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Abstract

Since the seminal papers by Black, Scholes and Merton on the pricing of options
(Nobel Prize for Economics, 1997), the theory of No Arbitrage plays a central role
in Mathematical Finance. Pioneering work on the relation between no arbitrage
arguments and martingale theory has been done in the late seventies by M. Harrison,
D. Kreps and S. Pliska.

In the present note we give a brief survey on the relation of the theory of No-
Arbitrage to coherent pricing of derivative securities. We focus on a seminal paper
published by D. Kreps in 1981, and give a solution to an open problem posed in
this paper.
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1 Introduction: “No arbitrage” and “No Free

Lunch”

The principle of no arbitrage formalizes a very convincing economic argument: in a fi-
nancial market it should not be possible to make a profit with zero net investment and
without bearing any risk. It is surprising, how much can be deduced from this primi-
tive principle. For example, in the celebrated model used by Black, Scholes [BS 73], and
Merton [M 73], which is based on geometric Brownian motion, the price of any derivative
security (e.g., a European call option) is already determined by this principle.

In addition, the fundamental theorem of asset pricing, as isolated in the work of Harri-
son, Kreps and Pliska ([HK 79], [HP 81], [K 81]) allows to relate the no arbitrage arguments
with martingale theory.

Here is the mathematical formulation of the concept of no arbitrage as formalized
in [K 81]: we start with an ordered topological vector space X, equipped with a locally
convex topology τ , and its positive cone K (with the origin deleted). A typical situation is
X = Lp(Ω,F ,P), equipped with its natural order structure and topology, where 1 ≤ p ≤
∞, and (Ω,F ,P) is a probability space modeling the “possible states of the world” ω at
some fixed time horizon T . In this setting the elements x = x(ω) ∈ X are random variables
modeling contingent claims at time T (denoted in terms of the single consumption good
under consideration, which we choose as numéraire). The arch-example of a contigent
claim x is a European call option on a stock modeled by a stochastic process (St)0≤t≤T .
In this case x = (ST − k)+, where k is a positive real number (the striking price of the
option).

Returning to the general framework of [K 81]: in addition to the ordered locally convex
space (X, τ,K), we are given a subspace M ⊆ X and a linear functional π : M → R.
The interpretation is that M consists of those contingent claims, which are traded on the
market at a price given by π. The notion of “traded claims” typically is understood in a
broad sense: in the setting of the pricing theory of contigent claims on a stock modeled
by the stochastic process S = (St)0≤t≤T , one usually defines M as the set spanned by

the constants and all random variables which are the outcome (H ·S)T =
∫ T

0
HtdSt of a

predictable trading strategy H, where, in general, some additional care is needed, to rule
out, e.g., “doubling strategies” (see [HP 81]). One therefore has to restrict to a convenietly
chosen sub-class of the predictable trading strategies. We don’t elaborate on the details
here (see, e.g., [HP 81] or [DS 94]), and simply note that one is naturally led to a subspace
(or, more generally, subcone) M of X, consisting of “marketed claims”, and a linear
pricing functional π : M → R.

What does it mean that a market modeled by (X, τ,K,M, π) does not allow arbitrage?
Letting M0 = {x ∈ M : π(x) = 0} and C the convex cone M0 − K = {y ∈ X : ∃x ∈
M0 s.t. y ≤ x}, we now may formally define this concept:

Definition 1.1 The market model (X, τ,K,M, π) satisfies the condition (NA) of No
Arbitrage, if M0 ∩K = ∅ or, equivalently, C ∩K = ∅.

The interpretation of this definition is rather obvious: an arbitrage opportunity is a
positive element x ∈ K, which is marketed at price π(x) = 0. The model (X, τ,K,M, π)
is free of arbitrage, if no such opportunity exists.
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The basic question consists in the possibility of extending π from M to the entire space
X to obtain a coherent pricing system, i.e. a strictly positive, continuous linear functional
ψ : X → R extending π. We then say that (X, τ,K,M, π) has the extension property
[K 81]. Again, the interpretation of a coherent pricing system ψ is rather straight-forward:
this pricing rule assigns to each contingent claim x ∈ X — whether marketed or not —
a price ψ(x) in a continuous and linear way, and such that x ∈ K implies ψ(x) > 0. Of
course, ψ and π should agree on M , the space of marketed contingent claims. We then
say [K 81] that (X, τ,K,M, π) is viable.

It is obvious, that the condition of no arbitrage is necessary for viability; the interesting
issue is, whether it is also sufficient. This is the theme of the so-called “Fundamental
Theorem of Asset Pricing”. Before passing to the mathematical theorems in this direction,
we discuss the economic meaning of such an implication: the theorems below give precise
statements for the following intuitive idea: if the pricing system π, defined on M , is not
obviously incoherent (in the sense, that it does not allow for arbitrage), then one may
extend it to a coherent price system ψ, defined on all of X.

The most basic version of the fundamental theorem of asset pricing is due to Har-
rison and Pliska [HP 81] (compare also [HK 79], and [K 81], p. 16 and 17). Suppose
that (Ω,F , (Ft)Tt=0,P) is a finite filtered probability space and that (X, τ,K) equals
L∞(Ω,F ,P) equipped with its natural topology and order structure. Note that there
is no ambiquity in the notion of natural topology, as X now is finite-dimensional.

Let S = (St)
T
t=0 be a (say) real-valued stochastic process, defined on and adapted to

(Ω,F , (Ft)Tt=0,P), and define M0 as the subspace of L∞(Ω,F ,P) formed by the random
variables

f = (H ·S)T =
T∑
t=1

Ht(St − St−1), (1)

where H = (Ht)
T
t=1 runs throught the predictable real-valued processes defined on

(Ω,F , (Ft)Tt=0,P). Supposing that the constant function 1 is not in M0 (otherwise the no
arbitrage condition is violated in an obvious way), define M as the linear space spanned
by of M0 and 1, and π by π|M0 = 0 and π(1) = 1.

We now have assembled all the ingredients (X, τ,K,M, π) of the setting of [K 81] and
may formulate the basic theorem.

Theorem 1.2 ([HP 81]) Let (X, τ,K,M, π) be defined over the finite filtered probability
space (Ω,F , (Ft)Tt=0,P) as indicated above.

Then (X, τ,K,M, π) is arbitrage-free iff it has the extension property.

Proof By the definition no arbitrage we have the equality M0 ∩K = ∅. In the present
case of a finite-dimensional space X = L∞(Ω,F ,P) it is rather straight-forward (but not
trivial!) to deduce from Hahn-Banach that we may find a hyperplane H, containing M0,
and such that we still have H ∩ K = ∅. We refer, e.g., to the survey paper [S 01] for a
thorough discussion of this argument.

Once we have found the hyperpane H, it suffices to define the linear functional ψ by
ψ|H = 0 and ψ(1) = 1.

This takes care of the “only if” implication, while the “if” implication is trivial.

In the context of the above theorem the positive, normalized, linear functional ψ ∈
L1(Ω,F ,P) may be identified with a probability measure Q on F via dQ

dP
= ψ. One easily
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verifies that the linear functional ψ is strictly positive iff the probability measure Q is
equivalent to P. In addition, ψ vanishes on M0 iff S is a martingale under Q. Therefore
the above theorem of Harrison-Pliska may be rephrased in the following way: the market
model (X, τ,K,M, π) is arbitrage-free iff there is an equivalent martingale measure for S.

The central topic of Kreps’ paper [K 81] is the issue, how the above theorem extends
to the infinite-dimensional case. His fundamental insight was, that the — purely algebraic
— notion of no arbitrage has to be strengthened by a topological notion. We restate the
basic concept of [K 81] in a slightly different (but equivalent) wording.

Definition 1.3 The model (X, τ,K,M, π) satisfies the condition of no free lunch, if the
τ -closure C of C = M0 −K satisfies C ∩K = ∅.

There are two issues worth noting in the above definition: the passage to the τ -closure
is rather natural when we try to strengthen the no arbitrage condition, in order to extend
the above theorem to the infinite-dimensional setting. What is less obvious is the passage
from M0 to C = M0−K. Economically speaking, this is the passage from the contingent
claims, marketed at price 0, which constitute M0, to those contingent claims, where the
agents also are allowed to pass from boundles x ∈M0 to boundles of the form y = x− h,
where h is in the positive cone K. In many applications this may be interpreted as the
possibility of the agents to “throw away money”. It turns out, that this — at first glance
somewhat ackward — possibility of “free disposal” is in fact the key feature to make the
extension of the above theorem work. For a counterexample, showing that the condition,
that the τ -closure M0 of M0 satisfies M0 ∩ K = ∅, does not allow, in general, for an
extension of the above theorem, we refer to [S 94].

The central result ([K 81], Theorem 3) states that, under some mild separability as-
sumption, the condition of “no free lunch” is equivalent to the extension property of
(X, τ,K,M, π). We now formulate Theorem 3 of [K 81] in a version specializing to the
case of Lp(Ω,F ,P), where it turns out that we need not to bother about any seperability
assumption.

Theorem 1.4 Let (X, τ,K) equal Lp(Ω,F ,P), where 1 ≤ p ≤ ∞, K its positive orthant
(with the origin deleted) and, for 1 ≤ p <∞, τ equals the norm-topology of Lp, while, for
p =∞, τ equals the weak-star topology σ(L∞, L1).

Let C denote a τ -closed, convex cone, containing −K, and such that C ∩ K = ∅.
Letting 1

q
+ 1

p
= 1, there is g ∈ Lq(Ω,F ,P), g > 0 almost surely, such that g|C ≤ 0.

The above theorem implies that Theorem 1.2 above extends to the case where (X, τ,K)
equals Lp(Ω,F ,P) for an arbitrary probability space (Ω,F ,P), if the notion of “no arbi-
trage” is replaced by the notion of “no free lunch”.

Let us give a brief review on the development following Kreps’ paper: Duffie and
Huang [DH 86] applied Kreps’ theorem in its original form to formulate and prove the
above theorem, assuming the separability of the underlying probability space (Ω,F ,P);
it was noticed by Stricker [St 90] that, using a theorem of Yan [Y 80], this assumption
is superfluous (see, e.g., [S 94] for an exposition of the proof and additional references):
loosely speaking, the countability argument, needed in the proof of theorem 3 of [K 81],
can be replaced by an exhaustion argument using the finiteness of the underlying measure
space (Ω,F ,P). Hence we do not need the separability of the Banach space Lp(Ω,F ,P).
It was noted in [C 93], that one may use the classical Halmos-Savage theorem [HS 49] to
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formalize this exhaustion argument (For extensions of the Halmos-Savage theorem and
its relations to asymptotic arbitrage we also refer to [KS 96].)

We again refer, e.g., to [S 01] for a more extensive account on the sharpenings of
Theorem 1.4 above, which have been obtained after [K 81].

2 Some remarks on Kreps’ paper

In this section we shall focus on some of the technical issues of Kreps’ paper: firstly we
give a counterexample to the “enticing conjecture” raised in ([K 81], p. 29). Briefly, the
conclusion of our example is that we only can expect “nice results” in the context of
Theorem 1.4 above, where (X, τ,K) now is arbitrary, if we allow the commodity space
(X, τ,K) not to be too pathological: the Counterexample 2.1 below considers a very
peculiar topology τ on X = l∞.

Secondly, we address the question treated in [K 81, p. 30] in the context of Theorem 4
of [K 81], where, for a bundle x ∈ X, prices π(x) and π(x) are defined, which are the lower
and upper bound of the arbitrage-free prices for x. If π(x) = π(x) then the situation is
clear, as in this case this is the unique arbitrage-free price for x. But if π(x) < π(x) the
situation is more delicate. Let us quote from ([K 81], p. 30):

“This leaves the question: If π(x) < π(x), are π(x) and π(x) prices for x that are
consistent with (M,π)? In economies with finite dimensional commodity spaces the an-
swer is always no. But in general, the answer may be yes or no in either or both cases.
(Examples are easy to construct.)”

Some remarks seem in order in view of the work which has been done since Kreps’
paper: firstly, for the convenience of the reader we provide an easy example below substan-
tiating Kreps’ claim. Secondly, and more importantly, we want to point out that since
Kreps’ paper several theorems have been proved which allow — under additional as-
sumptions — more precise information on this question than the general “anything goes”
statement quoted above. For example, take the important case of a semi-martingale
S = (St)0≤t≤T with continuous paths (taking values in a finite or infinite dimensional
space) satisfying the condition of “no free lunch”. To relate this setting to the ab-
stract framework of [K 81] we again let (X, τ,K) be the space L∞(Ω,F ,P) equipped
with the weak-star topology τ induced by L1, and K the positive cone of L∞. For M
we choose the subspace of elements x = c +

∫ T
0
HtdSt in L∞(Ω,F ,P), where c ∈ R and

(Ht)0≤t≤T ranges through the predictable trading strategies, such that the stochastic in-

tergral (
∫ t

0
HudSu)0≤t≤T is uniformly bounded; for π we take the linear functional on M

defined by π(c +
∫ T

0
HtdSt) = c. In this setting it was shown by F. Delbaen [D 92] that,

for x ∈ L∞ verifying π(x) < π(x), the set of prices for x consistent with (M,π) equals
the open interval ]π(x), π(x)[.

On the other hand, Ph. Artzner and D. Heath [AH 95] gave an example of a process
S (taking values in an infinite dimensional space and failing to have continuous paths)
such that the set of equivalent martingale measures for S forms a compact set which is
not reduced to a singleton. This implies that, for every x ∈ X, the set of consistent prices
for x forms a compact interval; in addition, there are x ∈ X, for which this interval is not
reduced to a singleton.

We refer to [D 92], [J 92], [S 93], [AS 94], [DS 94], [KQ 95], [AH 95] and [DS 95] for
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further results on this issue, as well as to [S 01] for a more detailed survey.
For further examples in the context of Kreps’ paper we also refer to [C 00].

We now present the two examples announced above. We assume that the reader is
familiar with Kreps’ paper [K 81] and use its terminology without further reference.

Example 2.1 (answering negatively the conjecture raised in [K 81, 4. Remark (6)]):

There is an economy (X, τ,K,M, π) such that

1. Ψ is non-empty;

2. (M,π) fails to be (X, τ,K)-viable;

3. there are no free lunches.

Proof The construction will be a modification of [K 81, Example 4.3].
Let X = l∞. To define the dual space Y , we consider two elements y1, y2 in l1: denoting

by (en)∞n=1 the n’th unit vector of l1 let

y1 =
∞∑
n=1

2−nen, y2 =
∞∑
n=1

2−ne2n−1.

Let Y0 be the linear subspace of l1 spanned (algebraically) by the unit vectors (en)∞n=1

and define Y to be the linear space generated by Y0, y1 and y2. We shall consider the dual
pair 〈X, Y 〉 equipped with its natural scalar product 〈·, ·〉 and we define on X the weak
topology τ = σ(X, Y ) generated by the space Y (for a definition of the weak topology
defined for a dual pair of vector spaces see, e.g., [Sch 66]).

Observe that this topology is — just slightly — finer than the product topology on
l∞ which was used by D. Kreps in [K 81, Example 4.3]: indeed, the product topology on
l∞ equals the weak topology σ(X,Y0); also note that Y0 is a subspace of codimension 2
of Y .

The cone K will be the positive orthant of l∞ with the origin deleted, i.e.

K = {x = (xn)∞n=1, x
n ≥ 0, x 6≡ 0}.

Note that we have constructed (X, τ,K) in such a way that Ψ is non-empty: for
example, y1 defines an element of Ψ, as it is a τ -continuous linear functional on X, which
is strictly positive on K. This proves assertion (i).

We now turn to the definition of M and π. Let

M = {x = (xn)∞n=1 : x2i−1 = x2i, for i ∈ N}

and let π be the linear functional defined on M by restricting y2 to M , i.e.,

π(x) =
∞∑
n=1

2−n · x2n−1, for x = (x1, x2, . . . ) ∈M.

To show (ii), we have to prove that there is no ψ ∈ Ψ, which extends π from M to X.
Supposing that such a ψ exists we shall work towards a contradiction.
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We may write ψ as
ψ = y0 + λ1y1 + λ2y2

where y0 ∈ Y0. As we assumed ψ to be strictly positive on K we necessarily have λ1 > 0.
Let n be sufficiently large such that y0 vanishes on the two elements zn, zn+1 of M ,

where
zn = e2n−1 + e2n and zn+1 = e2n+1 + e2n+2.

As we assumed that ψ extends π we must have that ψ(zn) = π(zn) and ψ(zn+1) = π(zn+1),
i.e.,

〈zn, λ1y1 + λ2y2〉 = 〈zn, y2〉

and
〈zn+1, λ1y1 + λ2y2〉 = 〈zn+1, y2〉.

This yields the two linear equations

(2−(2n−1) + 2−2n) λ1 + 2−n λ2 = 2−n,
(2−(2n+1) + 2−(2n+2)) λ1 + 2−(n+1) λ2 = 2−(n+1)

with the unique solution λ1 = 0, λ2 = 1, a contradiction to the assumption λ1 > 0
finishing the proof of (ii).

(iii): Let us now assume that there is a free lunch and again work towards a contra-
diction: let {(mα, xα);α ∈ A} ⊆ M ×X be a net such that mα − xα ∈ K ∪ {0}, and let
k ∈ K such that xα

τ→ k and limα π(mα) ≤ 0.
If k = (kn)∞n=1, has a strictly positive entry for an odd coordinate n we are finished,

as then 〈k, y2〉 > 0 while lim supα〈xα, y2〉 ≤ limα π(mα) ≤ 0, in contradiction to xα
τ→ k.

If all the odd coordinates of k are zero, we need a little extra argument: in this case
there is an even number 2i such that k2i > 0. Define x̃α to equal xα for all coordinates
n 6= 2i and x̃2i

α = x2i−1
α . As m2i

α = m2i−1
α we still have mα− x̃α ∈ K ∪{0} and a moment’s

reflection reveals that (x̃α)α∈a still is τ -convergent, the limit now being k̃, which is obtained

from k by leaving all coordinates n 6= 2i unchanged and setting k̃2i = k2i−1. Hence we
have reduced the situation to the one considered in the above paragraph and thus have
arrived at the desired contradiction.

The proof of properties (i), (ii) and (iii) now is complete.

Example 2.2 There is an economy (X, τ,K,M, π) verifying the assumptions of [K 81,
Theorem 4] and bundles x1, x2, x3, x4 in X such that π(xi) < π(xi), for i = 1, . . . , 4, and
the consistent prices for these bundles equal [π(x1), π(x1)], ]π(x2), π(x2)], [π(x3), π(x3)[
and ]π(x4), π(x4)[ respectively.

In other words, all possibilities of closed, half-open or open intervals of consistent
prices may occur.

Proof Let (Ω,F ,P) equal ([0, 1],Borel([0, 1]), λ), with λ denoting Lebesgue-measure and
(X, τ,K) = (L2[0, 1], τ‖.‖2 , L

2
+\{0}) and choose three elements g1, g2, g3 in L∞[0, 1] with

disjoint support and expectation equal to zero, such that g1 does not attain its supremum
and its infimum at a set of positive measure, g2 attains its supremum on a set of positive
measure but not its infimum, while g3 attains the supremum as well as the infimum on a
set of positive measure.
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For example, we may take, with ω ranging in [0, 1],

g1(ω) =

(
ω − 1

6

)
χ[0, 1

3
] (2)

g2(ω) =

(
ω − 1

2

)
χ[ 1

3
, 1
2

] +
1

12
χ[ 1

2
, 2
3

]

g3(ω) = −χ[ 2
3
, 5
6

] + χ[ 5
6
,1].

Let M be the subspace of X of codimension 3 defined by

M = {x ∈ L2[0, 1] : (x, g1) = (x, g2) = (x, g3) = 0},

and let π be the linear functional on M defined by taking expectation

π(x) = E[x] = (x,1), for x ∈M.

In this case we can explicitly determine the set Ψ of linear extensions of π to M which
are strictly positive on K;

Ψ = {g = 1 + µ1g1 + µ2g2 + µ3g3 : P[g > 0] = 1} (3)

= {g = 1 + µ1g1 + µ2g2 + µ3g3 : µ1 ∈ [−6, 6],

µ2 ∈]− 12, 6], µ3 ∈]− 1, 1[}

To find a bundle x1 ∈ L2[0, 1] such that the set of consistent prices is a closed interval,
it suffices to choose an element x1 supported by [0, 1

3
] such that (x1, g1) > 0; in this case

the set of consistent prices for x1 equals the non-degenerate closed interval [π(x1), π(x1)] =
[(x1,1− 6g1), (x1,1 + 6g1)].

To find x2 (resp. x3) we choose x2 (resp. x3) in L2[0, 1] supported by [1
3
, 2

3
] such that

(x2, g2) > 0 (resp. (x2, g2) < 0), so that the set of consistent prices equals ](x2,1 −
12g2), (x2,1 + 6g2)] (resp. [(x3,1 + 6g2), (x3,1− 12g2)[).

Finally, if we choose x4 to be supported by [2
3
, 1] and such that (x4, g3) 6= 0, we obtain

an open interval of consistent prices.
The proof of the assertions of Example 2.1 thus is finished.
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