit of the (unique arbitrage-free) prices of the same
option on Sn.

The construction of such an example (see Section 3 below) is actually quite simple: the trick
is to use a sequence of binomial models with di�erent behavior for odd and even increments.

In order to analyze the phenomenon arising in this example let us recall the basic idea
behind the entire theory of pricing derivatives by no-arbitrage-arguments: if a derivative
is "wrongly priced" there should be a possibility for arbitrage. The situation described by
Example 1.1 can loosely be described by saying that the option is "asymptotically wrongly
priced". This leads to the idea that this "asymptotically wrong price" should be related to
some kind of "asymptotic arbitrage".

The notion of asymptotic arbitrage was introduced (in several variants) and studied in the
work of Kabanov and Kramkov (1994, 1998), Klein and Schachermayer (1996a, 1996b), and
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Klein (1996) and is intimately related to contiguity properties of the sequences of measures
(Pn) with respect to the sequence of measures (Qn) and vice versa.

It turns out that there is indeed a close connection along these lines:

1.2 Theorem Let (SnjPn) be a sequence of (not necessarily complete) asset price models
that converges weakly to the complete asset price model (SjP ).

Let (Qn) be a sequence of equivalent martingale measures for (SnjPn), such that the
sequence of terminal values (SnT ) is uniformly (Qn)-integrable.

If the sequence (Qn) is contiguous with respect to (Pn), then (SnjQn) converges weakly
to (SjQ), where Q is the unique equivalent martingale measure for (SjP ).
Let us put the message of Theorem 1.2 (precise de�nitions of the used terms will be given
below) into a more informal language: by assumption we �x, for each (SnjPn), an equivalent
martingale measure Qn, which we consider (by taking expected values) as a pricing rule for
derivatives. Note that we did not assume that each Qn is unique, i.e., that each Sn under Pn

is a complete market; we only assume that the limiting model S under P is complete. Under
a technical uniform integrability assumption the contiguity of (Qn) with respect to (Pn) then
implies the convergence of (Qn) to Q. In particular this implies convergence of prices of
European options on Sn to the prices of the corresponding European options on S. (We
do not address convergence of American option prices here. Related questions and further
references on American options can be found in Lamberton and Pag�es (1990), Mulinacci and
Pratelli (1996), Amin and Khanna (1994), Lamberton (1993).)

The contiguity of (Qn) with respect to (Pn) is closely connected to the idea of asymptotic
arbitrage: for example, if we make the additional assumption that each Qn is the unique
equivalent martingale measure for (SnjPn), e.g., in the case of binomial models, then (Qn)
is contiguous with respect to (Pn) i� there is no asymptotic arbitrage of second kind as was
shown by Kabanov and Kramkov (1994) (compare also Klein and Schachermayer (1996a,
1996b), and Kabanov and Kramkov (1998) for related and more general results). Using this
relation between contiguity and asymptotic arbitrage we obtain from Theorem 1.2:

1.3 Corollary In the setting of Theorem 1.2 suppose in addition that each Qn is the unique
equivalent martingale measure for (SnjPn).

If (SnjPn) permits no asymptotic arbitrage of second kind then (SnjQn) weakly converges
to (SjQ).
The paper is organized as follows: in Section 2 we �x notation and de�nitions, and in Section 3
we do the construction of the "odd-even" Example 1.1.

In Section 4 we give the proof of Theorem 1.2. We also provide examples showing none
of the assumptions can be dropped for the theorem to hold true. On the other hand, we also
give an example showing that the reverse implication of the theorem does not hold true, i.e.,
convergence of (SnjQn) to (SjQ) does not imply contiguity of (Qn) with respect to (Pn), see
however, Proposition 3.9 below for a partial reverse result.

On the other hand we show (Theorem 3.8) that for homogeneous binomial models (where,
in particular, the distinction between the odd and even increments cannot be made) the
phenomenon of Example 1.1 cannot occur: loosely speaking, in the case of homogeneous
binomial models convergence of stock prices implies convergence of option prices. This result
seems to be wellknown and of folklore type but we have been unable to trace a precise reference
in the literature and so we provide a proof.
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In Section 5 we apply Theorem 1.2 to a homogeneous trinomial model (similar results can
be obtained for more general block multinomial models). In this setting, for each n 2 N the
process Sn does not de�ne a complete market and there is a wide variety of possible choices
of equivalent martingale measures Qn; on the other hand, in our setting the limiting model S
is just geometric Brownian motion (with drift) and therefore de�nes a complete market. So
we �nd ourselves precisely in the situation of Theorem 1.2.

For certain homogeneous trinomial models we give explicit necessary and su�cient condi-
tions characterizing those sequences (Qn) of martingale measures such that (SnjQn) converges
to (SjQ).

Acknowledgements

We thank Thomas Schlumprecht for bringing to our attention Example 1.1 which was the
starting point of this paper as well as Klaus P�otzelberger, who constructed independently this
example and presented it in the Seminar on Stochastic Processes and Mathematical Statistics
in the summer term 1997 in Vienna.

2 De�nitions and Notations

2.1 De�nition An asset price model is a �ltered probability space (
;F ; (Ft)t2[0;T ]; P ) with
an Rd-valued semi-martingale (St)t2[0;T ] denoting the discounted price processes of d assets.

A probability measure Q on F will be called an equivalent martingale measure for the
asset price model, if Q is equivalent to P and S is a Q-martingale. If we do not specify
the �ltration the term martingale pertains to the (augmented, right-continuous) �ltration
generated by S. We shall sometimes write briey S for the asset price model, or (SjP ) and
(SjQ) if we want to stress that we consider S relative to P or Q respectively.

We say that a sequence (SnjPn) of asset price models converges weakly to an asset price
model (SjP ), if the sequence of probability measures de�ned by (SnjPn) on the space Dd[0; T ]
of c�adl�ag trajectories equipped with the Skorokhod topology converges to the probability
measure de�ned by (SjP ), with respect to the weak convergence of probability measures,
cf. Jacod and Shiryaev (1987) or Billingsley (1968).

A remark on the above de�nition seems appropriate: usually an asset price model is de�ned as
an Rd+1-valued semimartingale (St)t2[0;T ], where the �rst coordinate S0;t plays the role of the
bond or riskless asset, which is assumed to be a strictly positive process. The term equivalent

martingale measure then pertains to a measure Q � P , under which the discounted processes
S1;t=S0;t; : : : ; Sd;t=S0;t are martingales.

In the present paper we are not really interested in the convergence of the bond price
processes, i.e., of the 0-th coordinate (Sn0 ) of the asset price models; our interest rather focuses
on the convergence of the d stock-price processes. Mainly in order to simplify the notation
we therefore consider from the very beginning the d-dimensional process S = (S1; : : : ; Sd) of
discounted stock price processes; in other words we choose the popular approach to use the
bond as numeraire (compare, e.g., Delbaen and Schachermayer 1995). It is the process of
discounted stock prices which is relevant for the pricing of derivative securities and therefore
this setting allows to give more compact formulations; we remark, however, that it is also
possible | mutatis mutandis and involving more cumbersome formulations | to present our
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results in the language of (d+1)-dimensional processes taking also explicitly into account the
convergence of the bond price processes.

To prove weak convergence in our examples we often use the following functional version
of the Lindeberg-L�evy central limit theorem Jacod and Shiryaev (1987, VII.5.4). Without
loss of generality we set the time horizon T = 1.

2.2 Theorem Assume (�nk )k=1;:::;n is a rowwise independent triangular array under (Pn)
satisfying the condition

nX
k=1

EPn [j�nk j21fj�n
k
j>"g]! 0(2.1)

for all " > 0 as n!1. Let Xn
t =

[nt]X
k=1

�nk denote the partial sum process. If

[nt]X
k=1

EPn [�nk ]! �t(2.2)

uniformly in t 2 [0; 1] as n! 1 and

[nt]X
k=1

VPn [�nk ]! �2t(2.3)

for any t 2 [0; 1] as n ! 1 then (X jPn) ! (X jP ), which is Brownian motion with drift �
and variance �2 on [0; 1].

We also shall use the following lemma.

2.3 Lemma If (XnjPn)! (X jP ) then (exp(Xn)jPn)! (exp(X)jP ).
This follows from the fact that exp is uniformly continuous on compact intervals, and therefore
the mapping �! � � exp is continuous from D to D Jacod and Shiryaev (1987, VI.1.15 and
3.8). 2

The subsequent notions of contiguity and entire separation can be found in Jacod and
Shiryaev (1987), Witting and M�uller-Funk (1995), Strasser (1985), Roussas (1972), Green-
wood and Shiryaev (1985), Shiryaev (1984).

2.4 De�nition (i) A sequence of probability measures (Qn) is contiguous to the sequence
(Pn), both de�ned on measure spaces (
n;Fn), if Pn(An)! 0 implies Qn(An)! 0 as
n !1 for all An 2 Fn. We shall denote this by writing (Qn) � (Pn). If (Qn) � (Pn)
and (Pn) � (Qn) we say the sequences are mutually contiguous.

(ii) The sequences (Qn) and (Pn) are entirely separated, if there is a subsequence nk ! 1
and for each k a set Ank , such that Pnk (Ank) ! 1 and Qnk(Ank) ! 0 as k ! 1. We
shall denote this by writing (Qn)4 (Pn).

A useful criterion for contiguity and entire separation is the following, which we adapt from
Jacod and Shiryaev (1987, V.2.32) for our applications.
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2.5 Theorem Assume (�nk )k=1;:::;n is a row wise independent triangular array under (Pn) as
well as under (Qn). Let pnk and qnk denote the law of �nk under Pn resp. Qn, and let

hn(�) =
nX

k=1

[1�H(�; pnk ; q
n
k )] ;(2.4)

where H(�; pnk ; q
n
k ) is the Hellinger integral of order � 2 (0; 1).

(i) We have (Qn) � (Pn) i�
lim
�!0

lim sup
n!1

hn(�) = 0:(2.5)

(ii) We have (Qn)4 (Pn) i� there is � 2 (0; 1) such that

lim sup
n!1

hn(�) =1 or lim inf
n!1

inf
k=1;:::;n

H(�; pnk ; q
n
k ) = 0;(2.6)

and in this case (2:6) holds for all � 2 (0; 1).

Note: We write pnk and q
n
k sometimes to denote probability distributions, sometimes to denote

related probabilities, but we prefer this to introducing a further notation.

2.6 De�nition (Harrison and Pliska (1981),Delbaen and Schachermayer (1994)) A predictable
R
d-valued process H is called admissible for S, if the stochastic integral with respect to the

process S, denoted by (H � S)t2[0;T ] is well-de�ned and there is a constant C > 0 such that
(H � S)t � �C for all t 2 [0; T ].

2.7 De�nition (Kabanov and Kramkov (1994, 1998))

(i) A sequence (Hn) of admissible trading strategies realizes asymptotic arbitrage of �rst
kind (AA1), if there are numbers Cn ! 1 such that (Hn � Sn)t � �1, for t 2 [0; T ],
and lim supPn [(Hn � Sn)T � Cn] > 0 as n! 1.

(ii) A sequence (Hn) of admissible trading strategies realizes asymptotic arbitrage of the
second kind (AA2), if there is a c > 0, such that (Hn � Sn)t � �1, for t 2 [0; T ], and
lim sup Pn [(Hn � Sn)T � c] = 1 as n!1.

(iii) A sequence (Hn) of admissible trading strategies realizes strong asymptotic arbitrage,
if (Hn � Sn)t � �1, for t 2 [0; T ], and lim supPn [(Hn � Sn)T � C] = 1 for any C > 0 as
n!1.

If there are no subsequences permitting asymptotic arbitrage possibilities of �rst, second, or
strong kind, we say there is no asymptotic arbitrage (NAA) of �rst, second, or strong kind,
respectively.

To come to the last (formally) unde�ned concept appearing in Theorem 1.2: the uniform
Qn-integrability condition of the sequence (SnT ) with respect to the measures (Qn) means

EQn

h
jSnT jIfjSn

T
j>Cg

i
! 0(2.7)

uniformly in n 2 N as C ! 1. This implies in the present context the uniform boundedness
in L1(Qn) and uniform integrability condition as de�ned in Meyer and Zheng (1984). This
condition holds, for example, if (Sn) is Lp(Qn)-bounded for some p > 1, i.e.,

sup
n2N

EQn [jSnT jp] <1:(2.8)
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2.1 Notation We write

f = g +O(h); resp. f = g +�(h);(2.9)

if there exists C > 0 (resp. c > 0 and C > 0) such that

jf � gj � Cjhj; resp. cjhj � jf � gj � Cjhj(2.10)

3 The odd-even binomial model

3.1 De�nition A sequence of asset price models (Sn) is called a binomial model if each
discounted asset price process (Sn) evolves as follows: For t 2 [0; T ]

Snt = S0 exp

0
@ [nt]X

k=1

�nk

1
A ;(3.1)

where S0 > 0 is a constant and the increments (�nk ) of the logarithmic discounted returns

Xn
t =

P[nt]
k=1 �

n
k form a row wise independent triangular array. The random variables �nk

assume two values Un
k and Dn

k with positive probabilities pnk and 1� pnk ,

Pn[�nk = Un
k ] = pnk ; Pn[�nk = Dn

k ] = 1� pnk(3.2)

for k = 1; : : : ; n. To avoid trivial complications we always assume Dn
k < 0 < Un

k .
The model is called homogeneous, if (Un

k ; D
n
k ; p

n
k) depend on n but not on k. It is called

an odd-even binomial model if these parameters depend only on n and the parity of k.

For later usage we recall the following lemma.

3.2 Lemma A binomial model has a unique martingale measure Qn, which can be charac-
terized by the probabilities

Qn[�nk = Un
k ] = qnk ; Qn[�nk = Dn

k ] = 1� qnk ;(3.3)

which are given by the familiar formula (Cox, Ross, and Rubinstein 1979; Rachev and
R�uschendorf 1994; Shiryaev, Kabanov, Kramkov, and Mel'nikov 1994; Pliska 1997)

qnk =
1� eD

n

k

eU
n

k � eD
n

k

:(3.4)

2

3.3 De�nition An asset price model S is called a Black-Scholes model with parameters
(�; �2) if the discounted asset price process S evolves as follows: For t 2 [0; T ]

St = S0 exp(Xt);(3.5)

where S0 > 0 and the logarithmic discounted returns satisfy Xt = (�� �2=2)t+ �Wt with a
standard Brownian motion W .
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For the construction of Example 1.1 we de�ne

Un
2j�1 =

�1p
n
+
�

n
; Dn

2j�1 = �
�2p
n
+
�

n
; pn2j�1 = p(3.6)

and
Un
2j =

�2p
n
+
�

n
; Dn

2j = �
�1p
n
+
�

n
; pn2j = 1� p(3.7)

for j = 1; : : : ; [n=2], with �1 > 0, �2 > 0 and 0 < p < 1 to be �xed later.
We claim that the discounted logarithmic returns (XnjPn) converge in distribution to

(X jP ), where the limit X is under P a Brownian motion with drift � and volatility � =
(�1+�2)

p
p(1� p). Indeed, denoting by EPn and VPn expectation and variance with respect

to Pn, an easy calculation shows that

EPn [�nk ] = (�1)k�1 p�1 � (1� p)�2p
n

+
�

n
; VPn [�nk ] =

(�1 + �2)
2

n
p(1� p);(3.8)

for k = 1; : : : ; n, therefore

[nt]X
k=1

EPn [�nt ]! �t;

[nt]X
k=1

VPn [�nt ]! (�1 + �2)
2p(1� p)t:(3.9)

Since Un
k ! 0 and Dn

k ! 0 uniformly in k as n ! 1 our claim follows from the Lindeberg-
Feller central limit theorem 2.2 and 2.3. So far nothing very surprising.

For option pricing we are interested in the behavior of the above markets under the risk-
neutral probability measures. Inserting the special values of (3.6) and (3.7) into (3.4) we
obtain asymptotically

qn2j�1 =
�2

�1 + �2

�
1�

�
�1
2
+

�

�2

�
1p
n
+O

�
1

n

��
;

(3.10)

qn2j =
�1

�1 + �2

�
1�

�
�2
2
+

�

�1

�
1p
n
+O

�
1

n

��

uniformly in j = 1; : : : ; [n=2] as n!1. For the expectation and variance under Qn, denoted
by EQn and VQn, we obtain

EQn [�nk ] = �
�1�2
2

n�1 + O
�
n�3=2

�
; VQn[�nk ] = �1�2n

�1 +O
�
n�3=2

�
(3.11)

for k = 1; : : : ; n. Thus under Qn

[nt]X
k=1

EQn [�nt ]! ��1�2
2

t;

[nt]X
k=1

VQn[�nt ]! �1�2t:(3.12)

Consequently the (XnjQn) converges to (X jQ), where the limit X under Q is a Brownian
motion with drift ��1�2=2 and volatility �̂ =

p
�1�2.

An elementary consideration shows that we can produce any combination of � > 0 and
�̂ > 0 by choosing appropriate values for �1 > 0, �2 > 0 and 0 < p < 1. This �nishes the
construction of Example 1.1. 2
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3.4 Remark If we consider the odd-even models as (controlled) Markov chain approxima-
tions to the limiting Brownian motion, then these models are not locally consistent in the
sense of Kushner (1997), see also Kushner and Dupuis (1992).

Let us consider the consequences of Example 1.1 for option prices. A priori we could think
of two ways to calculate the price of an option on S: Either as limit of the prices of the
corresponding option on Sn, or alternatively as discounted expectation under the martingale
measure Q. We will show, that for the European call option any pair of values within the
trivial bounds for arbitrage-free option prices may occur in this way.

3.5 Proposition For any � 2 R, � > 0 there is a sequence of odd-even binomial markets
that converge under the original measures Pn to a Black-Scholes market with parameters
�; �2, but the price of a European call option with strike price K 2 R approaches the lower
arbitrage bound, i.e., under the risk-neutral measures Qn

EQn[(SnT �K)+]! (S0 �K)+:(3.13)

Also, for any � 2 R, � > 0 there is a sequence of odd-even binomial markets that converge
under the original measures Pn to a Black-Scholes market with parameters (�; �2), but the
price of a European call option with strike price K 2 R approaches the upper arbitrage bound,
i.e.

EQn [(SnT �K)+]! S0:(3.14)

Proof: We �x � and � and choose an arbitrary �̂ > 0. We have seen that there is an odd-even
model, such that the limit of (SnjPn) and (SnjQn) are geometric Brownian motions with
volatility � resp. �̂. A direct and wellknown calculation shows that, for �xed strike price K,
the limit of the price of the European call option

lim
n!1

EQn[(Sn1 �K)+] = EQ[(S1 �K)+] = f(�̂);(3.15)

where f(�̂) denotes the price of the option in a Black-Scholes model with volatility �̂. Since

lim
�̂!0

f(�̂) = (S0 �K)+; lim
�̂!1

f(�̂) = S0;(3.16)

and �̂ > 0 was arbitrary any price within the trivial arbitrage bounds (S0�K)+ and S0 may
occur as limiting option price of an odd-even binomial model, which approximates under the
original measures a given Black-Scholes model. 2

In the next proposition we relate the "asymptotically wrong" option price, which arises if
we choose � 6= �̂ in Example 1.1 with the notion of asymptotic arbitrage.

3.6 Proposition If we have � 6= �̂ in Example 1.1 above, then there are strong asymptotic
arbitrage possibilities, and (Pn)4 (Qn):

Proof: Let pnk and qnk denote the distribution of �nk under Pn and Qn respectively. Then the
Hellinger integral of order 1=2 is given by

H(pnk ; q
n
k ) =

p
pnkq

n
k +

q
(1� pnk)(1� qnk )(3.17)
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For the odd-even model under discussion we get

lim
n!1

H(pnk ; q
n
k ) =

p
pq +

p
(1� p)(1� q)(3.18)

uniformly in k = 1; : : : ; n with q = �1=(�1 + �2). By assumption � 6= �̂, so p 6= q, hence
1� ppq �p(1� p)(1� q) > 0. This implies

hn(12) = n [1�H(pnk ; q
n
k )]!1(3.19)

as n ! 1. By 2.5 this is equivalent to entire separation, which is equivalent to strong
asymptotic arbitrage Kabanov and Kramkov (1998, Prop.4). 2.

Actually this proof leads to an example, which was pointed out to us by K.P�otzelberger,
that shows, that contiguity (or absence of asymptotic arbitrage) is not a necessary assumption
for the conclusion of Theorem 1.2.

3.7 Example There is an odd-even model such that under the physical probability measures
(Pn) the sequence (Sn) converges in distribution to geometric Brownian motion with param-
eters � and �2, and under the risk neutral probability measures (Qn) the sequence of stock
prices (Sn) converges to the correct limit, i.e. geometric Brownian motion with parameters
��2=2 and �, although the sequence of binomial models permits strong asymptotic arbitrage.

De�ne an odd-even model as in Example 1.1 with p 6= 1=2 and q = 1� p. Then the variance
is not a�ected, and the limiting measures P and Q are equivalent, although by the 2.5 we
have entire separation. 2.

In Rachev and R�uschendorf (1994, Theorem 2.2) necessary and su�cient conditions for
convergence of a sequence of homogeneous binomial markets to a Black-Scholes market are
given, as well as su�cient conditions for the convergence of option prices (see Rachev and
R�uschendorf 1994, Theorem 3.1). First we demonstrate, that in the homogeneous situation
convergence of the stock prices implies in fact convergence of option prices, or loosely speaking,
'homogeneous binomial models have automatically good convergence properties', cf. the
discussion in Willinger and Taqqu (1991, 5.2). This theorem seems to be wellknown and of
folklore type, it is implicit in Rachev and R�uschendorf (1994), it was mentioned to us by K.
P�otzelberger, but we have been unable to trace a precise reference in the literature.

3.8 Theorem Suppose a sequence of homogeneous binomial models (Sn) with Un ! 0,
Dn ! 0 converges in distribution under Pn to a Black-Scholes model with parameters
�; �2.Then under the corresponding martingale measures (Qn) the sequence (SnjQn) con-
verges to the Black-Scholes model with parameters ��2=2; �2.
Proof: Instead of applying Theorem 1.2 we prefer to give an elementary proof. The conver-
gence assumption is equivalent to

n [Unpn +Dn(1� pn)]! �; n(Un �Dn)2pn(1� pn)! �2:(3.20)

This follows from the central limit theorem, or may be deduced easily from the conditions
given in Rachev and R�uschendorf (1994). We claim

�2 = � limnUnDn:(3.21)
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By assumption n(Unpn +Dn(1� pn))! �, so Unpn +Dn(1� pn) = O(1=n). We can write

(Un �Dn)pn = �Dn +O

�
1

n

�
; (Un �Dn)(1� pn) = Un +O

�
1

n

�
:(3.22)

Multiplying these equations yields

n(Un �Dn)2pn(1� pn) = �nDnUn +O (Un) +O (Dn) +O

�
1

n

�
:(3.23)

We consider here only models with Un ! 0 and Dn ! 0, so the claim is proved.
Now we calculate the asymptotic expansion of the risk neutral probabilities,

qn =
�Dn

Un �Dn

�
1� Un

2
+O (Un �Dn)2

�
:(3.24)

We �nd

n(Un �Dn)2qn(1� qn) = �nDnUn +O (DnUn(Un �Dn)) +O

�
Un �Dn

n

�
:(3.25)

showing n(Un �Dn)2qn(1� qn)! �2. Finally

Unqn +Dn(1� qn) =
DnUn

2
+O (Un �Dn)3 ;(3.26)

showing n(Unqn +Dn(1� qn))! ��2=2. 2

In the setting of homogeneous binomial models we also can give a converse to Theorem 1.2.

3.9 Proposition Under the assumptions of Theorem 3.8 suppose that (SnjPn) converges to
a non degenerate limit, i.e. � > 0. Then we have no asymptotic arbitrage (neither of �rst or
second kind) and therefore (Pn) and (Qn) are mutually contiguous.

Proof: According to the 2.5 (Qn) � (Pn) i�

lim
�!0

lim sup
n!1

nX
k=1

�
1�H(�; �nk ; �

0n
k )
�
= 0(3.27)

In the homogeneous binomial world this equation becomes

lim
�!0

lim sup
n!1

n
�
1� pn�qn(1��) � (1� pn)�(1� qn)(1��)

�
= 0:(3.28)

From equation (3.20), applied to Pn and Qn, we know

n(Un �Dn)2pn(1� pn)! �2; n(Un �Dn)2qn(1� qn)! �2;(3.29)

with � > 0, thus
1

Un �Dn
= O

�
n1=2

�
;

pn(1� pn)

qn(1� qn)
! 1:(3.30)
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From equation (3.22), applied to Pn and Qn, we know

pn(Un �Dn) = �Dn + O

�
1

n

�
; qn(Un �Dn) = �Dn +O

�
1

n

�
:(3.31)

Combining this estimate with (3.30) gives

pn � qn = O

�
1

n1=2

�
:(3.32)

Equations (3.32) and (3.30) imply lim pn=qn = 1, or equivalently

qn = pn
�
1� wn

pn

�
; wn = O(n�1=2):(3.33)

Plugging this expressions into (3.27) gives

n
�
1� pn�qn(1��) � (1� pn�)(1� qn)(1��)

�
= O (�(1� �)):(3.34)

2

4 Proof of the main theorem

4.1 Proof of Theorem 1.2: To show convergence we use a method initiated by Prokhorov
(see Jacod and Shiryaev 1987, VI.3.18): We prove that (SnjQn) is tight and that (SjQ) is the
only possible limit point.

We assumed that the sequence (SnjPn) converges weakly, hence it is tight. Our contiguity
assumption guarantees that (SnjQn) is tight as well (see Jacod and Shiryaev 1987, X.3.1).

We consider the models (SnjPn) and (SnjQn) as probability measures on the space
Dd[0; T ] of Rd-valued c�adl�ag functions equipped with the Skorokhod topology.

Since Dd[0; T ] is a Polish space, for any weak accumulation point of (SnjQn), say (SjQ0),
there is a subsequence (nk)

1
k=1 with (Snk jQnk) ! (SjQ0). The subsequence inherits uniform

integrability.
We now are in a position to apply a theorem of Meyer-Zheng Meyer and Zheng (1984,

Theorem 11), which asserts the following: if (Snk jQnk) is a sequence of martingales converging
weakly to a process (SjQ0) with respect to the so called Meyer-Zheng topology on Dd[0; T ]
(which is weaker than the Skorokhod topology) satisfying the uniform integrability condition
given in the assumptions of Theorem 1.2, then the limit (SjQ0) again is a martingale (with
respect to its natural �ltration).

Hence we obtain that Q0 is a martingale measure for S and from our contiguity assumption
we obtain that Q0 is absolutely continuous with respect to P (see Witting and M�uller-Funk
1995, 6.113).

Using the easy Lemma 4.2 below we conclude that Q0 equals the unique equivalent mar-
tingale measure Q for S.

Hence (SnjQn) is a tight sequence with (SjQ) being its unique weak accumulation point,
which readily shows the weak convergence of (SnjQn) to (SjQ). 2

4.2 Lemma Suppose S is a Q-martingale and Q is the only martingale measure equivalent
to P . If Q0 is a martingale measure for S, which is absolutely continuous with respect to P ,
then Q = Q0.

12



Proof: Q00 := 1
2(Q+Q0) is also a martingale measure, and it is equivalent to P , thus Q = Q0. 2

4.3 Remark Let us analyze the assumptions of Theorem 1.2 and convince ourselves that they
indeed are necessary for the theorem to hold true. Firstly we deal with the assumption that
(SjP ) is a complete arbitrage-free market, i.e., that there is a unique equivalent martingale
measure Q for S. Clearly this assumption cannot be dropped: indeed, if (SjP ) is such that
the setMe(S) of equivalent martingale measures consists of more than one element, we may
choose (SnjPn) � (SjP ), for all n 2 N, and may choose a sequence Qn 2 Me(Sn) =Me(S)
which veri�es the assumptions of uniform integrability and contiguity and does not converge:
for example, �x Q0 6= Q00 in Me(S) and let, for j 2 N, Q2j�1 = Q0 and Q2j = Q00.

This trivial example shows that in the context of non-complete limiting models (SjP )
the question has to be posed di�erently: we have to restrict ourselves to special elements
Qn ofMe(Sn) and Me(S), such as the minimal (F�ollmer and Schweizer 1991), the variance
optimal (Schweizer 1996; Delbaen and Schachermayer 1996), the Esscher measure (Gerber
and Shiu 1994), the entropy minimizing measure (Frittelli 1996; Grandits 1998; Miyahara
1995) etc. and ask whether it is true that these special choices Qn 2 Me(Sn) converge to the
corresponding special choice Q 2 Me(S).

This question seems to be an interesting and challenging topic for future research. Let us
mention in this context related results for the case of the minimal (Runggaldier and Schweizer
1995) and the variance-optimal martingale measure (Prigent 1995). A result on approxima-
tions of the variance-optimal martingale measure in L2 is contained in Delbaen and Schacher-
mayer (1996).

We now deal with the second technical assumption we had to impose in Theorem 1.2,
the uniform (Qn)-integrability of (Sn)1n=1. The subsequent Example 4.4 illustrates in the
present context the well-known phenomenon that | in the absence of uniform integrability
| the weak limit of a sequence of martingales need not to be a martingale (not even a local
martingale).

4.4 Example Consider a odd-even model as above, with � = 0 and this time

Un
2j�1 =

�p
n
; Dn

2j�1 = �
�p
n
;(4.1)

and
Un
2j = ln n; Dn

2j = �
a

n
;(4.2)

where j = 1; : : : ; [n=2] and a > 0. For simplicity we set Rn = 0. Choose the probabilities Pn

so, that Sn is a Pn-martingale, i.e., such that (3.4) holds true, so that Pn = Qn. An easy
calculation shows

[nt]X
k=1

EPn [�nt ]! �
�
�2

4
+
a

2

�
t;

[nt]X
k=1

VPn [�nt ]!
�2

2
t:(4.3)

Since a > 0 the limiting measure P is not a martingale measure (not even a local martingale
measure), thus useless for the purpose of option pricing: it is not the (unique) martingale
measure Q associated to the limiting process (SjP ), which is geometric Brownian motion with
parameters ��2=4 + a=2 and �2=2. 2
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Finally let us discuss the question whether there is a converse to Theorem 1.2, i.e., whether
we can deduce from the convergence of (SnjQn) to (SjQ) something about the contiguity of
(Qn)1n=1 with respect to (Pn)1n=1 ?

Unfortunately there is no hope for a general result in this direction (compare, however,
Proposition 3.9 for a positive result in the case of homogeneous binomial models). It is
a wellknown phenomenon in Mathematical Statistics (see, e.g., Strasser 1985; Witting and
M�uller-Funk 1995) that in the case of weak convergence of (SnjPn) to (SjP ) and (SnjQn) to
(SjQ) the absolute continuity of Q with respect to P does not imply the contiguity of (Qn)1n=1

with respect to (Pn)1n=1. Example 3.7 illustrates this situation.

5 Trinomial models

In this section we shall consider homogeneous trinomial models. These are obvious extensions
of the binomial models 3.1. The di�erence is that the increments �nk of the logarithmic returns
Xn assume three values Un;Mn; Dn with positive probabilities. The resulting markets are
incomplete. For simplicity we choose

Un =
�p
n
; Mn = 0; Dn = � �p

n
;(5.1)

with some � > 0 and the probabilities

pn(Un) = pn(Mn) = pn(Dn) =
1

3
:(5.2)

We will see, that in contrast to homogeneous binomial models (cf. Theorem 3.8) homogeneous
trinomial models do not possess good convergence properties automatically.

5.1 Proposition (i) The sequence of trinomial asset price models (SnjPn) de�ned above
converges weakly to (SjP ), which is geometric Brownian motion with parameters 0; 2�2=3.

(ii) The family of equivalent martingale measures Qn, under which the process is again a
homogeneous trinomial model can be characterized by the probabilities

qn(Un) = �n
1� eD

n

eU
n � eD

n
; qn(Mn) = 1� �n; qn(Dn) = �n

eU
n � 1

eU
n � eD

n
(5.3)

with 0 < �n < 1.

(iii) If �n ! 2=3 as n ! 1 then (SnjQn) ! (SjQ), which is geometric Brownian motion
with parameters ��2=3; 2�2=3. So in this case P is equivalent to Q. If

�n =
2

3
+ O

�
1p
n

�
;(5.4)

then (Pn) and (Qn) are mutually contiguous, otherwise we have entire separation.

Proof: (i) We have

EPn [�nk ] = 0; VPn [�nk ] =
2�2

3n
(5.5)
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and by Theorem 2.2 (XnjPn) ! (X jP ), where the limit X is a Brownian motion with zero
drift and variance 2�2=3.

(ii) We are interested in martingale measures Qn preserving the independence of the
increments. From the martingale equation u = (k � 1)=n and t = k=n with k = 1; : : : ; n

EQn [Snt jFu] = SnuEQn [e�
n

k ] = Snu(5.6)

we see that these (Qn) can be characterized by

eU
n

qn(Un) + 1 � qn(Mn) + eD
n

qn(Dn) = 1:(5.7)

The solutions (5:3) are convex combinations of the measure ignoring the increments with
value zero and the measure assigning all mass to it. Then

EQn [�nk ] = ��n
�2

2n
+ O

�
n�3=2

�
; VQn [�nk ] = �n

�2

n
+ O

�
n�3=2

�
:(5.8)

If �n ! � by the Lindeberg-Feller theorem (XnjQn) ! (X jQ), where the limit is Brownian
motion with drift ���2=3 and variance ��2. We have

�n ! 2

3
() lim

n!1
VPn [Xn

t ] = lim
n!1

VQn [Xn
t ] () P � Q:(5.9)

(iii) To study contiguity with the criterion from Theorem 2.5 we must consider

hn(�) = n
�
1� pn(Un)�qn(Un)1�� � pn(Mn)�qn(Mn)1�� � pn(Dn)�qn(Dn)1��

�
:(5.10)

First we will show that �n ! 2=3 is necessary for contiguity, next we re�ne the argument
and get (5:4) as necessary conditions. Finally it turns out that this is actually su�cient for
mutual contiguity.

hn(12) = n

"
1�

r
1

3
qn(Un)�

r
1

3
qn(Mn)�

r
1

3
qn(Un)

#
(5.11)

If we take any convergent subsequence (�nk) with limit � as k!1, then

qnk(Unk )! �

2
; qnk(Mnk )! 1� �; qnk(Dnk)! �

2
;(5.12)

and
hn(12)

n
! 1�

r
1

6
��

r
1

3
(1� �)�

r
1

6
�:(5.13)

If the sequence �n does not converge we have

lim sup
n!1

hn(12) =1;(5.14)

which means entire separation. From now on we assume �n = 2
3(1 + �n) with �n ! 0. Using

the asymptotic expression

qn =
�

2

�
1� �p

n
+ O

�
1

n

��
(5.15)
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we obtain

hn(12)

n
= 1� 2

3

p
1 + �n � 1

3

p
1� 2�n + O

�
1

n

�
= �(�n)2 +O

�
1

n

�
:(5.16)

Therefore lim sup
n!1

hn(12) < 1 implies �n = O

�
1p
n

�
. With this estimate we can actually

show

hn(�) = n

�
1�

�
2

3

��

�n(1��) �
�
1

3

��
(1� �n)1��

�
+ O (�(1� �))(5.17)

uniformly in � 2 (0; 1). A Taylor expansion of 1 � (2=3)��1�a � (1=3)�(1 � �)1�� around
� = 2=3 reveals

1�
�
2

3

��
�1�� �

�
1

3

��

(1� �)1�� = �

 
n�(1� �)

�
�� 2

3

�2
!
;(5.18)

uniformly in � 2 (0; 1) and � 2 (0; 1). Theorem 2.5 implies mutual contiguity for � =
2=3 +O(n�1=2), entire separation otherwise. 2
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