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Abstract. A consequence of the Hahn-Banach theorem is the classical bipolar the-
orem which states that the bipolar of a subset of a locally convex vector space equals
its closed convex hull.

The space L0(
;F ;P) of real-valued random variables on a probability space
(
;F ;P) equipped with the topology of convergence in measure fails to be locally
convex so that | a priori | the classical bipolar theorem does not apply. In this
note we show an analogue of the bipolar theorem for subsets of the positive orthant
L0+(
;F ;P), if we place L

0
+(
;F ;P) in duality with itself, the scalar product now

taking values in [0;1]. In this setting the order structure of L0(
;F ;P) plays an
important role and we obtain that the bipolar of a subset of L0+(
;F ;P) equals its
closed, convex and solid hull.

In the course of the proof we show a decomposition lemma for convex subsets
of L0+(
;F ;P) into a \bounded" and a \hereditarily unbounded" part, which seems
interesting in its own right.

1. The Bipolar Theorem

Let (
;F ;P) be a probability space and denote by L0(
;F ;P) the vector space of
(equivalence classes of) real-valued measurable functions de�ned on (
;F ;P) which
we equip with the topology of convergence in measure (see [KPR 84], chapter II,
section 2). Recall the wellknown fact (see, e.g.,[KPR 84], theorem 2.2) that, for
a di�use measure P, the topological dual of L0(
;F ;P) is reduced to f0g so that
there is no counterpart to the duality theory, which works so nicely in the context
of locally convex spaces (compare [Sch 67], chapter IV).

By L0+(
;F ;P) we denote the positive orthant of L
0(
;F ;P), i.e.,

L0+(
;F ;P) = ff 2 L0(
;F ;P); f � 0g:
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We may consider the dual pair of convex cones hL0+(
;F ;P); L
0
+(
;F ;P)i where

we de�ne the scalar product hf; gi by

hf; gi = E[fg]; f; g 2 L0+(
;F ;P):

Of course, this is not a scalar product in the usual sense of the word as it may assume
the value +1. But the expression hf; gi is a wellde�ned element of [0;1] and the
application (f; g) �! hf; gi has | mutatis mutandis | the obvious properties of
a bilinear function.

The situation is similar to the one encountered at the very foundation of measure
theory: to overcome the di�culty that E [f ] does not make sense for a general
element f 2 L0(
;F ;P) one may either restrict to elements f 2 L1(
;F ;P) or to
elements f 2 L0+(
;F ;P), admitting in the latter case the possibility E [f ] = +1.
In the present note we adopt this second point of view.

1.1 De�nition. We call a subset C � L0+ solid, if f 2 C and 0 � g � f implies
that g 2 C. The set C is said to be closed in probability or simply closed, if it is
closed with respect to the topology of convergence in probability.

1.2 De�nition. For C � L0+ we de�ne the polar C0 of C by

C0 = fg 2 L0+ : E[fg] � 1; for each f 2 Cg

1.3 Bipolar Theorem. For a set C � L0+(
;F ;P) the polar C0 is a closed,

convex, solid subset of L0+(
;F ;P).
The bipolar

C00 = ff 2 L0+ : E[fg] � 1; for each g 2 C0g

is the smallest closed, convex, solid set in L0+(
;F ;P) containing C.

To prove theorem 1.3 we need a decomposition result for convex subsets of L0+ we
present in the next section. The proof of theorem 1.3 will be given in section 3.

We �nish this introductory section by giving an easy extension of the bipolar
theorem 1.3 to subsets of L0 (as opposed to subsets of L0+). Recall that, with the
usual de�nition of solid sets in vector lattices (see [Sch 67], chapter V, section 1),
a set D � L0 is de�ned to be solid in the following way.

1.4 De�nition. A set D � L0 is solid, if f 2 D and h 2 L0 with jhj � jf j implies
h 2 D.

Note that a set D � L0 is solid if and only if the set of its absolut values jDj =
fjhj : h 2 Dg � L0+ form a solid subset of L0+ as de�ned in 1.1 and D = fh 2 L0 :
jhj 2 jDjg. Hence the second part of theorem 1.3 implies:

1.5 Corollary. Let C � L0 and jCj = fjf j : f 2 Cg. Then the smallest closed,
convex, solid set in L0 containing C equals ff 2 L0 : jf j 2 jCj00g.

Proof. Let D0 be the smallest closed, convex, solid set in L0+ containing jCj and
D = ff : jf j 2 D0g. One easily veri�es that D is the smallest closed, convex
and solid subset of L0 containing C. Applying theorem 1.3 to jCj, we obtain that
D0 = jCj00, which implies that D = ff 2 L0 : jf j 2 jCj00g. �

For more detailed results in the line of corollary 1.5 concerning more general
subsets of L0 we refer to [B 97].
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2. A Decomposition Lemma for Convex Subsets of L0+(
;F ;P)

Recall that a subset of a topological vector space X is bounded if it is absorbed
by every zero-neighborhood of X ([Sch 67], Chapter I, Section 5). In the case of
L0(
;F ;P) this amounts to the following well-known concept.

2.1 De�nition. A subset C � L0(
;F ;P) is bounded in probability if, for " > 0,
there is M > 0 such that

P[jf j >M ] < "; for f 2 C:

We now introduce a concept which describes a strong form of unboundedness in
L0(
;F ;P).

2.2 De�nition. A subset C � L0(
;F ;P) is called hereditarily unbounded in

probability on a set A 2 F , if, for every B 2 F ; B � A;P[B] > 0 we have that
CjB = ff�B : f 2 Cg fails to be a bounded subset of L0(
;F ;P).

We now are ready to formulate the decomposition result:

2.3 Lemma. Let C be a convex subset of L0+(
;F ;P). There exists a partition of

 into disjoint sets 
u;
b 2 F such that

(1) The restriction Cj
b of C to 
b is bounded in probability.
(2) C is hereditarily unbounded in probability on 
u.

The partition f
u;
bg is the unique partition of 
 satisfying (1) and (2) (up to
null sets). Moreover

(3) If P[
b] > 0 we may �nd a probability measure Qb equivalent to the restric-
tion Pj
b of P to 
b such that C is bounded in L1(
;F ; Qb). In fact, we

may choose Qb such that dQb

dP
is uniformly bounded.

(4) For " > 0 there is f 2 C s.t.

P[
u \ ff < "�1g] < ":

(5) Denote by D the smallest closed, convex, solid set containing C. Then D
has the form

D = Dj
b �L0+j
u ;

where Dj
b = fu�
b : u 2 D g and L0+j
u = f v �
u : v 2 L0+(
;F ;P) g.

Proof. Noting that the lemma holds true for C i� it holds true for the solid hull of
C we may assume w.l.g. that C is solid and convex.

We now use a standard exhausting argument to obtain 
u. Denote by B the
family of sets B 2 F ;P[B]> 0, verifying

for " > 0 there is f 2 C; s.t. P[B \ ff < "�1g] < ":

Note that B is closed under countable unions: indeed, for (Bn)1n=1 is B and " > 0,
�nd elements (fn)1n=1 in C such that

P[Bn \ ffn < 2n"�1g] < 2�n":
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Then, by the convexity and solidity of C

FN =
NX

n=1

2�nfn

is in C and, for N large enough,

P[B \ fFN < "�1g] < ":

Hence there is a set of maximal measure in B, which we denote by 
u and which
is unique up to null-sets. Let 
b = 
n
u.
(1) and (3): If P[
b] = 0 assertions (1) and (3) are trivially satis�ed; hence we
may assume that P[
b] > 0. We want to verify (3). Note, since C is a solid subset
of L0+, the convex set C 0 = C \ L1(
;F ;Pj
b) is dense in C with respect to the
convergence in probability Pj
b; hence, by Fatou's Lemma, it is enough to �nd a
probability measure Qb � Pj
b such that C 0 is bounded in L1(Qb). To this end
we apply Yan's theorem ([Y 80], theorem 2) to C 0. For convex, solid subsets C 0 of
L1+(Pj
b), this theorem states, that the following two assertions are equivalent:

(i) for each A 2 F with Pj
b[A] = P[
b \ A] > 0, there is M > 0 such that
M�A is not in the L1(
;F ;Pj
b)-closure of C

0;
(ii) there exists a probability measure Qb equivalent to Pj
b such that C 0 is a

bounded subset of L1+(
;F ; Qb). In addition, we may choose Qb such that
dQb

dP
is uniformly bounded.

Assertion (i) is satis�ed because otherwise we could �nd a subset A 2 F ; A �

b;P[A] > 0 belonging to the family B, in contradiction to the construction of 
u
above.

Hence assertion (ii) holds true which implies assertion (3) of the lemma. Obvi-
ously (3) implies assertion (1).
(2) and (4): As 
u is an element of B we infer that (4) holds true which in turn
implies (2).
(5): Obviously D � Dj
b � L0+j
u . To show the reverse inclusion let f = v + w

with v 2 Dj
b and w 2 L0+j
u . We have to show that f 2 D. Property (2) implies
that, for every n 2 N, we �nd an fn 2 C such that P[ffn � n2g \ 
u] � (1=n).
Since hn = (1 � (1=n)) v + (1=n) (fn ^ (nw)) 2 D and hn ! v + w in probability,
it follows that f 2 D.

According to (2), C is unbounded in probability in L0(
;F ;PjB) for eachB � 
u
with P[B]> 0; the uniqueness of the decomposition 
 = 
u [ 
b (up to null sets)
with respect to the assertions (1) and (2) immediately follows from this. �

3. The Proof of the Bipolar Theorem 1.3

To prove the �rst assertion of theorem 1.3 �x a set C � L0+(
;F ;P) and note
that the convexity and solidity of C0 are obvious and the closedness of C0 follows
from Fatou's lemma.

To prove the second assertion of the theorem denote by D the intersection of all
closed, convex and solid sets in L0+ containing C. Clearly D is closed, convex and
solid, which implies the inclusion D � C00. We have to show that C00 � D.
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Using assertion (5) of lemma 2.3 we may decompose 
 into 
 = 
b[
u such that
D = Dj
b � L0+j
u and (if P[
b] > 0) we �nd a probability measure Qb supported
by 
b and equivalent to the restriction Pj
b of P to 
b such that D is bounded in
L1(
;F ; Qb) (assertion (2)).

Now suppose that there is f0 2 C00nD and let us work towards a contradiction.
Let fb = f0�
b denote the restriction of f0 to 
b. It is enough to show that fb is
in D. Let us denote by Db = ff�
b : f 2 Dg the restriction of D to 
b and by

~Db = Db � L1+(
;F ; Qb) = fh 2 L1(
;F ; Qb)g : 9 f 2 Db s.t. h � f;Qb � a.s.g

the set of elements of L1(Qb) dominated by an element of Db. It is straightforward

to verify that Db and ~Db are L1(Qb)-closed, convex subsets of L1+(Qb) and L
1(Qb)

respectively, and that Db is bounded in L1+(Qb).

To show that fb is contained in D (equivalently in Db or in ~Db) it su�ces to
show that fb ^M is in Db, for each M 2 R+. Indeed, by the L1(Q)-boundedness
and L1(Q)-closedness of Db this will imply that fb = L1(Q) � limM!1 fb ^M is
in D.

So we are reduced to assuming that fb is an element of L1(Qb) which is not an

element of ~Db. Now we may apply a version of the Hahn-Banach theorem (the
separation theorem [Sch 67], theorem 9.2) to the Banach space L1(Qb) to �nd an
element g 2 L1(Qb) such that

E[fbg] > 1 while E [fg] � 1; for f 2 ~Db:

As ~Db contains the negative orthant of L1(Qb) we conclude that g � 0. Con-
sidering g as an element of L0+(
;F ;P) by letting g equal zero on 
u we therefore
have that g 2 C0 and the �rst inequality above implies that fb =2 C00 and so that
f =2 C00, a contradiction �nishing the proof. �

4. Notes and Comments

4.1 Note: Our motivation for the formulation of the bipolar theorem 1.3 above
comes from Mathematical Finance: in the language of this theory there often comes
up a duality relation between a set of contingent claims and a set of state price densi-
ties, i.e., Radon-Nikodym derivatives of absolutely continuous martingale measures.
In this setting it turns out that L0(
;F ;P) often is the natural space to work in
(as opposed to Lp(
;F ;P) for some p > 0), as it remains unchanged under the
passage from P to an equivalent measure Q (while Lp(
;F ;P) does change, for
0 < p <1). We refer, e.g., [DS 94] for a general exposition of the above described
duality relations and to [KS 97] for an applications of the bipolar theorem 1.3.

4.2 Note: Lemma 2.3 may be viewed as a variation of theorem 1 in [Y 80],
which is a result based on previous work of Mokobodzki (as an essential step in
Dellacherie's proof of the semimartingale characterization theorem due to Bichteler
and Dellacherie; see [Me 79] and [Y 80]). The proof of Yan's theorem is a blend of
a Hahn-Banach and an exhaustion argument (see, e.g., [S 94] for a presentation of
this proof and [Str 90], [S 94] for applications of Yan's theorem to Mathematical
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Finance) In fact, these arguments have their roots in the proof of the Halmos-Savage
theorem [HS 49] and the theorems of Nikishin and Maurey [N 70], [M 74].

4.3 Note: In the course of the proof of lemma 2.3 we have shown that a convex
subset C of L0+(
;F ;P) is hereditarily unbounded in probability on a set A 2 F
i�, for " > 0, there is f 2 C with

P[A\ ff < "�1g] < ";

which seems a fact worth noting in its own right.
4.4 Note: Notice that by theorem 1.3 the bipolar C00 of a given set C � L0+,

although originally de�ned with respect to P, does not change if we replace P
by an equivalent measure Q. This may also be seen directly (without applying
theorem 1.3) in the following way: If Q � P are equivalent probability measures
and h = dQ=dP is the Radon-Nikodym derivative of Q with respect to P, then
the polar C0(Q) of a given convex set C � L0+ with respect to Q equals C0(Q) =
h�1 � C0(P), where C0(P) is the dual of C with respect to P. On the other hand
EP [f g] = EP [f hh�1 g] = EQ [f h�1 g] for all g 2 L0+ and therefore the polar C00(Q)
of C0(Q) (de�ned with respect to Q) coincides with the polar C00(P) of C0(P)
(de�ned with respect to P).
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