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Abstract. The paper studies the problem of maximizing the expected utility of termi-
nal wealth in the framework of a general incomplete semimartingale model of a �nancial
market. We show that the necessary and su�cient condition on a utility function for
the validity of several key assertions of the theory to hold true is the requirement that
the asymptotic elasticity of the utility function is strictly less then one.

1. Introduction

A basic problem of mathematical �nance is the problem of an economic agent, who
invests in a �nancial market so as to maximize the expected utility of his terminal
wealth. In the framework of a continuous-time model the problem was studied for the
�rst time by R. Merton in two seminal papers [27] and [28] (see also [29] as well as [32]
for a treatment of the discrete time case). Using the methods of stochastic optimal
control Merton derived a non-linear partial di�erential equation (Bellman equation)
for the value function of the optimization problem. He also produced the closed-form
solution of this equation, when the utility function is a power function, the logarithm,
or of the form 1� e��x for some positive �.

The Bellman equation of stochastic programming is based on the requirement of
Markov state processes. The modern approach to the problem of expected utility
maximization, which permits us to avoid the assumption of Markov asset prices, is
based on duality characterizations of portfolios provided by the set of martingale
measures. For the case of a complete �nancial market, where the set of martingale
measures is a singleton, this "martingale" methodology was developed by Pliska [30],
Cox and Huang [4], [5] and Karatzas, Lehoczky and Shreve [22]. It was shown that the
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marginal utility of the terminal wealth of the optimal portfolio is, up to a constant,
equal to the density of the martingale measure; this key result naturally extends the
classical Arrow-Debreu theory of an optimal investment derived in a one-step, �nite
probability space model.

Considerably more di�cult is the case of incomplete �nancial models. It was
studied in a discrete-time, �nite probability space model by He and Pearson [16],
and in a continuous-time di�usion model by He and Pearson [17] and by Karatzas,
Lehoczky, Shreve and Xu [21]. The central idea here is to solve a dual variational
problem and then to �nd the solution of the original problem by convex duality,
similarly to the case of a complete model. In a discrete time, �nite probability space
model the solution of the dual problem is always a martingale measure. We shall see
in Section 5 below that this assertion is not true in a general continuous time setting
any more.

In this paper we consider the problem of expected utility maximization in an in-
complete market, where asset prices are semimartingales. A subtle feature of this
model is that the extension to the set of local martingales is no more su�cient; to
have a solution to the dual variational problem one should deal with a properly de-
�ned set of supermartingales. The basic goal of the current paper is to study the
expected utility maximization problem under minimal assumptions on the model and
on the utility function. Our model is very general: we only assume that the value
function of the utility maximization problem is �nite and that the set of martingale
measures is not empty, which is intimately related with the assumption that the mar-
ket is arbitrage-free. Depending on the assumptions on the asymptotic elasticity of
the utility function we split the main result into two Theorems: For Theorem 2.1 we
do not need any assumption, for Theorem 2.2 we must assume that the asymptotic
elasticity of the utility function is less then one. We provide counterexamples, which
show that this assumption is minimal for the validity of Theorem 2.

The paper is organized as follows . In Section 2 we formulate the main Theorems 2.1
and 2.2. These Theorems are proved in Section 4, after studying an abstract version
of the problem of expected utility maximization in Section 3. The counterexamples
are collected in Section 5 and in Section 6 we have assembled some basic facts on the
notion of asymptotic elasticity.

2. The Formulation of the Theorems

We consider a model of a security market which consists of d+ 1 assets, one bond
and d stocks. We suppose that the price of the bond is constant and denote by
S = (Si)1�i�d the price process of the d stocks. The assumption that the bond price
is constant does not restrict the generality of the model as we always may choose
the bond as the num�eraire. The process S is assumed to be a semimartingale on a
�ltered probability space (
;F ; (Ft)0�t�T ; P ). As usual in Mathematical Finance,
we consider a �nite horizon T , but we remark that our results can also be extended
to the case of an in�nite horizon.

A (self-�nancing) portfolio � is de�ned as a pair (x;H), where the constant x
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is the initial value of the portfolio and H = (Hi)i�d is a predictable S-integrable
process specifying the amount of each asset held in the portfolio. The value process
X = (Xt)0�t�T of such a portfolio � is given by

(2.1) Xt = X0 +

Z t

0

HudSu; 0 � t � T:

We denote by X(x) the family of wealth processes with non-negative capital at any
instant, i.e. Xt � 0 for all t 2 [0; T ], and with initial value equal to x:

X(x) = fX � 0 : X is de�ned by (2:1) with X0 = xg:
Definition 2.1. A probability measure Q � P is called an equivalent local mar-

tingale measure if any X 2 X(1) is a local martingale under Q.
If the process S is bounded (resp. locally bounded) then under an equivalent local

martingale measure Q (in the sense of the above de�nition) the process S is a mar-
tingale (resp. a local martingale) and vice versa. If S fails to be locally bounded the
situation is more complicated. We refer to ([10], Proposition 4.7) for a discussion of
this case and the notion of sigma-martingales.

The family of equivalent local martingale measures will be denoted by Me(S) or
shortly by M. We assume throughout that

(2.2) M 6= ;:

This condition is intimately related to the absence of arbitrage opportunities on
the security market. See [7], [10] for a precise statement and references.

We also consider an economic agent in our model which has a utility function
U : (0;1) ! R for wealth. For a given initial capital x > 0, the goal of the agent is
to maximize the expected value from terminal wealth E[U(XT )]. The value function
of this problem is denoted by

(2.3) u(x) = sup
X2X(x)

E[U(XT )]:

Hereafter we will assume that the function U is strictly increasing, strictly concave,
continuously di�erentiable and satis�es

U 0(0) = lim
x!0

U 0(x) =1;(2.4)

U 0(1) = lim
x!1

U 0(x) = 0:

In the present paper we only consider utility functions de�ned on R+, i.e., taking
the value �1 on (�1; 0); the treatment of utility functions which assume �nite
values on all of R , such as the exponential utility U(x) = 1� e�x, requires somewhat
di�erent arguments and will be done elsewhere.
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To exclude the trivial case we shall assume throughout the paper that

(2.5) u(x) = sup
X2X(x)

E[U(XT )] <1; for some x > 0:

Intuitively speaking, the value function u(x) can also be considered as a kind of utility
function, namely the expected utility of the agent at time T , provided that he or she
starts with an initial endowment x 2 R+ and invests optimally in the assets, modeled
by S = (St)0�t�T , during the time interval [0; T ].

It is rather obvious that u(x) is strictly increasing and convex. A basic theme of
the present paper will be to investigate under which conditions u also satis�es the
other requirements of a utility function:

A) Questions of \qualitative" nature.

(1) Is the value function u(x) again a utility function satisfying the assumptions
(2.4), i.e. increasing, strictly concave, continuously di�erentiable and satisfy-
ing u0(0) =1; u0(1) = 0?

(2) Does the optimal solution bX 2 X(x) in (2.3) exist?

Not too surprisingly, the answer to the second question is no in general. Maybe
more surprisingly, also the answer to the �rst question is negative and the two ques-
tions are intimately related. The key concept to answer the above questions is the
following regularity condition on the utility function U :

Definition 2.2. A utility function U(x) has asymptotic elasticity strictly less than
1, if

AE(U) = lim sup
x!1

xU 0(x)

U(x)
< 1:

To the best of our knowledge the notion of the asymptotic elasticity of a utility
function has not been de�ned in the literature previously.

We refer to Section 6 below for equivalent reformulations of this concept, related
notions which have been investigated previously in the literature [21] and its intimate
relation to the �2-condition in the theory of Orlicz spaces. For the moment we only
note that many popular utility functions like U(x) = ln(x) or U(x) = x�

� , for � < 1,
have asymptotic elasticity strictly less than one. On the other hand, a function U(x)
equaling x= ln(x), for x su�ciently large, is an example of a utility function with
AE(U) = 1.

One of the main results of this paper (Theorem 2.2 below) asserts that for a utility
function U the condition AE(U) < 1 is necessary and su�cient for a positive answer
to both questions (1) and (2) above (if we allow S = (St)0�t�T to vary over all
�nancial markets satisfying the above requirements). In fact, for question (1) we can
prove a stronger result: either U(x) satis�es AE(U) < 1, in which case AE(u) < 1 too
and, in fact, AE(u) � AE(U); or AE(U) = 1 in which case there exists a continuous
R-valued process S = (St)0�t�T inducing a complete market, such that u(x) fails
to be strictly concave and to satisfy AE(u) < 1 in a rather striking way: u(x) is a
straight line with slope one, for x � x0. Economically speaking the marginal utility
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of the value function u(x) is eventually constant to one (while the marginal utility of
the original utility function U(x) decreases to zero, for x!1). We shall discuss the
economic interpretation of this phenomenon in more detail in Note 5.2 below.

We now turn to more quantitative aspects:

B) Question of \quantitative nature".

(1) How to calculate the value function u(x)?

(2) How to calculate the optimal solution bX 2 X(x) in (2.3), provided this solu-
tion exists.

A well known tool (compare [2], [21] and the references given there) to answer these
questions is the passage to the conjugate function

V (y) = sup
x>0

[U(x) � xy]; y > 0:(2.6)

The function V (y) is the Legendre-transform of the function �U(�x) (see, e.g.,
[31]). It is wellknown (see, e.g., [31]) that if U(x) satis�es the hypotheses stated in
(2.4) above, then V (y) is a continuously di�erentiable, decreasing, strictly convex
function satisfying V 0(0) = �1 and V 0(1) = 0; V (0) = U(1); V (1) = U(0) and
the following bidual relation

U(x) = inf
y>0

[V (y) + xy]; x > 0:

We also note that the derivative of U(x) is the inverse function of the negative of
the derivative of V (y) which | following [21] | we also denote by I:

(2.7) I := �V 0 = (U 0)�1

The Legendre transform is very useful in answering question B) above (compare
[2], [30]). We �rst illustrate this in the case of a complete market, which is technically
easier to handle: so suppose that there is a uniquemeasureQ equivalent to the original
measure P under which S is a local martingale. We then �nd that the function

(2.8) v(y) = E[V (y
dQ

dP
)]

is the conjugate function of u(x), which provides a satisfactory answer to the �rst
part of question B. We resume the situation of a complete market, which to a large
extent is wellknown, in the subsequent Theorem.

Theorem 2.0 (complete case). Assume that (2.2), (2.4) and (2.5) hold true
and in addition that M = fQg. Then

(i) u(x) < 1, for all x > 0, and v(y) < 1 for y > 0 su�ciently large. Letting
y0 = inffy : v(y) < 1g, the function v(y) is continuously di�erentiable and
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strictly convex on (y0;1). De�ning x0 = limy&y0(�v0(y)) the function u
is continuously di�erentiable on (0;1) and strictly concave on (0; x0). The
value functions u and v are conjugate:

v(y) = sup
x�0

[u(x)� xy]; y > 0;

u(x) = inf
y�0

[v(y) + xy]; x > 0:

The functions u0 and v0 satisfy:

u0(0) = lim
x!0

u0(x) =1; v0(1) = lim
y!1

v0(y) = 0:

(ii) If x < x0, then the optimal solution bX(x) 2 X(x) is given by

bXT (x) = I(y
dQ

dP
);

for y < y0, where x and y are related via y = u0(x) (equivalently x = �v0(y))
and bX(x) is a uniformly integrable martingale under Q.

(iii) For 0 < x < x0 and y > y0 we have

u0(x) = E[
bXT (x)U 0( bXT (x))

x
]; v0(y) = E[

dQ

dP
V 0(y

dQ

dP
)]:

The above Theorem dealing with the complete case will essentially be a corollary
of the subsequent two Theorems on the incomplete case, i.e., the case whenM is not
necessarily reduced to a singleton fQg. In this setting we dualize the optimization
problem (2.3): we de�ne the family Y(y) of nonnegative semimartingales Y with
Y0 = y and such that, for any X 2 X(1), the product XY is a supermartingale:

Y(y) = fY � 0 : Y0 = y and XY = (XtYt)0�t�T

is a supermartingale for all X 2 X(1)g:

In particular, as X(1) contains the process X � 1, any Y 2 Y(y) is a supermartingale.
Note that the set Y(1) contains the density processes of the equivalent local martingale
measures Q 2 Me(S).

We now de�ne the value function of the dual problem by

(2.9) v(y) = inf
Y 2Y(y)

E[V (YT )]:

We shall show in Lemma 4.3 below that in the case of a complete market the
functions v(y) de�ned in (2.8) and (2.9) coincide, i.e., (2.9) extends (2.8) to the case
of not necessarily complete markets.
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The functions u and �v, de�ned in (2.3) and (2.9), clearly are concave. Hence we
may de�ne u0 and v0 as the right-continuous versions of the derivatives of u and v.
Similarly as in de�nition 2.2 we de�ne the asymptotic elasticity AE(u) of the value
function u by

AE(u) = lim sup
x!1

xu0(x)

u(x)
:

The following Theorems are the principal results of the paper.

Theorem 2.1 (incomplete case, general utility function U). Assume that
(2.2), (2.4) and (2.5) hold true. Then

(i) u(x) < 1, for all x > 0, and there exists y0 > 0 such that v(y) is �nitely
valued for y > y0. The value functions u and v are conjugate:

v(y) = sup
x>0

[u(x)� xy]; y > 0;

u(x) = inf
y>0

[v(y) + xy]; x > 0:

The function u is continuously di�erentiable on (0;1) and the function v is
strictly convex on fv <1g.

The functions u0 and v0 satisfy:

u0(0) = lim
x!0

u0(x) =1; v0(1) = lim
y!1

v0(y) = 0:

(ii) If v(y) < 1, then the optimal solution bY (y) 2 Y(y) to (2.9) exists and is
unique.

Theorem 2.2 (incomplete case, AE(U) < 1). We now assume in addition to
the conditions of Theorem 2.1 that the asymptotic elasticity of U is strictly less then
one. Then in addition to the assertions of Theorem 2.1 we have:

(i) v(y) < 1, for all y > 0. The value functions u and v are continuously
di�erentiable on (0;1) and the functions u0 and �v0 are strictly decreasing
and satisfy:

u0(1) = lim
x!1

u0(x) = 0; �v0(0) = lim
y!0

�v0(y) =1:

The asymptotic elasticity AE(u) of u also is less then one and, more pre-
cisely,

AE(u)+ � AE(U)+ < 1;

where x+ denotes maxfx; 0g.
(ii) The optimal solution bX(x) 2 X(x) to (2.3) exists and is unique. If bY (y) 2

Y(y) is the optimal solution to (2.9), where y = u0(x), we have the dual
relation bXT (x) = I(bYT (y)):
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Moreover, the process bX(x)bY (y) is a uniformly integrable martingale on
[0; T ].

(iii) We have the following relations between u0; v0 and bX; bY respectively:

u0(x) = E[
bXT (x)U 0( bXT (x))

x
]; v0(y) = E[

bY (y)V 0(bY (y))
y

]:

(iv)

v(y) = inf
Q2M

E

�
V (y

dQ

dP
)

�
;

where
�
dQ
dP

�
denotes the Radon-Nikodym derivative of Q with respect to P

on (
;FT ).
The proofs of the above Theorems will be given in Section 4 below.
As Examples 5.2 and 5.3 in Section 5 will show, the requirement AE(U) < 1 is the

minimal condition on the utility function U which implies any of the assertions (i),
(ii), (iii) or (iv) of Theorem 2.2.

Let us comment on the economic interpretation of assertions (ii) and (iv) of The-

orem 2.2: we start by observing that Theorem 2.1 (iv) states that the in�mum bY (y)
to the optimisation problem (2.9) exists and is unique (even without any assumption
on the asymptotic elasticity of U). If we are lucky and, for �xed y > 0, the random

variable bYT (y)=y is the density of a probability measure bQ, i.e., d bQdP = bYT (y)=y, then
clearly bQ is an equivalent local martingale measure, i.e. bQ 2 Me(S), and we may

use bQ as a pricing rule for derivative securities via the expectation operator E
bQ[�].

This choice of an equivalent martingale measure, which allows a nice economic inter-
pretation as \pricing by the marginal rate of substitution", has been proposed and
investigated by M. Davis [6].

However, even for a \nice" utility function such as U(x) = ln(x) and for a \nice",
i.e., continuous process (St)0�t�T it may happen that we fail to be lucky: in Section
5 below we shall give an example satisfying the assumptions of Theorem 2.2 such thatbY (y) is a local martingale but fails to be uniformly integrable, i.e., E hbYT (y)=yi < 1.

Hence de�ning the measure bQ by d bQ
dP

= bYT (y)=y we only obtain a measure with total

mass less than one. At �rst glance the pricing operator E
bQ[�] induced by bQ seems

completely useless: for example, if we apply it to the bond Bt � 1, we obtain a price

E
bQ[1] = E

hbY (y)=yi < 1, which seems to imply arbitrage opportunities.

But assertion (ii) of Theorem 2.2 still contains a positive message: The optimal

investment process bX(x), where x = �v0(y), is such that
� bXt(x)bYt(y)�

0�t�T
is a

uniformly integrable martingale.

This implies that, by taking ( bXt(x))0�t�T as num�eraire (instead of the original

num�eraire Bt � 1), we may remedy the above de�ciency of bQ (we refer to [8] for
related results on this wellknown \change of num�eraire" technique). To be formal:
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consider the Rd+2-valued semimartingale ~S = (1; 1= bX(x); S1= bX(x); : : : ; Sd= bX(x)); in

other words we consider the process ( bX(x); 1; S1; : : : ; Sd) expressed in units of the

process bX(x). The process ~Zt = bXt(x)bYt(y)=xy is the density process of a true

probability measure ~Q, where d ~Q
dP = bXT (x)bYT (y)=xy. The crucial observation is that

~Q is an equivalent local martingale measure for the Rd+2-valued process ~S (see [8]).
Hence by expressing the stock price process S not in terms of the original bond but

rather in terms of the new num�eraire bX(x), in other words by passing from S to ~S,

we have exhibited an equivalent martingale measure ~Q for the process ~S such that
the pricing operator E ~Q[�] makes perfect sense. The above observed fact, that for the
original bond Bt � 1, which becomes the process 1= bXt(x) under the num�eraire bX(x),
we get

E ~Q

�
1= bXT (x)

�
= E

�bYT (y)=xy� < 1=x = 1= bX0(x)

now may be interpreted that the original bond simply is a silly investment; but this
fact does not permit any arbitrage opportunities if we use E ~Q[�] as a pricing operator
for derivative securities.

Summing up: under the assumptions of Theorem 2.2 the optimisation problem
(2.9) leads to a consistent pricing rule E ~Q[�], provided we are ready to change the

num�eraire from Bt � 1 to bXt(x).
Another positive message of Theorem 2.2 in this context is assertion (iv): although

it may happen that bYT (y)=y does not induce an element bQ 2 Me(S) (without chang-

ing the num�eraire) we know at least that bYT (y)=y may be approximated by dQ
dP , where

Q ranges inMe(S). We shall see in example 5.3 below that this assertion too breaks
down as soon as we drop the assumption AE(U) < 1.

3. The Abstract Version of the Theorems

We �x the notation

C(x) = fg 2 L0
+(
;F ; P ) : 0 � g � XT ; for some X 2 X(x)g;(3.1)

D(y) = fh 2 L0
+(
;F ; P ) : 0 � h � YT ; for some Y 2 Y(y)g(3.2)

In other words, we pass from the sets of processes X(x);Y(y) to the sets C(x);D(y)
of random variables dominated by the �nal outcomes XT ; YT , respectively. We simply
write C;D;X;Y for C(1);D(1);X(1);Y(1) and observe that

(3.3) C(x) = xC = fxg : g 2 Cg; for x > 0;

and the analogous relations for D(y);X(x) and Y(y).
The duality relation between C and D (or equivalently between X and Y) is a basic

theme in Mathematical Finance (see, e.g., [1], [7], [18], [21], [24]). In the previous work

in the literature mainly the duality between C and the Radon-Nikodym densities dQ
dP

of equivalent martingale measures (resp. local martingale measures)Q was considered
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which, in the case of a bounded process S (resp. a locally bounded process S), form

a subset ~D of the set D considered here. The novel feature of the present approach
is that we have chosen the de�nition of the processes Y in Y, in such a way to get a
perfect bipolar relation between the sets C and D. This is the content of Proposition
3.1 below.

Recall that a subset C of L0
+(
;F ; P ) is called solid, if 0 � f � g and g 2 C implies

that f 2 C.
Proposition 3.1. Suppose that the Rd-valued semi-martingale S satis�es (2.2).

Then the sets C;D de�ned in (3.1) and (3.2) have the following properties:

(i) C and D are subsets of L0
+(
;F ; P ) which are convex, solid and closed in the

topology of convergence in measure.
(ii)

g 2 C i� E[gh] � 1; for all h 2 D and

h 2 D i� E[gh] � 1; for all g 2 C:

(iii) The constant function 1I is in C.

The proof of Proposition 3.1 is postponed to Section 4 and presently we only note
that the crucial assertion is the \bipolar" relation given by (ii). Also note that (ii)
and (iii) imply that D is contained in the unit ball of L1(
;F ; P ), a fact which will
frequently be used in the sequel.

For the remainder of this Section we only shall assume that C and D are two subsets
of L0

+(
;F ; P ) verifying the assertions of Proposition 3.1 (and not necessarily de�ned
by (3.1) and (3.2) above). We shall reformulate Theorems 2.1 and 2.2 in this \abstract
setting" and prove them only using the properties of C and D listed in Proposition
3.1.

Let U = U(x) and V = V (y) be the functions de�ned in Section 2 and consider
the following optimization problems, which are the \abstract versions" of (2.3) and
(2.9):

u(x) = sup
g2C(x)

E[U(g)];(3.4)

v(y) = inf
h2D(y)

E[V (h)]:(3.5)

As in (2.5) we assume throughout this Section

(3.6) u(x) <1; for some x > 0:

Again the value functions u and �v clearly are concave. We denote by u0 and v0

the right-continuous versions of the derivatives of u and v. We now can state the
\abstract version" of Theorem 2.1.
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Theorem 3.1. Assume that the sets C and D satisfy the assertions of Proposition
3.1. Assume also that the utility function U satis�es (2.4) and that (3.6) holds true.
Then

(i) u(x) < 1, for all x > 0 and there exists y0 > 0 such that v(y) is �nitely
valued for y > y0. The value functions u and v are conjugate:

v(y) =sup
x>0

[u(x)� xy]; y > 0;(3.7)

u(x) = inf
y>0

[v(y) + xy]; x > 0:(3.8)

The function u is continuously di�erentiable on (0;1) and the function v
is strictly convex on fv <1g.

The functions u0 and �v0 satisfy:

u0(0) = lim
x!0

u0(x) =1 v0(1) = lim
y!1

v0(y) = 0:

(ii) If v(y) < 1, then the optimal solution bh(y) 2 D(y) to (3.5) exists and is
unique.

The proof of Theorem 3.1 will be broken into several Lemmas. We will often use
the following simple result, see, for example, ([7], Lemma A1.1 as well as Lemma 4.2
below for a more sophisticated version of this result).

Lemma 3.3. Let (fn)n�1 be a sequence of non-negative random variables. Then
there is a sequence gn 2 conv (fn; fn+1; : : : ), n � 1, which converges almost surely
to a variable g with values in [0;1].

Let us denote by V + and V � the positive and negative parts of the function V
de�ned in (2.6).

Lemma 3.4. Under the assumptions of Theorem 3.1, for any y > 0, the family
(V �(h))h2D(y) is uniformly integrable, and if (hn)n�1 is a sequence in D(y) which
converges almost surely to a random variable h, then h 2 D(y) and

(3.9) lim inf
n!1

E[V (hn)] � E[V (h)]:

Proof. Assume that V (1) < 0 (otherwise there is nothing to prove). Let � :
(�V (0);�V (1)) ! (0;1) denote the inverse of �V . The function � is strictly
increasing,

E[�(V �(h))] � [E�(�V (h))] + �(0) = E[h] + �(0) � y + �(0); 8h 2 D(y);

and by (2.7) and the L'Hospital Rule

lim
x!�V (1)

�(x)

x
= lim

y!1

y

�V (y) = lim
y!1

1

I(y)
=1:
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The uniform integrability of the sequence (V �(hn))n�1 now follows from noting that
(hn)n�1 remains bounded in L1(P ) (Proposition 3.1, (ii) and (iii)) and by applying
the de la Vall�ee-Poussin Theorem.

Let (hn)n�1 be a sequence in D(y) which converges almost surely to a variable h.
It follows from the uniform integrability of the sequence (V �(hn))n�1 that

lim
n!1

E[V �(hn)] = E[V �(h)];

and from Fatou's Lemma that

lim inf
n!1

E[V +(hn)] � E[V +(h)]:

This implies (3.9). Finally we note that h is an element of D(y) because, according
to Proposition 3.1, the set D(y) is closed under convergence in probability. �

We are now able to prove assertion (ii) of Theorem 3.1.

Lemma 3.5. In addition to the assumptions of Theorem 3.1 assume that

v(y) < 1. Then the optimal solution bh(y) to the optimization problem (3.5) ex-
ists and is unique. As a consequence v(y) is strictly convex on fv <1g.
Proof. Let (gn)n�1 be a sequence in D(y) such that

lim
n!1

E[V (gn)] = v(y):

By Lemma 3.3 there exists a sequence hn 2 conv(gn; gn+1; : : : ), n � 1, and a

variable bh such that hn! bh almost surely. From the convexity of the function V we
deduce that

E[V (hn)] � sup
m�n

E[V (gm)];

so that
lim
n!1

E[V (hn)] = v(y):

We deduce from Lemma 3.3 and Fatou's Lemma that

E[V (bh)] � lim
n!1

E[V (hn)] = v(y)

and that bh 2 D(y). The uniqueness of the optimal solution follows from the strict
convexity of the function V . As regards the strict convexity of v �x y1 < y2 with

v(y1) <1: note that
bh(y1)+bh(y2)

2 is an element of D(y1+y22 ) and therefore, using again
the strict convexity of V

v(
y1 + y2

2
) � E[V (

bh(y1) + bh(y2)
2

)] <
v(y1) + v(y2)

2
: �

We now turn to the proof of assertion (i) of Theorem 3.1. Since the value function u
de�ned in (3.4) clearly is concave and u(x0) <1, for some x0 > 0, we have u(x) <1,
for all x > 0.
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Lemma 3.6. Under the assumptions of Theorem 3.1 we have

(3.10) v(y) = sup
x>0

[u(x) � xy]; for each y > 0:

Proof. For n > 0 we de�ne Bn to be the positive elements of the ball of radius n
of L1(
;F ; P ), i.e.,

Bn = fg : 0 � g � ng:
The sets Bn are �(L1;L1)-compact. Noting that, by item (iii) of Proposition 3.1,
D(y) is a closed convex subset of L1(
;F ; P ) we may use the Minimax Theorem (see,
for example, [33], Theorem 45.8) to get the following equality, for n �xed:

sup
g2Bn

inf
h2D(y)

E[U(g)� gh] = inf
h2D(y)

sup
g2Bn

E[U(g) � gh]:

From the dual relation (item (ii) of Proposition 3.1) between the sets C(x) and D(y)
we deduce that g 2 C(x) if and only if

sup
h2D(y)

E[gh] � xy:

It follows that

lim
n!1

sup
g2Bn

inf
h2D(y)

E[U(g) � gh] = sup
x>0

sup
g2C(x)

E[U(g) � xy] = sup
x>0

[u(x) � xy]:

On the other hand,

inf
h2D(y)

sup
g2Bn

E[U(g)� gh] = inf
h2D(y)

E[V n(h)]
�
= vn(y);

where
V n(y) = sup

0<x�n
[U(x) � xy]:

Consequently, it is su�cient to show that

(3.11) lim
n!1

vn(y) = lim
n!1

inf
h2D(y)

E[V n(h)] = v(y); y > 0:

Evidently, vn � v, for n � 1. Let (hn)n�1 be a sequence in D(y) such that

lim
n!1

E[V n(hn)] = lim
n!1

vn(y):

Lemma 3.3 implies the existence of a sequence fn 2 conv(hn; hn+1; : : : ), which con-
verges almost surely to a variable h. We have h 2 D(y), because the set D(y) is
closed under convergence in probability. Since V n(y) = V (y) for y � I(1) � I(n), we
deduce from Lemma 3.4 that the sequence (V n(fn))�, n � 1, is uniformly integrable.
Similarly as in the proof of the previous Lemma the convexity of V n and Fatou's
Lemma now imply:

lim
n!1

E[V n(hn)] � lim inf
n!1

E[V n(fn)] � E[V (h)] � v(y);

which proves (3.11). �
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Lemma 3.7. Under the assumptions of Theorem 3.1 we have

(3.12) lim
x!0

u0(x) =1; lim
y!1

v0(y) = 0:

Proof. By the duality relation (3.10) the derivatives u0 and v0 of the value func-
tions u and v satisfy

�v0(y) = inffx : u0(x) � yg; y > 0;

u0(x) = inffy : �v0(y) � xg; x > 0:

It follows that the assertions (3.12) are equivalent. We shall prove the second one.
The function �v is concave and increasing. Hence there is a �nite positive limit

�v0(1)
�
= lim

y!1
�v0(y):

Since the function �V is increasing and �V 0(y) = I(y) tends to 0 as y tends to 1,
for any " > 0 there exists a number C(") such that

�V (y) � C(") + "y; 8y > 0:

By this, the L1(P )-boundedness of D (3.8) and de l'Hospital's Rule

0 � �v0(1) = lim
y!1

�v(y)
y

= lim
y!1

sup
h2D(y)

E[
�V (h)
y

]

� lim
y!1

sup
h2D(y)

E[
C(") + "h

y
] � lim

y!1
E[
C(")

y
+ "] = ":

Consequently, �v0(1) = 0. �

Proof of Theorem 3.1. It su�ces to remark that we obtain from the assump-
tion u(x0) <1, for some x0 > 0, and the concavity of U that u(x) <1, for all x > 0
and that u is concave. Formula (3.8) now follows from Lemma 3.6 and the general
bidual property of the Legendre-transform (see, e.g., [31], th. III.12.2).

The continuous di�erentiability of u follows from the strict convexity of v on fv <
1g again by general duality results ([31], th. V. 26.3). �

In the setting of Theorem 3.1 we still prove | for later use | the following result:

Lemma 3.8. Under the hypotheses of Theorem 3.1, let (yn)n�1 be a sequence of
positive numbers, which converges to a number y > 0, and assume that v(yn) < 1
and v(y) <1. Then bh(yn) converges to bh(y) in probability and V (bh(yn)) converges
to V (bh(y)) in L1(
;F ; P ).
Proof. If bh(yn) does not converge to bh(y) in probability, then there exists " > 0

such that
lim sup
n!1

P (jbh(yn) � bh(y)j > ") > ":

14



Moreover, since by item (iii) of Proposition 3.1 we have Ebh(yn) � yn and Ebh(y) � y,
we may assume (by possibly passing to a smaller " > 0) that

(3.18) lim sup
n!1

P (jbh(yn) + bh(y)j � 1="; jbh(yn)� bh(y)j > ") > ":

De�ne

hn =
1

2
(bh(yn) + bh(y)); n � 1:

From the convexity of the function V we have

V (hn) � 1

2
(V (bh(yn)) + V (bh(y)))

and from (3.18) and the strict convexity of V we deduce the existence of � > 0 such
that

lim sup
n!1

PfV (hn) � 1

2
(V (bh(yn)) + V (bh(y))) � �g > �:

Hence

E[V (hn)] � 1

2
(E[V (bh(yn))] +E[V (bh(y))]) � �2 =

1

2
(v(yn) + v(y)) � �2:

The function v is convex and therefore continuous on the set fv <1g. It follows that

lim sup
n!1

E[V (hn)] � v(y) � �2:

By Lemma 3.3 we can construct a sequence gn 2 conv(hn; hn+1; : : : ), n � 1, which
converges almost surely to a variable g. It follows from Lemma 3.4 and the convexity
of V that g 2 D(y) and

E[V (g)] = E[lim inf
n!1

V (gn)] � lim inf
n!1

E[V (gn)] � lim inf
n!1

E[V (hn)] � v(y) � �2;

which contradicts the de�nition of v(y). Therefore bh(yn) converges to bh(y) in proba-
bility as n tends to 1.

By Lemma 3.4 the sequence (V �(bh(yn)))n�1 is uniformly integrable. Consequently,
V (bh(yn)) converges to V (bh(y)) in L1(
;F ; P ) if

lim
n!1

EV (bh(yn)) = V (bh(y)):
which in turn follows from the continuity of the value function v on the set fv <
1g. �

We now state the abstract version of Theorem 2.2.
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Theorem 3.2. In addition to the assumptions of Theorem 3.1 we also suppose
that the asymptotic elasticity of the utility function U is strictly less than one, i.e.

AE(U) = lim sup
x!1

xU 0(x)

U(x)
< 1:

Then in addition to the assertions of Theorem 3.1 we have:

(i) v(y) < 1, for all y > 0. The value functions u and v are continuously
di�erentiable on (0;1) and the functions u0 and �v0 are strictly decreasing
and satisfy:

u0(1) = lim
x!1

u0(x) = 0; �v0(0) = lim
y!0

�v0(y) =1:

The asymptotic elasticity AE(u) of u is less than or equal to the asymptotic
elasticity of the utility function U :

AE(u)+ � AE(U)+ < 1;

where x+ denotes maxfx; 0g.
(ii) The optimal solution bg(x) 2 C(x) to (3.4) exists and is unique. If bh(y) 2 D(y)

is the optimal solution to (3.5), where y = u0(x), we have the dual relation

bg(x) = I(bh(y)):
Moreover,

E[bg(x)bh(y)] = xy:

(iii) We have the following relations between u0; v0 and bg;bh respectively:

u0(x) = E[
bg(x)U 0(bg(x))

x
]; v0(y) = E[

bh(y)V 0(bh(y))
y

]:

Again, the proof of Theorem 3.3 will be broken into several steps. As regard
some useful results pertaining to the asymptotic elasticity we have assembled them
in Section 6 below and we shall freely use them in the sequel.

As observed in Section 6 we may assume without loss of generality that U(1) =
V (0) > 0. We start with an analogue to Lemma 3.8 above.

Lemma 3.9. Under the hypotheses of Theorem 3.2 let (yn)1n=1 be a sequence of

positive numbers tending to y > 0. Then V 0(bh(yn))bh(yn) tends to V 0(bh(y))bh(y) in
L1(
;F ; P ).
Proof. By Lemma 3.8 the sequence bh(yn) tends to bh(y) in probability, hence

by the continuity of V 0 we conclude that V 0(bh(yn))bh(yn) tends to V 0(bh(y))bh(y) in
probability.

16



In order to obtain the conclusion we have to show the uniform integrability of the

sequence V 0(bh(yn))bh(yn). At this point we use the hypothesis that the asymptotic
elasticity of U is less then one, which by Lemma 6.3 (iv) implies the existence of
y0 > 0 and a constant C <1 such that

�V 0(y) < C
V (y)

y
; for 0 < y < y0:

Hence the sequence of random variables (V 0(bh(yn))bh(yn)1Ifbh(yn)<y0g)1n=1 is dom-

inated in absolute value by the sequence (CjV (bh(yn))j1Ifbh(yn)<y0g)1n=1 which is uni-

formly integrable by Lemma 3.8.

As regards the remaining part (V 0(bh(yn))bh(yn)1Ifbh(yn)�y0g)1n=1) the uniform inte-

grability follows as in the proof of Lemma 3.4 from the fact that (bh(yn))1n=1 is bounded
in L1(
;F ; P )) and limy!1 V 0(y) = 0. �

Remark 3.1. For later use we remark that, given the setting of Lemma 3.9 and in
addition a sequence (�n)1n=1 of real numbers tending to 1 , we still may conclude that

V 0(�nbh(yn))bh(yn) tends to V 0(bh(y))bh(y) in L1(
;F ; P ). Indeed it su�ces to remark
that it follows from Lemma 6.3 that, for �xed 0 < � < 1 we can �nd a constant
~C <1 and y0 > 0 such that

�V 0(�y) < ~C
V (y)

y
; for 0 < y < y0:

Plugging this estimate into the above proof yields the conclusion.

Lemma 3.10. Under the assumptions of Theorem 3.2 the value function v is
�nitely valued and continuously di�erentiable on (0;1), the derivative v0 is strictly
increasing and satis�es:

(3.19) �yv0(y) = E[bh(y)I(bh(y))]:
Proof. Observe that �yv0(y) = lim�!1

v(y)�v(�y)
��1 , provided the limit exists. We

shall show

lim sup
�&1

v(y) � v(�y)

�� 1
� E[bh(y)I(bh(y))] and(3.20)

lim inf
�&1

v(y) � v(�y)

�� 1
� E[bh(y)I(bh(y))](3.21)

This will prove the validity of (3.19) with v0(y) replaced by the right derivative
v0r(y); using Lemma 3.9 we then can deduce the continuity of the function y ! v0r(y)
which | by the convexity of v | implies the continuous di�erentiability of v, thus
�nishing the proof of the Lemma.

To show (3.20) we estimate
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lim sup
�&1

v(y) � v(�y)

�� 1
� lim sup

�&1

1

�� 1
E[V (

1

�
bh(�y)) � V (bh(�y))]

� lim sup
�&1

1

�� 1
E[(

1

�
� 1)bh(�y)V 0( 1

�
bh(�y))]

= E[bh(�y)I(bh(y))];
where in the last line we have used Remark 3.1.

To show (3.21) it su�ces to apply the monotone convergence Theorem:

lim inf
�&1

v(y) � v(�y)

�� 1
� lim inf

�&1

1

�� 1
E[V (bh(y)) � V (�bh(y))]

� lim inf
�&1

1

�� 1
E[(1� �)bh(y)V 0(�bh(y))]

= E[bh(y)I(bh(y))]:
Finally, v0 is strictly increasing, because v is strictly convex by Theorem 3.1. �

By (3.6) we have that u0 is the inverse to �v0 and therefore, using Lemma 3.10, u0

also is continuous and strictly decreasing.

Lemma 3.11. Under the assumptions of Theorem 3.2 suppose that the numbers x

and y are related by x = �v0(y). Then bg(x) �
= I(bh(y)) is the unique optimal solution

to (3.4).

Proof. Let us �rst show that bg(x) �
= I(bh(y)) belongs to C(x). According to

Proposition 3.1 it is su�cient to show that, for any h 2 D(y),

(3.25) E[hI(bh(y))] � xy = �yv0(y) = E[bhI(bh(y))];
where the last equality follows from (3.19).

Let us �x h 2 D(y) and denote

h� = (1� �)bh(y) + �h; � 2 (0; 1):

From the inequality

0 � E[V (h�)]�E[V (bh(y))] = E[

Z
bh(y)

h�

I(z)dz] � E[I(h�)(bh(y) � h�)]

we deduce that

(3.26) E[I((1� �)bh(y))bh(y)] � E[I(h�)h]:
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Remark 3.1 implies that for � close to 0

E[I((1� �)bh(y))bh(y)] <1:

The Monotone Convergence Theorem and the Fatou Lemma applied, respectively, to
the left- and right-hand sides of (3.26), as � ! 0, now give us the desired inequality
(3.25). Hence, bg(x) 2 C(x).

For any g 2 C(x) we have

E[gbh(y)] � xy;

U(g) � V (bh(y)) + gbh(y):
It follows that

E[U(g)] � v(y) + xy = E
h
V (bh(y)) + bh(y)I(bh(y))i = E[U(I(bh(y)))] = E[U(bg(x))];

proving the optimality of bg(x). The uniqueness of the optimal solution follows from
the strict concavity of the function U . �

Lemma 3.12. Under the assumptions of Theorem 3.2 the asymptotic elasticity
of u is less than or equal to the asymptotic elasticity of U :

AE(u)+ � AE(U)+ < 1;

where x+ denotes maxfx; 0g.
Proof. By passing from U(x) to U(x) + C, if necessary, we may assume w.l.g.

that U(1) > 0 (compare Lemma 6.1 below and the subsequent discussion). Fix

 > lim supx!1
xU 0(x)
U(x) ; we infer from Lemma 6.3 that there is x0 > 0, s.t.

(3.27) U(�x) < �U(x); for � > 1; x > x0:

We have to show that there is x1 > 0 s.t.

(3.28) u(�x) < �u(x); for � > 1; x > x1:

First suppose that assertion (3.27) holds true for each x > 0 and � > 1, which
implies

u(�x) = E[U(bg(�x))]
� E[�U(

bg(�x)
�

)]

� �u(x):

This gives the desired inequality (3.28) for all x > 0.
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Now assume that (3.27) only holds true for x � x0; replace U by the utility function
~U which is de�ned by

~U (x) =

(
c1
x

 for x � x0

c2 + U(x) for x � x0

where the constants c1; c2 are such that we achieve smooth pasting at x0: choose c1
such that c1x

�1
0 = U 0(x0) and c2 such that c1

x0
 = c2 +U(x).

The utility function ~U now satis�es (3.27) for all x > 0; hence we know that
the corresponding value function ~u satis�es (3.28), for all x > 0. Clearly there is a
constant K > 0 such that

U(x) �K � ~U(x) � U(x + x0) +K; x > 0

hence we obtain for the corresponding value functions

u(x) �K � ~u(x) � u(x + x0) +K;

and in particular there is a constant C > 0 and x2 > 0 such that

u(x)� C � ~u(x) � u(x) + C; for x � x2;

so that we may deduce from Lemma 6.4 that AE(u) = AE(~u) � , which �nishes the
proof. �

Proof of Theorem 3.2. We have to check that the above Lemmata imply all
the assertions of Theorem 3.2.

As regards the assertions

u0(1) = lim
x!1

u0(x) = 0 and � v0(0) = lim
x!0

�v0(y) =1;

they are equivalent as, by Theorem 3.1 (i) and Lemma 3.10, �v0(y) is the inverse
function of u0(x). Hence it su�ces to prove the �rst one. We have established in
Lemma 3.12 that AE(u) < 1, which implies in particular that u0(1) = 0.

To show the validity of the three assertions

E[bg(x)bh(y)] = xy; u0(x) = E[
bg(x)U 0(bg(x))

x
]; v0(y) = E[

bh(y)V 0(bh(y))
y

]

we have established the third one in Lemma 3.10. The other two assertions are simply

reformulations, when we use the relations y = u0(x); x = �v0(y); bg(x) = �V 0(bh(y))
and bh(y) = U 0(bg(x)).

The proof of Theorem 3.2 now is complete. �

We complete the Section with the following Proposition, which will be used in the
proof of item (iv) of Theorem 2.2. Let ~D be a convex subset of D such that

(1) For any g 2 C
(3.29) sup

h2 ~D

E[gh] = sup
h2D

E[gh]:

(2) The set ~D is closed under countable convex combinations, i.e., for any se-

quence (hn)n�1 of elements of ~D and any sequence of positive numbers
(an)n�1 such that

P1
n=1 a

n = 1 the random variable
P1

n=1 a
nhn belongs

to ~D.
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Proposition 3.2. Assume that the assumptions of Theorem 3.2 hold true and
that ~D satis�es the above assertions. The value function v(y) de�ned in (3.5) equals

(3.30) v(y) = inf
h2 ~D

E[V (yh)]:

Proof. Let us �x " > 0. For n > 0 we de�ne

V n(y) = max
0<x�n

[U(x) � xy] ; y > 0:

The function V n is convex and V n " V , n!1. By Lemma 6.3 below for any random
variable h > 0,

(3.31) E[V (h)] <1) E[V (�h)] <1; 8� 2 (0; 1):

Hence, for any integer k we can �nd a number n(k) such that

(3.32) E[V n(k)
�
1

2k
bh(y)�] � E[V

�
1

2k
bh(y)�]� "

2k
;

where bh(y) is the optimal solution to (3.5). Denote

W 0 = V n(0); : : : ;W k = V n(k+1) � V n(k); : : : :

The functions W k, k � 1, are convex and decreasing. Since W k � V � V n(k), k � 1,
we deduce from (3.32) that

(3.33) E[W k

 bh(y)
2k

!
] � "

2k
; k � 1:

From (3.29) and the convexity of ~D we deduce, by applying the bipolar Theorem
([3]), that D is the smallest convex, closed, solid subset of L0

+(
;F ; P ) containing
~D. It follows that for any h in D one can �nd a sequence (fn)n�1 in ~D such that
f = limn!1 fn exists almost surely and f � h. In particular such a sequence exists

for h = bh(y) and in this case we deduce from the maximality of bh(y) that h = f =
limn!1 fn almost surely.

Since V k(y) = V (y), for y � I(k), and V k(y) is bounded from above, we deduce
from Lemma 3.4 that, for k �xed, the sequence V k(fn), n � 1, is uniformly integrable

and therefore EV k(fn) ! EV k(bh(y)) as n ! 1. We can construct the sequence
(fn)n�1 such that

EW k

�
fn

2k

�
� EW k

 bh(y)
2k

!
+

"

2k
; n � k; k � 0:
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We now de�ne

f =
1X
k=1

1

2k
fk :

We have f 2 ~D, because the set ~D is closed under countable convex combinations,
and

EW k(f)
(1)

� EW k

 
1X
i=1

1

2k+i
fk+i

!
(2)

�
1X
i=1

1

2i
EW k

�
fk+i

2k

�

� EW k

 bh(y)
2k

!
+

"

2k
; k � 0;(3.34)

where in (1) and (2) we used the fact that the function W k is decreasing and convex.
Finally, we deduce from (3.33) and (3.34) that

EV (f) =
1X
k=0

EW k(f) �
1X
k=0

EW k

 bh(y)
2k

!
+ 2" � EV (bh(y)) + 3" = v(y) + 3":

The proof now is complete. �

4. Proof of the Main Theorems

In order to make the link between Theorems 2.1 and 2.2 and their \abstract ver-
sions" 3.1 and 3.2, we still have to prove Proposition 3.1.

Let us �rst comment on the content of Proposition 3.1 and its relation to known
results. First note that assertion (iii) as well as the convexity and solidity of C and D
are rather obvious. The main content of Proposition 3.1 in the closedness of C and D
(w.r. to the topology of convergence in measure) and the bipolar relation (ii) between
C and D.

In order to deal with this bipolar relation in the proper generality recall that, for
a non-empty set C � L0

+(
;F ; P ), we de�ne its polar C0 by

C0 = fh 2 L0
+(
;F ; P ) : E[gh] � 1; for all g 2 Cg:

Using this terminology assertion (ii) of Proposition 3.1 states that C = D0 and
D = C0.

Let us recall known results pertaining to the content of Proposition 3.1: It was
shown by Delbaen and Schachermayer (see [7] for the case of a locally bounded semi-
martingale S and [10] for the general case) that assumption (2.2) implies that C is
closed w.r. to the topology of convergence in measure and that g 2 C i�, for each
Q 2 Me(S), we have

(4.1) EQ[g] = E[g
dQ

dP
] � 1:
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Denoting by ~D the subset D consisting of the functions h of the form h = dQ
dP , for

some Q 2 Me(S), and using the above terminology, assertion (4.1) may be phrased
as

(4.2) C = ~D0

On the other hand it follows from the de�nition of D that, for h 2 D and g 2 C,
we have E[gh] � 1, in other words

(4.3) D � C0 = ~D00

It was shown in [3] that the following version of the bipolar Theorem holds true: for
a subset A of L0

+(
;F ; P ) the bipolar A00 of A is the smallest subset of L0
+(
;F ; P )

containing A, which is convex, solid and closed w.r. to the topology of convergence in
measure.

Hence, in order to complete the proof of Proposition 3.1 it will su�ce to prove the
following Lemma.

Lemma 4.1. The set D is closed with respect to the topology of convergence in
measure.

Let us verify that Lemma 4.1 indeed implies Proposition 3.1: the set D contains
~D and clearly is convex and solid. By Lemma 4.1 it also is closed and therefore we
may apply the bipolar Theorem to conclude that

(4.4) D � ~D00:

It follows that

(4.5) D = ~D00 = D00

and therefore, using (4.2) and the fact that C00 = C,
D = C0 and C = D0 = ~D0

which implies all the assertions of Proposition 3.1.

In order to prove Lemma 4.1 we recall the concept of Fatou convergence in the
setting of stochastic processes, (see [14]).

Definition 4.1. Let (Xn)n�1 be a sequence of stochastic processes de�ned on
a �ltered probability space (
;F ; (Ft)t�0; P ) and � be a dense subset of R+. The
sequence (Xn)n�1 is Fatou convergent on � to a process X, if (Xn)n�1 is uniformly
bounded from below and

Xt = lim sup
s#t;s2�

lim sup
n!1

Xn
s

= lim inf
s#t;s2�

lim inf
n!1

Xn
s

almost surely for all t � 0. If � = R+, then the sequence (Xn)n�1 is called simply
Fatou convergent.

The following Lemma on Fatou convergence was proved in [14].
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Lemma 4.2. Let (Xn)n�1 be a sequence of supermartingales, Xn
0 = 0, n � 1,

which is uniformly bounded from below, and � be a dense countable subset of R+.
There is a sequence Y n 2 conv(Xn;Xn+1; : : : ), n � 1, and a supermartingale Y ,
Y0 � 0, such that (Xn)n�1 is Fatou convergent on � to Y . �

Proof of Lemma 4.1. Let (gn)n�1 be a sequence in D, which converges almost
surely to a function g, and (Y n)n�1 be a sequence in Y such that Y nT � gn. We
have to show that g is in D. Without restriction of generality we may suppose that
these processes are constant on [T;+1). By Lemma 4.1 there is a sequence Zn 2
conv(Y n; Y n+1; : : : ); n � 1, which is Fatou convergent to a process Z on the set of
rational points. By the same Lemma, Z 2 Y, i.e., (XtZt)0�t�T is a supermartingale,
for each X 2 X. The result now follows from the obvious inequality: ZT � g. �

We now have �nished the proof of Proposition 3.1. If we combine this result with
Theorems 3.1 and 3.2 we obtain precisely Theorems 2.1 and 2.2, with the exception
of item (iv) of Theorem 2.2, which now follows from the fact that M is closed under
countable convex combinations and Proposition 3.2, observing that (3.29) is implied
by (4.2) and (4.5).

The proof of Theorems 2.1 and 2.2 now is complete.
As regards Theorem 2.0 we still have to show the validity of the remaining assertions

of Theorem 2.0 which are not directly implied by Theorem 2.1 (note that in Theorem
2.0 we did not make any assumption on the asymptotic elasticity of U so that Theorem
2.2 does not apply).

We start by observing that in the complete case the de�nitions of v(y) given in
(2.8) and (2.9) indeed coincide.

Lemma 4.3. Assume that the family M = Me(S) of martingale measures con-
sists of one element Q only. Then for the function v(y) as de�ned in (2.9) we have

(2.10) v(y) = E

�
V

�
y
�dQ
dP

���
;

where dQ
dP is the Radon-Nikodym derivative of Q with respect to P on (
;FT ).

Proof. We denote by Z = (Zt)0�t�T the density process of Q with respect to
P . Let Y be an element of Y(1). We shall show that the set A = fYT > ZT g has
measure zero, which will prove the Lemma. Denoting by

a = Q(A);

we have to show a = 0, as the measures P and Q are equivalent.
Suppose that a > 0. The process

Mt =
1

Zt
E[ZT1IAjFt]

is a martingale under Q with the initial value M0 = a and the terminal value MT =
1IA. By our completeness assumption we may apply Jacod's Theorem, (see [19], page
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338, Theorem (11.2)), so that M can be represented as a stochastic integral with
respect to S:

Mt = a+

Z t

0

HudSu:

Hence M 2 X(a). However,

E[YTMT ] = E[YT1IA] > E[ZT1IA] = a = Y0M0;

which contradicts the supermartingale property of YM . �

Proof of Theorem 2.0. We �rst prove that

(4.6) v0(y) = E[
dQ

dP
V 0(y

dQ

dP
)];

for each y > y0. Indeed, �x y > y0 and h > 0; for almost each ! 2 
 we have

V

�
(y + h)

dQ

dP
(!)

�
� V

�
y
dQ

dP
(!)

�
=

Z y+h

y

dQ

dP
(!)V 0

�
z
dQ

dP
(!)

�
dz

hence

v(y + h)� v(y) = E

�
V

�
(y + h)

dQ

dP

�
� V

�
y
dQ

dP

��
= E

"Z y+h

y

dQ

dP
V 0
�
z
dQ

dP

�
dz

#

=

Z y+h

y

E

�
dQ

dP
V 0
�
z
dQ

dP

��
dz

where we are allowed to use Fubini's Theorem above as the integrand dQ
dP V

0
�
z dQdP

�
is

negative on 
� [y; y + h]. As the double integral is �nite we obtain (4.6).

Using the de�nition of bX(x) given in Theorem 2.0 (ii) and the relations y =
u0(x); x = �v0(y) for 0 < x < x0 and y > y0 we obtain the formula

(4.7) u0(x) = E

" bXT (x)U 0( bXT (x))

x

#
; 0 < x < x0

and

(4.8) EQ
� bXT (x)

�
= E

�
I

�
y
dQ

dP

�
dQ

dP

�
= �v0(y) = x

thus proving items (ii) and (iii) of Theorem 2.0.
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Formula (4.8) in conjunction with the martingale representation Theorem shows

in particular that bX(x) 2 X(x). We still have to show that bX(x) is the optimal
solution of (2.3). To do so we follow the classical reasoning based on the fact that the

marginal utility U 0( bXT (x)) is proportional to
dQ
dP : let X(x) be any element of X(x).

As EQ[XT (x)] � x we obtain

E[U(XT (x))] = E[U( bXT (x)) + (U(XT (x)) � U( bXT (x)))]

� E[U( bXT (x))] +E[U 0( bXT (x))(XT (x) � bXT (x))]

= E[U( bXT (x))] +EQ[
dP

dQ
U 0( bXT (x))(XT (x) � bXT (x))]

= E[U( bXT (x))] + yEQ[XT (x) � bXT (x)]

� E[U( bXT (x))];

where, by the strict concavity of U , in the second line we have strict inequality if

XT (x) 6� bXT (x). This readily shows that bX(x) is the unique optimal solution of
(2.3).

To prove item (i) note that it follows from (4.6) that v is continuously di�erentiable
and strictly convex on (y0;1), hence by general properties of the Legendre transform
[31] we have that u is continuously di�erentiable and strictly concave on (0; x0). �

5. Counterexamples

We start with an example of a continuous security market and a well-behaved
utility function U for which the in�mum in Theorem 2.2 (iv) is not attained.

Example 5.1. The construction of the �nancial market is exactly the same as
in [9]. Let B and W be two independent Brownian motions de�ned on a �ltered
probability space (
;F ; P ), where the �ltration (Ft)t�0 is supposed to be generated
by B and W . The process L de�ned as

Lt = exp

�
Bt � 1

2
t

�
; t 2 R+;

is known to be a martingale but not a uniformly integrable martingale, because Lt
tends to 0 almost surely as t tends to 1. The stopping time � is de�ned as

� = inf ft � 0 : Lt = 1=2:g

Clearly � <1 a.s.. Similarly, we construct a martingale

Mt = exp

�
Wt � 1

2
t

�
:

26



The stopping time � is de�ned as

� = inf ft � 0 : Mt = 2g :

The stopped process M� = (Mt^�)t�0 is a uniformly integrable martingale. In the
case M does not hit the level 2 the stopping time � equals 1. Therefore we have
that M� equals 2 or 0, each with probability 1=2.

We now de�ne the security market model with the time horizon

T = � ^ �

and the (stock) price process

St = exp

�
�Bt + 1

2
t

�
:

The utility function U is de�ned as

U(x) = lnx;

in which case I(y) = �V 0(y) = 1=y and V (y) = � ln y � 1.

Proposition 5.1. The following assertions hold true:

(1) The process LTMT = (Lt^TMt^T )t�0 is the density process of an equivalent
martingale measure and hence M 6= ;.

(2) The process LT = (Lt^T )t�0 is not a uniformly integrable martingale and
hence is not the density process of an equivalent martingale measure.

(3) The process LT is the unique optimal solution of the optimization problem:

v(1) = inf
Y 2Y(1)

E[V (YT )] = � sup
Y 2Y(1)

E[lnYT + 1]

Proof. The items 1) and 2 were proved in [9]. Clearly L 2 Y(1). For any
Y 2 Y(1), the process Y=L = Y S is a supermartingale starting at Y0S0 = 1. Hence,
by Jensen's inequality

E[lnYT ] = E[ln
YT
LT

] +E[lnLT ] � ln(E[
YT
LT

]) +E[lnLT ] � E[lnLT ]:

To complete the proof it is su�cient to show that

v(1) = �E[lnLT ]� 1 <1:

From the supermartingale property of the process

Nt =
p
Lt exp

�
t

8

�
= exp

�
Bt
2
� t

8

�
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and the inequality LT � 1=2 we deduce that

E

�
exp

�
T

8

��
� p2:

It follows that BT is a uniformly integrable martingale and

E [lnLT ] = E

�
BT � 1

2
T

�
= �1

2
E[T ] > �1:

The proof is �nished. �

We give one more example displaying a similar phenomenon as example 5.1 above,
i.e., that the in�mum in (2.12) is not attained.

Example 5.1 bis below will not be a continuous process which is a drawback in
comparison to example 5.1. On the other hand example 5.1 bis has some other
merits: it is a one period process de�ned on a countable probability space 
 and it

shows that the optimal solution bY (y) to (2.9) may fail to be a local martingale.
Example 5.1 bis. Let (pn)1n=0 be a sequence of strictly positive numbers,P1
n=0 pn = 1, tending su�ciently fast to zero and (xn)1n=0 a sequence of positive

reals, x0 = 2, decreasing also to zero (but less fast than (pn)
1
n=0). For example,

p0 = 1��; pn = �2�n, for n � 1, and x0 = 2; xn =
1
n
, for n � 1, will do, if 0 < � < 1

is small enough to satisfy (1 � �)=2 + �
P1

n=1 2
�n(�n+ 1) > 0.

Now de�ne S
�
= (S0; S1) by letting S0 � 1 and S1 to take the values (xn)

1
n=0 with

probability pn. As �ltration we choose the natural �ltration generated by S. Clearly
the process S satis�esMe(S) 6= ;. In this case we can explicitly calculate the family
of processes X(1): it consists of all processes X with X0 = 1 and such that X1 is

equals the random variable X� �
= 1 + �(S1 � S0), for some �1 � � � 1.

Using again U(x) = ln(x) as utility function and writing f(�) = E
�
U(X�)

�
we

obtain by an elementary calculation

f 0(�) =

1X
n=0

pn
xn � 1

1 + �(xn � 1)

so that f 0(�) is strictly positive for �1 � � � 1 if � > 0 satis�es the above assumption
f 0(1) = (1 � �)12 + �

P1
n=1 2

�n(�n + 1) > 0. Hence f(�) attains its maximum on

[�1; 1] at � = 1, in other words, the optimal investment process bX(1) equals the
process S.

We can also explicitly calculate u(x) by

u(x) = E[U(xS1)] =
1X
n=0

pnU(xxn)

=

1X
n=0

pn(ln(x) + ln(xn)) = ln(x) +

1X
n=0

pn ln(xn):
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In particular, u0(1) = 1 and by Theorem 2.2 we get bY (1) = U 0( bX(1)) = (S1)�1.
Note that

E[S�11 ] =
1X
n=0

pn
xn

=
p0
2
+

1X
n=1

npn

is strictly less than 1 by using again the condition (1��)12+�
P1

n=1 2
�n(�n+1) > 0.

In particular, the optimal element bY (1) 2 bY(1) is not a martingale (not even a local

martingale) but only a supermartingale and bY1(1) is not the density of a martingale
measure for the process S. This �nishes the presentation of example 5.1 bis. �

From this point on we will assume that the asymptotic elasticity of the utility
function U equals 1. By corollary 6.1 (iii) below this is equivalent to the following
property of the conjugate function V of U :

(5.1) For any y0 > 0; 0 < � < 1; C > 0; there is 0 < y < y0 s.t. V (�y) > CV (y):

Lemma 5.1. Assume that the function V satis�es (5.1). Then there is a proba-
bility measure Q on R+ supported by a sequence (xk)k�0 decreasing to 0 such that

(1)
R1
0 V (x)Q(dx) <1,

(2)
R1
0
xI(x)Q(dx) = � R1

0
xV 0(x)Q(dx) <1,

(3)
R1
0 V (x)Q(dx) =1 for any  < 1.

Proof. Without loss of generality we may assume that V > 0. Since the function
V satis�es (5.1), there is a decreasing sequence (yn)n�1 of positive numbers converging
to 0 such that, for any 0 <  < 1

(5.2)
1X
n=1

1

22n
V (yn)

V (yn)
= +1:

Denote

xn =yn=

�
1� 1

2n

�
;

pn =
K

22nV (yn)
;

where the normalizing constant K is chosen s.t.
P1
n=1 pn = 1. We now are ready to

de�ne the measure Q, which is supported by the sequence (xn)n�1:

Q(xn) = pn:

Let us check the assertions of our Lemma. We haveZ 1

0

V (x)Q(dx) =

1X
n=1

pnV (xn) �
1X
n=1

pnV (yn) = K

1X
n=1

1

22n
=
K

3
;
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proving 1). As regards 2), we use the inequality:

xI(x) � 1

1� 
(V (x) � V (x)) � 1

1� 
V (x);

which is valid for any  < 1 and x > 0, to get

xnI(xn) � 2nV (yn);

and henceZ 1

0

xI(x)Q(dx) =
1X
n=1

pnxnI(xn) �
1X
n=1

pn2
nV (yn) = K

1X
n=1

1

2n
= K:

Finally, (5.2) implies 3): for any  < 1Z 1

0

V (x)Q(dx) =
1X
n=1

pnV (xn) =1:

The proof is complete. �

Note 5.1. The assertions 1){3) of the Lemma are sensitive only to the behavior of
Q near zero. For example, we can always choose Q in such a way that

R1
0
xQ(dx) = 1

or Q((0; 1)) = 1.

We now construct an example of a complete continuous �nancial market such that
the assertions (i); (ii) and (iii) of Theorem 2.2 fail to hold true as soon as AE(U) = 1.
We start with an easy observation which shows the intimate relation between assertion
(i) and (ii) of Theorem 2.2:

Scholium 5.1. Under the hypotheses of Theorem 2.1 suppose that, for 0 < x1 <

x2, the optimal solutions bX(x1) 2 X(x1) and bX(x2) 2 X(x2) in (2.3) exist. Then

u(
x1 + x2

2
) >

u(x1) + u(x2)

2
:

Hence, if u0(x) � 1 for x � a, there is at most one x � a for which an optimal

solution bX(x) 2 X(x) to (2.3) can exist.

Proof. For bX(x1) 2 X(x1) and bX(x2) 2 X(x2) the convex combination X =

( bX(x1) + bX(x2))=2 is an element of X(x1+x2
2

). By the strict concavity of the utility
function U we have

u(
x1 + x2

2
) � E[U(X)] >

E[U( bX(x1))] +E[U( bX(x2))]

2
=
u(x1) + u(x2)

2
:

The second assertion is an immediate consequence. �

After this preliminary result we give the construction of our example.
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Example 5.2. Let U be a utility function satisfying (2.4) and such that AE(U) =
1. LetW be a standard Brownianmotion withW0 = 0 de�ned on a �ltered probability
space (
;FT ; (Ft)0�t�T ; P ), where 0 < T < 1 is �xed and the �ltration (Ft)0�t�T
is supposed to be generated by W . Let Q be a measure on (0;1) for which the
assertions 1){3) of Lemma 5.1 hold true and such that (see Note 5.1)

(5.3)

Z 1

0

xQ(dx) = 1:

Let

a =

Z 1

0

xI(x)Q(dx):

and � be a random variable on (
;FT ), whose distribution under P coincides with
the measure Q. Clearly, (5.3) implies that E� = 1. The process

Zt = E[�jFt]; t � 0:

is a strictly positive martingale with initial value Z0 = 1. From the integral repre-
sentation Theorem we deduce the existence of a predictable process � = (�)t�0 such
that

Zt = 1 +

Z t

0

�sZsdWs

or, equivalently,

Zt = exp

�Z t

0

�sdWs � 1

2

Z t

0

�2sds

�
:

The stock price process S is now de�ned as

(5.4) St = 1 +

Z t

0

Su (��udu+ dWu) :

The standard arguments based on the integral representation Theorem and the Gir-
sanov Theorem imply that the family of martingale measures consists of exactly one
element (i.e. the market is complete) and that the density process of the unique
martingale measure is equal to Z.

Proposition 5.2. Let U be a utility function satisfying (2.4) and such that
AE(U) = 1. Then for the security market model de�ned in (5.4) the following asser-
tions hold true:

(1) For x � a, the optimization problem (2.3) has a unique optimal solutionbX(x), while, for x > a, no optimal solution to (2.3) exist.
(2) u is continuously di�erentiable; it is strictly concave on ]0; a], while u0(x) = 1,

for x � a.
(3) v is continuously di�erentiable and strictly convex on [1;1[ and the right

derivative v0r at y = 1 equals v0r(1) = �a, while v(y) =1, for y < 1.
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Proof. The equivalence of (2) and (3) follows from the fact that u and v are
conjugate and from the following well-known relations from the theory of convex
functions:

u(x) = inf
y>0

(v(y) + xy) ; x > 0;

u0(s) = infft > 0 : �v0(t) � sg; s � 0;

�v0(t) = inffs > 0 : u0(s) � tg; t � 0:

In order to prove (3), note that

v(y) = E[V (yZT )] =

Z 1

0

V (yx)Q(dx); y > 0;(5.5)

�v0(y) = E[ZT I(yZT )] =

Z 1

0

xI(yx)Q(dx) � a if v(y) <1;(5.6)

with equality holding in (5.6) for y = 1 (in which case v0(y) has to be interpreted as
the right derivative). Indeed, equality (5.5) is the assertion of Lemma 4.3 and (5.6)
follows from Theorem 2.0 and Lemma 5.1. The fact that v0(y) is continuous on [1;1[
now follows from (5.6) by applying the monotone convergence Theorem.

To show (1) note that, for x � a, the random variable bX(x) = I(y dQdP ) with
y = u0(x) � 1 is the unique solution to the optimization problem (2.3).

Finally it follows from Scholium 5.1, from (2) and the fact that bX(a) does exist,
that, for x > a there cannot exist an optimal solution to 2.3. �

Note 5.2 (a) The message of the above example is rather puzzling from an eco-
nomic point of view (at least to the authors): consider an economic agent with utility
function U satisfying (2.4) and AE(U) = 1, who is endowed with an initial capital
x which is large enough such that U 0(x) < ", for a given small number " > 0; in
other words: by passing from the endowment x to x+ 1 the utility U(x) of the agent
increases to U(x + 1) by less than ".

The situation changes drastically if the agent is allowed to invest in the complete
market S = (St)0�t�T and to maximize the expected utility of the resulting terminal
wealth XT (x). In the above example, for x � a, the passage from x to x+1 increases
the maximal expected utility from u(x) to u(x + 1) by 1 (as u0(z) � 1, for z � a).
How can this happen for such a \rich" agent who is faced with small marginal utility
U 0(z), if z is in the order of x?

We shall try to give an intuitive explanation of the phenomenon occuring in the
above example 5.2: what the agent does to choose an approximating sequenceXn(x) 2
X(x) for the optimization problem (2.3) is the following: he or she uses the portion

a of the initial endowment x > a to �nance the wealth bXT (a) at time T which is the
optimal investment for an agent endowed with initial capital a. With the remaining
endowment x � a he or she gambles in a very risky way: he or she bets it all on
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the event Bn = fZT = xng, for some large n. Noting that the random variablebX(a) takes the value �n
�
= I(xn) on Bn, an easy calculation shows that the agent

can increase the value of the investment at time t = T , contingent on Bn, from �n
to (x � a)(xnpn)�1 + �n, by betting the amount (x � a) at time t = 0 on the event
fZT = xng. What is the increase fn(x � a) of expected utility? Clearly we have

fn(x � a) = pn[U((x � a)(xnpn)
�1 + �n) � U(�n)]

so that fn is a strictly concave function of the variable x � a 2 R+; another easy
calculation reveals that f 0n(0) = 1 so that, \for small x � a" the gain in expected
utility is approximately equal to (and slightly less then) x� a.

So far we have only followed the line of the usual in�nitesimal Arrow-Debreu type

arguments for the optimal investment bX(a). The new ingredient is that, in the con-
struction of example 5.2, we have used the assumption AE(U) = 1 in order to choose

the numbers xn and pn carefully, so that the functions (fn)
1
n=1 =

�
fn(x�a)

�1
n=1

tend
to the identity function uniformly on compact subsets of R+. Hence in the above
example 5.2 the above argument does not only hold for \small x� a" (in the sense of
a �rst order approximation); we now have that, for any �xed (x�a) > 0, the increase
in expected utility fn(x � a) tends to x� a, as n tends to in�nity.

This explanation of the phenomenon underlying example 5.2 also indicates why,

for x > a, there is no optimal solution bX(x) 2 X(x), as in the above reasoning we
obviously cannot \pass to the limit n!1".

(b) We also note that example 5.2 is in fact a very natural example: it may also
be viewed | similarly as examples 5.1 and 5.3 below | as an exponential Brownian
motion with constant drift stopped at a stopping time T , which is �nitely valued (but
not bounded).

Indeed, �x Q as in Lemma 5.1 such that barycenter (Q) =
R1
0 xQ(dx) = 1 and

such that for the decreasing sequence (xk)k�0 supporting Q we have x0 > 1 and
x1 < 1, which clearly is possible. Now let

Rt = exp(Wt + t=2); t > 0:

By Girsanov's formula

Zt = exp(�Wt � t=2); t > 0;

is the unique density process with Z0 = 1 such that RtZt is a martingale.
We want to �nd a stopping time T such that the law of ZT equals Q. Once we

have done so we may replace the de�nition of the stock price process S in (5.4) by

(5.4 bis) St = Rt^T = exp(Wt^T + (t ^ T )=2); t > 0

and deduce the conclusions of Proposition 5.2 for this stock price process in exactly
the same way as above.
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The existence of a stopping time T such that the law of ZT equals Q is a variant
of the wellknown \Skorohod stopping problem". For the convenience of the reader we
sketch a possible construction of T :

T = inf ft : Zt = x0 or (Zt = xi and ti�1 < t � ti)g

where the increasing sequence of deterministic times (ti)1i=0 is de�ned inductively by
t0 = 0 and

ti = inf
�
t : P

�
Zt^Ti = xi

�
= Q(xi)

	
:

The stopping times Ti are also inductively de�ned (after determining t0; : : : ; ti�1) by

Ti = inf
�
t : Zt = x0 or

�
Zt = xj and tj�1 < t � tj and 1 � j < i

�
or
�
Zt = xi and ti�1 < t

�	
:

Intuitively speaking we start to de�ne the stopping time T at time t0 = 0 as the
�rst moment when Zt either hits x0 > 1 or x1 < 1 and continue to do so until the
(deterministic) time t1, when P[ZT^t = x1] has reached the value Q(x1). Then we
lower the stakes and de�ne T to be the �rst moment when Zt hits x0 or x2 etc. It
follows from the martingale property of Zt and

R1
0
Q(dx) = 1 that T is �nite almost

surely and that the law of ZT equals Q.

We close the Section with an example of an (incomplete) continuous �nancial model
such that assertion (iv) of Theorem 2.2 fails to hold true.

Example 5.3. Let Q be a probability measure on R+ supported by a decreasing
sequence (xk)k�0: 1 > x0 > x1 > : : : converging to 0, such that

Z 1

0

V (x)Q(dx) <1;Z 1

0

V (x)Q(dx) =1; 8 < 1:

The existence of such a measure follows from Lemma 5.1 and Note 5.1. Our construc-
tion will use a Brownian motion B and a sequence ("n)n�1 of independent (mutually
as well as of B) random variables such that

"n =

(
2n with probability 1

2n+1�1

1=2 with probability 1� 1
2n+1�1

Note that E"n = 1.
The martingale L is de�ned as

Lt = exp

�
Bt � 1

2
t

�
:
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Similarly as in Note 5.2(b) above we de�ne the increasing sequence 0 = t0 < t1 <
� � � < tk < : : : in R+ in such a way that the deterministic function

�(t) =
1X
k=0

xk1Iftk�t<tk+1g

has the property: the probability that the stopping time

� = inf ft � 0 : Lt = �(t)g

belongs to the interval [tk; tk+1) is equal to Q(xk). In other words, the distribution of
the random variable L� under P is equal to Q. Since

P1
k=0Q(xk) = 1, the stopping

time � is �nite a.s..
Using the sequence ("n)n�1 we construct the martingale

Mt =

[t]Y
i=1

"i;

where [t] denotes the largest integer less then t. The stopping time � is de�ned as

� = inf ft � 0 : Mt = 2g :

The stopped process M� = (Mt^�)t�0 is a uniformly integrable martingale. In the
case M does not hit the level 2 the stopping time � equals 1. Therefore we have
that M� equals 2 or 0, each with probability 1=2.

The �nal ingredient of our construction is the stopping time  de�ned as

 = infft � � : Lt � L� � 1g:

Note that L is a uniformly integrable martingale on [� ^ �; � ^  ], i.e.,

E[L�^ jF�^�] = L�^�:

We now determine the security market model with the time horizon

(5.7) T = � ^  

and the price process

(5.8) St = exp

�
�Bt + 1

2
t

�
; 0 � t � T = � ^  ;

de�ned on a �ltered probability space (
;F ; P ), where the �ltration is supposed to
be generated by LT and M� (note that M is stopped at time �, which is less then or
equal to T ).
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Proposition 5.3. Assume that the utility function U satis�es (2.4) and AE(U) =
1. Then for the �nancial model de�ned in (5.7) and (5.8) the following assertions hold
true:

(1) The family of equivalent local martingale measures for the process S is not
empty.

(2) The process LT = L�^ is an element of Y(1) and
E[V (LT )] <1:

However LT is not a uniformly integrable martingale and hence is not the
density process of an equivalent martingale measure.

(3) If Y is an element of Y(1) and Y 6� L then EV (YT ) =1. In particular,

E

�
V

�
dQ

dP

��
=1

for any martingale measure Q.

Proof.

(1) Let us show that the process LTM� is a uniformly integrable martingale and
hence is the density process of a martingale measure. Indeed,

E[LTM� ]
(1)
= E[L�^�M�] = 2E[L�^�1If�<1g]

= lim
n!1

2E[L�^�^n1If��ng] = lim
n!1

2E[Ln1If��ng]

= lim
n!1

2E[Ln]P [� � n] = lim
n!1

2P [� � n] = 1;

where in (1) we used the fact that L is a uniformly integrable martingale on
[� ^ �; T ].

(2) Since L is a martingale and SL � 1, we have that LT is an element of Y(1).
From the equality

E[LT1If�<1g] =
1

2
;

proved above, we deduce that

E[LT ] = E[L�1If�=1g] +E[LT1If�<1g]

=
1

2
(E[L� ] + 1) <

1

2
(x0 + 1) < 1:

Hence LT is not a uniformly integrable martingale. Finally,

E[V (LT )] � E[V (L� )] =

Z 1

0

V (x)Q(dx) <1;

where the �rst inequality holds true, because LT � L� and V is a decreasing
function.

(3) To avoid technicalities we assume hereafter that V > 0. We start with two
Lemmas.
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Lemma 5.2. Let � be a stopping time. Then, for a set A 2 F�, P (A) > 0,
A � f� < �g, and  < 1 we have

E[V (L� )1IA] =1:

Proof. The Lemma can be equivalently reformulated as follows: for any stopping
time � and  < 1

(5.9) E [V (L� )jF�] =1 on the set f� < �g:

Let us denote by k(�) = k(�)(!) the �rst index k such that tk > �, where tk is the
number from our partition. Since

E [V (L� )jF�] �
X

k�k(�)

V (xk)P [(tk � � < tk+1)jF�];

(5.9) is satis�ed if there exists a F�-measurable non-negative function � such that
f� < �g � f� > 0g and

(5.10) P [(tk � � < tk+1)jF�](!) � �Q(xk); 8k � k(�):

Let �(y) denote the �rst passage time of the process L to the number y < 1:

�(y) = inf(t � 0 : Lt = y) = inf(t � 0 : Bt � t

2
= ln y):

The density of �(y) equals, see, for example, [23], Section 3.5.C:

f(t; y)
�
=
P (�(y) 2 (t; t+ dt))

dt
=

s
ln2 y

2�t3
exp

�
� (ln y � t=2)2

2t

�
:

It follows that the random function � de�ned as

� = essinft�k(�)
f(t � �;

xk(�)
L�

)

f(t;xk(�))
1If�<�g

is strictly positive on the set f� < �g.
Further, denoting by

g(tjx; s) �
=
P (� 2 (t; t+ dt)jLs = x; � > s)

dt

the density of � conditioned to the event fLs = x; � > sg, and using the strong
Markov property for the process L we deduce on the set f� < �g and for k � k(�):
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Q(xk) =P (tk � � < tk+1) =

Z tk+1

tk

g(tj1; 0)dt

=

Z tk+1

tk

 Z t

tk(�)

g(tjxk(�); s)f(s;xk(�))ds
!
dt

�
Z tk+1

tk

 Z t

tk(�)

g(tjxk(�); s)1
�
f(s � �;

xk(�)

L�
)ds

!
dt

=
1

�

Z tk+1

tk

g(tjL�; �)dt = 1

�
P [(tk � � < tk+1)jF�];

proving (5.10). �

Lemma 5.3. Any process Y in Y(1) has the form:

(5.11) Y = NLTA;

where A is a decreasing, non-negative, predictable process, A0 = 1, and

Nt =

[t]Y
i=1

(1 + �i1If�^��ig("i � 1));

is a purely discontinues local martingale, where �i is an Fi�-measurable random
function such that �1=(2i � 1) � �i � 2.

Proof. The multiplicative decomposition of the positive supermartingale Y and
the integral representation Theorem imply that

Y = NKA;

where A and N are as in the Lemma and K has the integral representation:

Kt = 1 +

Z t

0

Ku��udBu;

for a predictable process � such that the stochastic integral above is well-de�ned.
Further, from (2.1) and (5.8) we deduce that any X 2 X(1) has the form

Xt = 1 +

Z t

0

Xu� [�u(du� dBu)] ;

where � is a predictable process. By Ito's formula

XY = "local martingale" +

Z t

0

Xu�Yu�

�
�u(1 � �u)du+

dAu
Au�

1IfAu�>0g

�
:
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It follows that XY is a supermartingale for any X (hence for any integrable �) if and
only if � � 1 on the set fY� > 0g, i.e., K � L on this set, which clearly implies the
assertion of Lemma 5.3. �

Let us now continue proof of Proposition 5.3. By Lemma 5.3 any Y in the set Y(1)
can be represented in the form given in (5.11). If Y 6� LT , i.e. NTAT 6� 1, then the
supermartingale property of NA implies that P [NTAT < 1] > 0. Consequently, there
exists a number  < 1 such that the stopping time

� = infft � 0 : NtAt � g

is strictly less then T with probability greater then zero.

Let us denote by i0 the �rst index i such that P [�i < 0; � < i < T ] > 0. If i0 =1,
i.e. the set f�i < 0; � < i < Tg is empty for any i � 1, then

EV (YT ) �EV (Y� )1If�<�g1If�=1g
(1)

� EV (L� )1If�<�g1If�=1g

(2)
=EV (L� )1If�<�gP [f� =1gjF�] = EV (L� )1If�<�g[1� 1

2[�]+1
]

�1

2
EV (L� )1If�<�g;

where in (1) we used the inequality N� � N�, which holds true on the set f� <
�; � = 1g by our assumption that �i � 0 for � < i < T , and in (2) the conditional
independence of L� and � on F�. The result now follows from Lemma 5.2.

On the other hand, if i0 <1, then we similarly deduce that

EV (YT ) �EV (Y� )1If�<i0<�;�i0<0g1If�=i0g1If =1g
�EV (L� )1If�<i0<�;�i0<0g1If�=i0g1If =1g
=EV (L� )1If�<i0<�;�i0<0g1If�=i0gP [f =1gjF� ]

=EV (L� )1If�<i0<�;�i0<0g1If�=i0g

�
1� L�

1 +L�

�
� 1

1 + x0
EV (L� )1If�<i0<�;�i0<0g1If�=i0g

=
1

1 + x0
EV (L� )1If�<i0<�;�i0<0gP [f� = i0gjFi0�]

=
1

(2i0+1 � 1)(1 + x0)
EV (L� )1If�<i0<�;�i0<0g

and the proof again follows from Lemma 5.2. �
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6. The Asymptotic Elasticity of a Utility Function

In this Section we assemble some facts on the notion of asymptotic elasticity. We
let U(x) denote a strictly concave, increasing, real-valued function de�ned on ]0;1[
satisfying (2.4). Recall that

	(x) =
xU 0(x)

U(x)

denotes the elasticity function of U and

AE(U) = lim sup
x!1

	(x) = lim sup
x!1

xU 0(x)

U(x)

denotes the asymptotic elasticity of U .

Lemma 6.1. For a strictly concave, increasing, real-valued function U the asymp-
totic elasticity AE(U) is wellde�ned and, depending on U(1) = limx!1U(x), takes
its values in the following sets:

(i) For U(1) =1 we have AE(U) 2 [0; 1];

(ii) For 0 < U(1) <1 we have AE(U) = 0;

(iii) For �1 < U(1) � 0 we have AE(U) 2 [�1; 0]:

Proof. (i) Using the monotonicity and positivity of U 0 we may estimate, for
x � 1,

0 � xU 0(x) =(x � 1)U 0(x) + U 0(x)

�[U(x) � U(1)] + U 0(1)

hence, in the case U(1) =1,

0 � lim sup
x!1

xU 0(x)

U(x)
� lim sup

x!1

U(x) � U(1) + U 0(1)

U(x)
= 1:

(ii) In the case 0 < U(1) < 1 we have to show that lim supx!1 xU 0(x) = 0.
So suppose to the contrary that lim supx!1 xU 0(x) = � > 0 and choose �rst x0
such that U(1) � U(x0) <

�
2 and then x1 > x0 such that (x1 � x0)U 0(x1) >

�
2

(note that U(1) <1 implies in particular limx!1U 0(x) = 0). We thus arrive at a
contradiction, as

�

2
> U(x1) �U(x0) � (x1 � x0)U

0(x1) >
�

2
:

(iii) By the strict concavity of U we infer from U(1) � 0 that U(x) < 0, for
x 2 R+, so that 	(x) < 0, for all x 2 R+. �
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What is the economic interpretation of the notion of the elasticity function 	(x)
and the asymptotic utility AE(U) for a utility function U? First note that by passing

from U to an a�ne transformation ~U (x) = c1 + c2U(x), with c1 2 R; c2 > 0 the
utility maximization problem treated in this paper obviously remains unchanged. On
the other hand, the elasticities of the utility functions 	(x) and ~	(x) are di�erent
if c1 6= 0. So far the bad news, as a notion which is not invariant under a�ne
transformations of utility functions does not seem to make sense; but the good news
is that the notion of asymptotic elasticity does not change if we pass from U to an
a�ne transformation, provided U(1) > 0 and ~U(1) > 0.

Lemma 6.2. Let U(x) be a utility function satisfying (2.4) and ~U (x) = c1+c2U(x)

an a�ne transformation, where c1 2 R; c2 > 0. If U(1) > 0 and ~U (1) > 0 then

AE(U) = AE( ~U ) 2 [0; 1]:

We leave the easy veri�cation of this Lemma to the reader.

From now on we shall always assume that U(1) > 0 which | from an economic
point of view | does not restrict the generality. Under this proviso we may interpret
the asymptotic utility AE(U) in economic terms as the ratio of the marginal utility

U 0(x) to the average utility U(x)=x, for large x > 0 (in the sense of the limes superior).

Examples 6.1.

(i) For U(x) = ln(x) he have AE(U) = 0.

(ii) For � < 1; � 6= 0 and U(x) = x�

� we have AE(U) = �.
(iii) For a utility function U(x) such that U(x) = x

ln(x), for x > x0, we have

AE(U) = 1.

We now give the equivalent characterizations of AE(U) in terms of conditions
involving the functions U; V or the derivatives U 0; V 0 = �I respectively.

Lemma 6.3. Let U(x) be a utility function satisfying (2.4) and U(1) > 0.

In each of the subsequent assertions, the in�mumof  > 0 for which these assertions
hold true equals the asymptotic elasticity AE(U).
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(i) There is x0 > 0 s.t.

U(�x) < �U(x); for � > 1, x � x0;

(ii) There is x0 > 0 s.t.

U 0(x) < 
U(x)

x
; for x � x0;

(iii) There is y0 > 0 s.t.

V (�y) < ��


1� V (y); for 0 < � < 1, 0 < y � y0;

(iv) There is y0 > 0 s.t.

�V 0(y) < (


1� 
)
V (y)

y
; for 0 < y � y0:

Proof. It follows from the de�nition of the asymptotic elasticity that AE(U)
equals the in�mum over all  such that (ii) holds true. We shall show that for each
of the above four conditions the inf of the 's for which they hold true is the same.

(i), (ii) To show that (ii)) (i), �x x > 0;  > 0 and compare the two functions

F (�) = U(�x) and G(�) = �U(x); � > 1:

F and G are di�erentiable, F (1) = G(1), and if (ii) holds true then, for x > x0,

F 0(1) = xU 0(x) < U(x) = G0(1);

hence we have F (�) < G(�) for � 2]1; 1+"[, for some " > 0. To show that F (�) < G(�)

for all � > 1 let b� = inff� > 1 : F (�) = G(�)g and suppose that b� < 1. Note that

we must have F 0(b�) � G0(b�), which leads to a contradiction as it follows from (ii)
that

F 0(b�) = xU 0(b�x) < b�U(b�x) = b�F (b�) = b�G(b�) = G0(b�):
The reverse implication (i) ) (ii) follows from

U 0(x) =
F 0(1)

x
� G0(1)

x
= 

U(x)

x
:

(ii) , (iv) Let y0 = U 0(x0). Assuming (ii) we may estimate, for y < y0
�
= U 0(x0);

V (y) = sup
x
[U(x) � xy]

=U(�V 0(y)) + yV 0(y)

>
1


(�V 0(y))U 0(�V 0(y)) + yV 0(y) =

1� 


y(�V 0(y))
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which is precisely (iv). Conversely, assuming (iv) we get, for x � x0
�
= �V 0(y0),

U(x) = inf
y
[V (y) + xy]

=V (U 0(x)) + xU 0(x)

>
1� 


U 0(x)(�V 0(U 0(x))) + xU 0(x) =

1


xU 0(x)

which is precisely (ii).
(iii) , (iv) Just as in the proof of (i), (ii) we compare, for 0 < y � y0 �xed, the

functions

F (�) = V (�y) und G(�) = ��


1� V (y); 0 < � < 1;

to obtain that (iv) is equivalent to F (�) < G(�), for 0 < y � y0 and 0 < � < 1. This
easily implies the equivalence of (iii) and (iv). �

Another way of describing the asymptotic elasticity is to pass to a logarithmic
scaling of R+, i.e., to pass from U to

bU (z) = ln(U(ez)); z > z0
�
= ln(U�1(0)):

One easily veri�es that AE(U) = lim supz!1 bU 0(z) and a similar characterization
may be given in terms of

bV (z) = ln(V (ez)); z 2 R:

We also indicate the connection of the condition AE(U) < 1 with the wellknown
�2-condition in the theory of Orlicz spaces [26]: Obviously we have { V 0(y) <

( 
1� )

V (y)
y , for 0 < y � y0, i� we have for the function �V (z) = V (1z ) the inequal-

ity

�V 0(z) � 

1� 

�V (z)

z
; for z � z0

�
= y�10 ;

i.e., i� the function �V (z) satis�es the �2 condition. (Note, however, that �V (z) is, in
general, not a convex function of z 2 R+).

Finally, we note an easy and useful characterization of the condition AE(U) < 1
which immediately follows from Lemma 6.3.

Corollary 6.1. Let U(x) be a utility function satisfying (2.4) and U(1) > 0. The
following assertions are equivalent:

(i) The asymptotic elasticity of U is less than 1,
(ii) There is x0 > 0; � > 1 and c < 1 s.t.

U(�x) < c�U(x); for x > x0:
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(ii') There is x0 > 0 s.t., for every � > 1 there is c < 1,

U(�x) < c�U(x); for x > x0:

(iii) There is y0 > 0; � < 1 and C <1 s.t.

V (�y) < CV (y); for y < y0:

(iii') There is y0 > 0 s.t., for every 0 < � < 1, there is C <1 s.t.

V (�y) < CV (y); for y < y0: �

We now prove a technical result which was used in Section 3 above:

Lemma 6.4. Let u;w be two concave functions, de�ned on R+, verifying u(1) >
0; w(1) > 0 and such that there exist x0 > 0 and C > 0 for which we have

u(x) �C � w(x) � u(x) + C; x � x0:

Then

AE(u) = lim sup
x!1

xu0(x)

u(x)
= lim sup

x!1

xw0(x)

w(x)
= AE(w)

Proof. We may assume w.l.g. that u(1) = w(1) = 1 (otherwise AE(u) =
AE(w) = 0) as well as u0(1) = w0(1) = 0 (otherwise AE(u) = AE(w) = 1).

Suppose that AE(u) =  and AE(w) >  + � for some 0 �  < 1 and � > 0 and
let us work towards a contradiction.

By Lemma 6.3 we may �nd arbitrarily large x 2 R+ such that

(6.1) w0(x) > ( + �)
w(x)

x
:

Let h = h(x) = 8Cx
�(+�)u(x) and observe that limx!1

h(x)
x = 0 so that in particular

x � h > 0, for su�ciently large x. Fixing such an x > 0 satisfying also (6.1) we may
estimate

hu0(x � h) + 2C � u(x) � u(x � h) + 2C

� w(x) � w(x � h)

� hw0(x)

� h( + �)
w(x)

x
� h( + �)

u(x) � C

x

so that

u0(x� h) � ( + �)
u(x) � C

x
� 2C

h
:
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Using
2C

h
=
�

4
( + �)

u(x)

x

and the estimates

u(x) � C > (1 � �

4
)u(x); x � h >

x

1� �
4

which hold true for su�ciently large x > 0, we obtain

u0(x � h) � ( + �)(1 � �

4
)
u(x)

x
� �

4
( + �)

u(x)

x

� ( + �)(1 � �

2
) � u(x� h)

x � h
(1� �

4
) � ( +

�

4
)
u(x � h)

x� h
;

so that Lemma 6.3 gives a contradiction to the assumption AE(u) � . �

We end this Section by comparing the condition AE(U) < 1 with two other growth
conditions (assertions (i) and (iii) respectively in the subsequent Lemma) which have
been studied in ([21], condition (4.8) and (5.4)).

Lemma 6.5. Let U(x) be a utility function satisfying (2.4) and U(1) > 0. Con-
sider the subsequent assertions:

(i) There is x0 > 0; � < 1 and � > 1 s.t.

U 0(�x) < �U 0(x); for x > x0:

(ii) AE(U) < 1.
(iii) There is x0 > 0; k1 > 0; k2 > 0 and  < 1 s.t.

U(x) � k1 + k2x
 ; for x > x0:

Then the implications (i) ) (ii) ) (iii) hold true, while the reverse implications
(ii) ) (i) and (iii)) (ii) do not hold true, in general.

Proof. (i) ) (ii) Assume (i) and let a = �� and b = 1
� > 1 and estimate, for

x > ax0:

U(bx) =U(�x0) +

Z bx

�x0

U 0(t)dt

=U(�x0) + �

Z x=a

x0

U 0(�t)dt

�U(�x0) + ��

Z x=a

x0

U 0(t)dt

=U(�x0) + aU(
x

a
)� aU(x0):
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It follows that criterion (ii) of corollary 6.1 is satis�ed, hence AE(U) < 1.
(ii)) (iii) is immediate from assertion (i) of Lemma 6.3.
(ii) ; (i): For n 2 N, let xn = 22

n

and de�ne the function U(x) by letting
U(xn) = 1� 1

n and to be linear on the intervals [xn�1; xn]; (for 0 < x � x1 continue
U(x) in an arbitrary way, so that U satis�es (2.4)).

Clearly U(x) fails (i) as for any � > 1 there are arbitrary large x 2 R with
U 0(�x) = U 0(x). On the other hand, we have U(1) = 1 so that AE(U) = 0 by
Lemma 6.1.

The attentive reader might object that U(x) is neither strictly concave nor di�er-
entiable. But it is obvious that one can slightly change the function to \smooth out"
the kinks and to \strictly concavify" the straight lines so that the above conclusion
still holds true.

(iii) ; (ii): Let again xn = 22
n

and consider the utility function ~U (x) = x1=2.

De�ne U(x) by letting U(xn) = ~U(xn), for n = 0; 1; 2::: and to be linear on the
intervals [xn; xn+1]; (for 0 < x � x1 again continue U(x) in an arbitrary way, so that
U satis�es (2.4)).

Clearly U(x) satis�es condition (iii) as U is dominated by ~U(x) = x1=2.
To show that AE(U) = 1 let x 2]xn�1; xn[ and calculate the marginal utility U 0

at x:

U 0(x) =
U(xn) � U(xn�1)

xn � xn�1
=

22
n�1 � 22

n�2

22n � 22n�1 =
22

n�1

(1� 2�2
n�2

)

22n(1� 2�2n�1)
= 2�2

n�1

(1+o(1)):

On the other hand we calculate the average utility at x = xn:

U(xn)

xn
=

22
n�1

22n
= 2�2

n�1

:

Hence

AE(U) = lim sup
x!1

xU 0(x)

U(x)
= 1:

As regards the lack of smoothness and strict concavity of U a similar remark applies
as in (ii) ; (i) above. �
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