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Abstract. | Tsirelson's stochastic di�erential equation is called \celebrated and mysteri-
ous" by Rogers and Williams bd16ce. This note aims at making it a little more celebrated and
a little less mysterious.
Using a deterministic time-change, we translate the study of Tsirelson's equation into the

study of \eternal" Brownian motion on the circle. This allows us to show that the �ltration
generated by any solution of Tsirelson's equation is also generated by some Brownian motion
(which, however, cannot be the Brownian motion driving the equation, because the equation
has no strong solution).

Introduction

The so-called innovation problem is a remarkable phenomenon in the theory of
�ltered probability spaces; see for instance x 5.4 of von Weizs�acker bd24ce. When the
answer to the innovation problem is negative, some kind of creation of information
occurs. This may happen in discrete, or continuous time (by discrete time, we refer
to processes parametrized by Z).

In discrete time, a paradigmatic example, well-known in ergodic theory, is
obtained from an independent sequence (Un)n2Z of random variables uniformly
distributed on f�1; 1g. Call (Gn)n2Z the natural �ltration of U and (Fn)n2Z the
�ltration generated by the \innovations" Vn = Un�1Un (= Un=Un�1). Both G�1
and F�1 are trivial (by Kolmogorov's zero-one law), and both �ltrations have
Vn as innovations: Vn is independent of Fn�1 (resp. Gn�1), and, together with it,
generates Fn (resp. Gn). Yet, the �ltration G strictly contains F , because each random
variable Un is independent of F1. More precisely, in the �ltration F , the process U
is observed up to multiplication by an unknown factor �1 only. This example has
been independently discovered by several authors; the earliest reference we know is
Vershik bd22ce, see also von Weizs�acker bd24ce and Exercise 4.12 in Williams bd25ce.

In this example, the �ltrations G and F are isomorphic, because they are
generated by processes (Un)n2Z and (Vn)n2Z with the same law.

In continuous time, there is an example very similar to the above discrete-time
example. Replace the discrete time Z by the line R and the state space f�1; 1g by the
circle T = R=Z. Consider a T-valued Brownian motion (Ut)t2R: each Ut is uniformly
distributed on T and U moves Brownianly. For each t 2 R, call Gt the �-algebra
generated by all the past positions Us for s 6 t and Ft the �-algebra generated
by all the past innovations Ut � Us for s 6 t. As above, each Ut is independent
of F1; this should be rather obvious on an intuitive level (and a formal proof will be
provided below). As above, both �ltrations G (generated by U) and F have trivial
tail �-�elds at �1. By analogy with the previous example, a natural question is
whether both �ltrations are isomorphic. More precisely, it is easy to see that, after



transforming the time-axis R into (0;1) by the time-change log t 7! t, F becomes
the natural �ltration of some real Brownian motion (�rst part of Proposition 3). The
question becomes, is the time-changed �ltration (Glog t)t>0 also generated by some
Brownian motion? The next section will show that the answer is positive (second
part of Proposition 3).

Another continuous-time example pertaining to the innovation problem is
Tsirelson's stochastic di�erential equation (bd21ce). This equation is of the form
dXt = dBt + g

�
t;X(bd0; tce)� dt, where B is a Brownian motion and g a bounded

function of t and of the past of X up to t, given by some explicit formula involving
fractional parts. Tsirelson has shown in bd21ce that solutions X exist and all have the
same law, but cannot be adapted to the natural �ltration of B. Our third section
will establish that, as far as �ltrations are concerned, this situation is the same as
the preceding one: given such a pair (X;B) on the time-interval bd0;1), the natural
�ltrations of X and B become, after a deterministic time-change from bd0;1) to
bd�1;1), those of a T-valued Brownian motion and its innovations (Proposition 4).
As a consequence, the natural (non time-changed) �ltration of every solution X to
Tsirelson's stochastic di�erential equation is generated by some Brownian motion
(Corollary 2).

This result should be appreciated in the context of the recent literature; in
the remarkable paper bd7ce, Dubins, Feldman, Smorodinsky and Tsirelson construct
a variant of Tsirelson's equation whose solution X generates a non-Brownian
�ltration. The question remained open, whether Tsirelson's original equation also
has this property. As this note shows, the answer is no; in retrospect, this makes
the|technically very involved|construction of bd7ce still more interesting. For further
recent pertinent examples of Brownian and non-Brownian �ltrations, we refer to
bd11ce, bd9ce, bd10ce, bd18ce, bd20ce, bd2ce, bd5ce, bd17ce, bd23ce, bd3ce, bd8ce. Most of these examples
feature the above-mentioned phenomenon of creation of information: there is a
decreasing sequence of �-�elds, all of them containing some common information,
but with trivial intersection. And Tsirelson's equation does exhibit this phenomenon,
so much so, that it inspired Rogers and Williams to comment in bd16ce: \somehow,
magically, this independent random variable has appeared from somewhere! Indeed,
it really has appeared from thin air, because bd : : : ce it is not present at time 0!"

Throughout this note, the usual hypotheses are in force: the probability spaces
are complete, the �ltrations contain all negligible events and are right-continuous.

Circular Brownian motions

The circle R=Z is called T; the symbol
1

= means equality modulo 1 (between
two real numbers, or between a real number and an element of T). For x 2 R or
x 2 T, fxg denotes the fractional part of x, that is, the real number fxg such
that 0 6 fxg < 1 and fxg 1

= x. If U is a continuous, T-valued process, we shall
distinguish between the increment Ut � Us, which takes its values in T, and the
real random variable

R t
s
dUr, de�ned by the following three (lifting) conditions: it

depends continuously on t, it vanishes for t = s, and
R t
s
dUr

1

= Ut � Us.



Definition. | Given a �ltration H = (Ht)t2R, a T-valued process (Ut)t2R will be
called a circular Brownian motion for H (abbreviated H-CBM) if it is continuous
and adapted to H and if for each s 2 R, the process t 7! R t

s
dUr, de�ned on the

interval bds;1), is a real-valued Brownian motion for the �ltration (Ht)t2bds;1).
(Equivalently, U is a Markov process for H, with transition probabilities the
Brownian semigroup on the circle.)

If H equals the natural �ltration G of U , we shall simply say that U is a
CBM. Note that this notion only depends on the law of U . It is easy to see that
circular Brownian motions exist: as the uniform probability on T is invariant for the
Brownian semigroup, a stationary, T-valued Brownian motion with the uniform
law at each �xed time is easy to construct. Uniqueness in law of CBM is less
straightforward, but follows (among other possible proofs) from Proposition 1 below.

We have phrased the de�nition of a CBM U with an arbitrary �ltration H
(instead of only considering the natural �ltration G of U), as we shall encounter
situations where G is strictly contained in another �ltration H. It then follows from
the predictable representation property of (usual) Brownian motion that a CBM U
is an H-CBM if and only if every G-martingale is an H-martingale.

Associated to a CBM U are two �ltrations: its natural �ltration, generated by
the past values Ut, and the innovation �ltration, generated by the past increments
Ut�Us or by their liftings

R t
s
dUr (which amounts to the same). Clearly, the innovation

�ltration is included in the natural �ltration; Proposition 1 will show that it is always
strictly smaller.

All CBM's have the same law, as shown by the next proposition, whose proof is
borrowed from Proposition (6.13) of Stroock and Yor bd19ce (see also x IX.3 of bd15ce
and x V.18 of bd16ce).
Proposition 1. | Let U be a CBM, with innovation �ltration F = (Ft )t2R. For
each t 2 R the random variable Ut is uniformly distributed on T and independent
of the �-�eld F1 (generated by all increments).

Proof. | Call G = (Gt)t2R the natural �ltration of U and for p 2 Z denote by ep
the character on T de�ned by ep(u) = exp (2�ipx) if u 2 T, x 2 R and u

1

= x.
For s < t,

R t
s
dUr is independent of Gs, with law N (0; t�s), so

Ebdep(Ut)jGsce = Ebdep(Us) ep(Ut�Us)jGsce = ep(Us) Ebdep(Ut�Us)jGsce
= ep(Us) E

�
exp

�
2�ip

R t
s
dUr

� �� Gs� = ep(Us) exp bd� 1
24�

2p2(t�s)ce :
This implies��Ebdep(Ut)ce�� = ��E �Ebdep(Ut)jGsce��� 6 E

�jEbdep(Ut)jGscej� = exp bd� 1
24�

2p2(t�s)ce ;
and, by letting s tend to �1, Ebdep(Ut)ce = 0 for p 6= 0. As a consequence, by the
Stone-Weierstra� theorem, Ut has a uniform law on T.

For each s, the �-�eld Fs = �(Ut�Us; t> s) of increments after s is independent
of Gs and a fortiori of Us. Thus, for s < t and p 6= 0,

Ebdep(Ut)jFsce = Ebdep(Us)jFsce ep(Ut�Us) = Ebdep(Us)ce ep(Ut�Us) = 0 ;

since we have just seen that Ebdep(Us)ce = 0. Now,
W
s2RFs = F1, and, when s # �1,

Ebdep(Ut)jFsce ! Ebdep(Ut)jF1ce by martingale convergence; so Ebdep(Ut)jF1ce = 0 too,
and Ut is not only uniform, but also independent of F1.



Definitions. | A regular time-change is an increasing (deterministic) bijection
a from R to (0;1) such that both a and its inverse a�1 are absolutely continuous
functions.

A �ltration (Ft )t>0 will be called Brownian if it is the natural �ltration of
some real Brownian motion (Bt)t>0 issued from the origin. (Only one-dimensional
Brownian �ltrations will be considered, so we simply call them Brownian.)

Proposition 2 and definition. | Let (Ft )t2R be a �ltration indexed by R.
The following are equivalent:

(i) for some regular time-change a, the �ltration (F 0t )t>0 de�ned by F 0t = Fa�1(t)
for t > 0 and by right-continuity for t = 0 is Brownian;

(ii) for every regular time-change a, the �ltration (F 0t )t>0 de�ned by F 0t = Fa�1(t)
for t > 0 and by right-continuity for t = 0 is Brownian.

When these conditions are met, the �ltration (Ft )t2R is called Brownian.

For instance, if (Bt)t>0 is a real Brownian motion issued from the origin, the
stationary Ornstein-Uhlenbeck process (Xt)t2R de�ned by Xt = e�t=2Bet generates
a Brownian �ltration on R; and conversely, every Brownian �ltration on R is the
natural �ltration of such a stationary Ornstein-Uhlenbeck process.

Proof of Proposition 2.| We have to show (i)) (ii); this reduces to checking
that, if a and b are regular time-changes, the homeomorphism � = aÆb�1 from (0;1)
to itself has the following property: if B is a Brownian motion on bd0;1), started
at 0, the process Xt = B�(t) generates a Brownian �ltration. As � and its inverse are
absolutely continuous, the Lebesgue derivative  of � is almost everywhere de�ned
and strictly positive. The process X = BÆ� is a gaussian martingale, with quadratic
variation �(t). The martingale �t =

R t
0  

�1=2(s) dXs is a Brownian motion; as
Xt =

R t
0
 1=2(s) d�s, both X and � generate the same �ltration.

Definitions. | A chopping sequence is a sequence (tk)k2Z of real numbers such
that tk < tk+1, lim

k!�1
tk = �1 and lim

k!+1
tk = +1.

Given a chopping sequence (tk)k2Z, a chopped Brownian motion (respectively a
T-valued chopped Brownian motion ) is a c�adl�ag process Z whose restriction Zk to
each interval bdtk; tk+1) is a real Brownian motion (respectively a T-valued Brownian
motion) started from 0 at time tk, all the Z

k's being independent.

Lemma 1. | The �ltration generated by a chopped Brownian motion, or by a
T-valued chopped Brownian motion, is Brownian.

Remark. | The converse also holds (but we shall not need it): every Brownian
�ltration indexed by R is the natural �ltration of a chopped Brownian motion. More
generally, if some c�adl�ag process Z generates a Brownian �ltration, every Brownian
�ltration is generated by a process with the same law as Z.

Proof of Lemma 1.| A T-valued chopped Brownian motion V clearly generates
the same �ltration as the real chopped Brownian motion Z de�ned by Zt =

R t
tk
dVs

for t 2 bdtk; tk+1); so it suÆces to prove the lemma for real processes.
The chopping sequence (tk)k2Z and the chopped Brownian motion Z are

given. Introduce a sequence (ck)k2Z of strictly positive constants such thatP
k<0

ck (tk+1� tk) <1 and
P
k>0

ck (tk+1� tk) =1; de�ne a regular time-change by



a(t) =

Z t

�1

X
k2Z

ck 1l(tk;tk+1ce(s) ds

and a process (Bt)t>0 by

Ba(t) =
p
ck Zt +

X
`6k

p
c`�1 Zt`� for tk 6 t < tk+1.

By scaling, Bk
t = Bt � Ba(tk) =

p
ck Z

k
a�1(t) is a Brownian motion on the interval�

a(tk); a(tk+1)
�
; and these Brownian motions Bk are independent. So the series in

the de�nition of B is convergent and B is a Brownian motion. As

Zt =
1p
ck

(Ba(t)�Ba(tk)) for tk 6 t < tk+1,

the natural �ltrations of Z and B are time-changed from each other, and Z generates
a Brownian �ltration.

Proposition 3. | The natural �ltration G and the innovation �ltration F of a
CBM are Brownian.

Proof.| Let U = (Ut)t2R be a CBM, G its natural �ltration, and F its innovation
�ltration. Choose any chopping sequence (tk)k2Z; for instance, tk = k is a possible
choice. The chopped Brownian motion

Zt =
X
k2Z

1lbdtk;tk+1)(t)

Z t

tk

dUr

generates F , so F is Brownian by Lemma 1.

The proof for G is less straightforward. In fact, it involves a key idea of the present
paper, a certain coupling lemma (for a vivid presentation of the use of coupling in
the theory of Markov processes, see Diaconis bd6ce).
Lemma 2. | If (Xt)t>0 is a T-valued Brownian motion de�ned on some�

;A;P; (Ht)t>0

�
, there exists a T-valued Brownian motion (Yt)t>0, de�ned on

the same
�

;A;P; (Ht)t>0

�
, satisfying the following four properties:

(i) Y0 = 0 2 T;
(ii) Y is independent of X0;

(iii) both processes (Xt)t>0 and (X0; Yt)t>0 generate the same �ltration;

(iv) calling S the H-stopping time inf ft : Xt = Ytg, one has PbdS> tce 6 1=(4t)
and Y = X on bdbdS;1bdbd.
Proof of Lemma 2.| Introduce theH-stopping time S = inf ft : Xt+Xt = X0g.
The process

Yt =

�
X0 �Xt if t 6 S
Xt if t > S.

is continuous by de�nition of S; it starts from 0, is H-adapted and veri�esZ t

0

dYs =

Z t

0

(�1lbdbd0;Scece+1lceceS;1bdbd)(s) dXs;

so it is a T-valued H-Brownian motion. As it starts from 0, it is independent of H0,
whence (ii). ReplacingH by the natural �ltration ofX shows that (X0; Y ) is adapted



to that �ltration; to show (iii), it suÆces to reconstruct X from X0 and Y . This is
easy: S is also the �rst time when Y + Y = X0, and X is equal to X0�Y up to S,
and equal to Y from S on. Clearly, S is the same as the one de�ned in (iv). Last,
to establish the estimate PbdS> tce 6 1=(4t) in (iv), de�ne

T = inf
�
t :

��R t
0
dXs

�� = 1
2

	
:

When t ranges from 0 to T , Xt�X0 visits all points of one of the two arcs
linking 0 and 1

2 in the circle T; so during this time-interval (Xt�X0) + (Xt�X0)
assumes all possible values on the circle, in particular the value �X0. This implies
S 6 T , whence the majoration PbdS> tce 6 PbdT > tce. Now the Brownian estimate

EbdT ce = E
��R T

0
dXs

�2�
= (�1=2)2 = 1=4 yields PbdT > tce 6 EbdT ce=t = 1=(4t).

End of the proof of Proposition 3. | To show that the natural �ltration G
of U is Brownian, it suÆces by Lemma 1 to exhibit a T-valued chopped Brownian
motion V that generates G. To this end, choose any chopping sequence (tk)k2Z such
that X

k<0

1

tk+1 � tk <1 ;

for instance, tk = k3 is a possible choice. For each k, Lemma 2 applied to the
T-valued Brownian motion (Ut)t>tk provides us with a T-valued Brownian motion
V k de�ned on bdtk;1), issued from 0 at time tk, verifying condition (iii) of Lemma 2,
and equal to U after some G-stopping time Sk such that PbdSk�tk > tce 6 1=(4t).
We shall establish that the process (Vt )t2R equal to V k on bdtk; tk+1) is a T-valued
chopped Brownian motion and generates the �ltration G. Clearly, V is G-adapted.

To see that V is a T-valued chopped Brownian motion, we only have to show
that the processes (V k

t )t2bdtk;tk+1) are independent; it suÆces to establish that V k

is independent of Gtk . This can be obtained by writing, for a real-valued, bounded
Borel functional f ,

Ebdf(V k)jGtkce
(1)
= E

�
fÆ�k

�
(Ut)t>tk

���Gtk� (2)
= E

�
fÆ�k

�
(Ut)t>tk

���Utk�
= Ebdf(V k)jUtkce

(3)
= Ebdf(V k)ce ;

where (1) stems from the fact that V k is a functional of (Ut)t>tk (by Property (iii)
of Lemma 2), (2) from the Markov property of U , and (3) from the independence
of V k and Utk (by Property (ii) of Lemma 2).

It remains to see that V generates G, or equivalently that U is adapted to V . By
Property (iii) of Lemma 2, there are some adapted Borel functionals  k such that

(Ut)t2bdtk;tk+1) =  k
�
Utk ; (Vt )t2bdtk;tk+1)

�
a. s. for each k.

(Adaptedness means that for t 2 bdtk; tk+1), the restriction of  k(x; v) to bdtk; tce is a
function of x and of the restriction of v to bdtk; tce.) Using those  's, it is possible for
each k 2 Z to de�ne inductively a T-valued, c�adl�ag, V -adapted process (Uk

t )t2R by

Uk
t = 0 for t 2 (�1; tk);

(Uk
t )t2bdtk;tk+1) =  k

�
Vtk�; (Vt )t2bdtk;tk+1)

�
;

(Uk
t )t2bdt`;t`+1) =  `

�
Uk
t`�

; (Vt )t2bdt`;t`+1)
�

for ` > k:

(If the left-limit Uk
t`� is not de�ned, put for instance Uk

t = 0 for t > t`.) On the
event Ek = fSk�1 < tkg, one has Vtk� = Utk� = Utk ; by de�nition of  k, this gives



Uk = U on bdtk; tk+1)�Ek. Now if, for some ` > k, Uk is equal to U on the set
bdt`; t`+1)�Ek, then U

k
t`+1�

= Ut`+1� = Ut`+1 on Ek and so, by de�nition of  `+1,
Uk agrees with U on the next interval bdt`+1; t`+2)�Ek. Consequently, U

k and U are
equal on bdtk;1)�Ek.

Now take t = tk+1�tk in the estimate PbdSk�tk > tce 6 1=(4t) and use the
condition on the tk's, to get

P
k<0 PbdEc

kce < 1. The Borel-Cantelli lemma then
says that lim supk!�1 Ec

k is negligible, and Ek converges almost surely to 

when k ! �1. So bdtk;1)�Ek tends to R�
, and consequently Uk converges
(stationarily) to U . As each Uk is V -adapted, so is also U .

Remark (not used in the sequel). | When T is replaced by a compact, connected
Riemannian manifold M , it remains true that Brownian motion in M indexed
by R has a Brownian �ltration (but the innovation �ltration can no longer be
de�ned, unless M is endowed with some extra structure, e.g. Lie group or symmetric
space). The de�nition of a Brownian �ltration must of course be modi�ed, with
d-dimensional Bronian motions instead of real ones (where d is the dimension
of M ). We have not found a simple proof of this fact; M. Arnaudon establishes
it in an appendix to this note by an argument using a mirror-coupling and some
hypoelliptical di�usions. But the case when M is a d-dimensional sphere is much
simpler (the mirror-coupling can be de�ned so as to avoid all cut-locus diÆculties);
as an illustration, we show here how that case can be dealt with, and refer to
Arnaudon's appendix bd1ce for the general case.

It suÆces to extend Lemma 2 to M , the rest of the proof carries over almost
verbatim. There are only two small di�erences: �rst, in (i) the point 0 2 T has
to be replaced with an arbitrary origin O 2 M ; second, in (iv), any estimate of
the form PbdS> tce 6 f(t) will do, provided f(t) ! 0 when t ! 1 (the conditionP

k<0(tk+1�tk)�1 <1 in the proof will become
P

k<0 f(tk+1�tk) <1).

To prove the extended Lemma 2, consider M as the subset of Rd+1 made of all
points at distance R from the origin 0 2 Rd+1; for x 2 M call Hx the perpendicular
bissector of the segment bdOxce and de�ne the mirror-map �x as the symmetry with
respect to the hyperplane Hx; �x is an isometry of M exchanging O and x (when
x = O, just take �x = Id

M
). It then suÆces to put S = inf ft : Xt 2 HX0

g (take
S = 0 if X0 = O) and Yt = �X0

Xt if t 6 S, Yt = Xt if t > S. This Y is a M -valued
X -Brownian motion satisfying (in Rd+1)

Yt = O +

Z t

0

(1lbdbd0;Scece�X0
+1lceceS;1bdbdId)(dXs) ;

whence properties (i), (ii) and (iii). To establish the estimate (iv), it suÆces to show
that, if E denotes a �xed hemisphere and T the �rst hitting time of the boundary
@E by a Brownian motion in E, then PxbdT > tce tends to 0 uniformly in x 2 E when
t ! 1. But the function g(t; x) = P

xbdT > tce is continuous on (0;1)�E (it is the
solution to the heat equation @g=@t = 1

2�g with boundary conditions g = 1 for
t = 0 and g = 0 on @E), and for each �xed x, it decreases to zero when t!1; so
uniformity in x is a consequence of Dini's lemma.

Corollary 1. | Let
�

;A;P; (Ht)t2R

�
be a �ltered probability space. There exists

an H-CBM if and only if for some (or equivalently for every) regular time-change a,
the �ltration (H0t)t>0 de�ned by H0t = Ha�1(t) admits an H0-Brownian motion (i.e.,
some H0-martingale is a Brownian motion).



Proof. | If U = (Ut)t2R is an H-CBM, its natural �ltration G is Brownian
by Proposition 3, and the time-changed �ltration G0 is generated by a Brownian
motion B with B0 = 0. As U is a Markov process for H, every G-martingale is an
H-martingale, and, by time-change, every G0-martingale is an H0-martingale. So B
is an H0-Brownian motion.

Conversely, if B is an H0-Brownian motion, call G0 the natural �ltration of
B�B0 and notice that every G0-martingale is an H0-martingale. The time-change
transforms G0 into the natural �ltration G of some CBM U ; as every G-martingale
is an H-martingale, U is also an H-CBM.

Tsirelson's stochastic di�erential equation

In 1975, Tsirelson bd21ce has constructed the �rst example of a stochastic di�eren-
tial equation

(T) dXt = dBt + gbdt; (Xs; s6t)ce dt X0 = 0

having the following properties: B = (Bt)t>0 is a Brownian motion, g is a
bounded, measurable function of the past (Xs; 06s6t) of the solution X = (Xt)t>0,
(T) has some (weak) solutions, but no solution X can be adapted to the �ltration
generated by B.

Tsirelson's equation has been extensively studied; see for instance bd4ce, bd14ce, bd19ce,
bd13ce, bd26ce, bd27ce, bd12ce.

To de�ne g, Tsirelson introduces a sequence (tk)k60 of instants verifying tk < tk+1

and lim
k!�1

tk = 0. The function g he considers is given by

g
�
t; (Xs; s6t)

�
=
X
k<0

nXtk �Xtk�1

tk� tk�1

o
1l(tk;tk+1ce(t)

(recall that fxg denotes the fractional part of x).
A solution to (T) is a system (
;A;P;H; B;X), where (
;A;P;H) is a �ltered

probability space, B is an H-Brownian motion started at 0, and X is H-adapted and
veri�es (T). Given such a solution, if G denotes the sub-�ltration of H generated
by X, then B is clearly adapted to G, so it is also a G-Brownian motion, and
(
;A;P;G; B;X) is a solution too. The aim of this section is to establish that G is
generated by some real Brownian motion started at the origin. This will be done by
reducing the problem to the one addressed in Proposition 3; to do so, we shall need
some notation.

Fix once and for all the sequence (tk)k60 and by this choice the function g. De�ne
two functions f and � on (0;1) by

f(t) =
X
k<0

1

tk+1� tk 1l(tk;tk+1ce(t) + 1l(t0;1)(t) �(t) =

Z t

t0

f(s)2 ds :

AsZ t0

0

f(s)2 ds =
X
k<0

1

tk+1� tk = +1 and

Z 1

t0

f(s)2 ds =

Z 1

t0

ds = +1 ;

� is a homeomorphism from (0;1) to R; its inverse a is a regular time-change.



Proposition 4. | Fix the probability space (
;A;P).
a) If, on (
;A;P), (H; B;X) is a solution to (T), de�ne a T-valued process

(Ut)t2(0;1) by

Ut
1

=

8>><
>>:

Bt�Btk

tk+1� tk +
Xtk �Xtk�1

tk � tk�1
for t 2 (tk; tk+1ce

Bt�Bt0 +
Xt0 �Xt

�1

t0� t�1
for t > t0

and time-change both U and H by �: for t 2 R, set eUt = Ua(t) and eHt = Ha(t).
The process eU is a eH-CBM.

b) Conversely, if ( eHt)t2R is a �ltration on (
;A;P) and if (eUt)t2R is an eH-CBM,
time-change them to a �ltration (Ht)t>0 and a process (Ut)t>0 by Ht = eH�(t) and
Ut = eU�(t); for t > 0 set

Bt =

Z t

0

1

f(s)
dUs ; Xt = Bt +

Z t

0

X
k<0

fUtkg 1l(tk;tk+1ce(s) ds :

Then (H; B;X) is a solution to (T).

c) The two maps de�ned in a) and b) are inverse to each other; they establish a
bijection between the solutions (H; B;X) to (T) and the CBM's ( eH; eU).

d) Given a corresponding pair (H; B;X) ! ( eH; eU), call G the natural �ltration

of X, F that of B, eG that of eU and eF the innovation �ltration of eU . These
�ltrations are time-changed from one another:eGt = Ga(t) Gt = eG�(t) ; eFt = Fa(t) Ft = eF�(t) :
In particular, H is the natural �ltration of X if and only if eH is the natural �ltration
of eU .

Remark.| This long statement can be summarized as follows. For �xed (
;A;P),
there exists a bijection between the solutions (H; B;X) to (T) on the one hand
and the pairs ( eH; eU) where eU is a eH-CBM on the other hand, with the following
properties: The time-changes a and � exchange the �ltrations H and eH; they also
exchange the natural �ltrations G of X and eG of eU , as well as the natural �ltration
F of B and the innovation �ltration eF of eU .

So the process X corresponds to eU while B corresponds to the innovations
of eU . Remark that the triple (H; B;X) is redundant, for B is a functional of X;
consequently the proposition could be rephrased so as to state a correspondence
between the pairs (H; X) and ( eH; eU); this would look more symmetric.

Proof of Proposition 4. | a) If (H; B;X) is a solution to (T), for each k < 0
one has

Xtk+1 �Xtk = Btk+1 �Btk +

Z tk+1

tk

gbdt; (Xs; s6t)ce dt

= Btk+1 �Btk +
nXtk �Xtk�1

tk � tk�1

o
(tk+1� tk) ;

dividing both sides by tk+1�tk and working modulo 1 to strip o� the braces yields

Xtk+1 �Xtk

tk+1� tk
1

=
Btk+1 �Btk

tk+1� tk +
Xtk �Xtk�1

tk � tk�1
:



Considered as elements of T, the right-hand side is Utk+1 and the left-hand one is
the limit of Ut when t tends to tk+1 from above. This shows that the process U is
continuous at point tk+1 and hence everywhere, and gives a meaning to

R t
s
dUr.

For s 6 t with s and t in the same interval (tk; tk+1ce or (t0;1), the de�nition of
U implies Z t

s

dUr =

Z t

s

f(r) dBr :

By additivity, this formula remains valid for all pairs s 6 t in (0;1); notice that
the right-hand side is an H-martingale in t on the interval bds;1). By time-change,
one gets, for s 6 t in R, Z t

s

deUr = Z a(t)

a(s)

f(r) dBr

and the right-hand side is an eH-Brownian motion since

Z a(t)

a(s)

f2(r) dr = t� s. As eU
is adapted to eH, it is an eH-CBM.

b) For each s > 0, the process (Bt)t>s is a continuous H-martingale, with
quadratic variationZ t

s

1

f2(r)
dbdU;Ucer =

Z �(t)

�(s)

1

f2
�
�(r)

� dr = t� s ;

hence a Brownian motion. Consequently, (Bt)t>0 is an H-Brownian motion, starting
at B0 = 0.

Since 0 6 fUtkg < 1, the integral in the de�nition of X is convergent. For k 6 0,

Xtk �Xtk�1 = Btk � Btk�1 + fUtk�1g (tk � tk�1)

=

Z tk

tk�1

1

f(r)
dUr + fUtk�1g (tk � tk�1)

= (tk� tk�1)
hZ tk

tk�1

dUr + fUtk�1g
i
;

so
Xtk �Xtk�1

tk � tk�1

1

= Utk , wherefrom fUtkg =
nXtk �Xtk�1

tk� tk�1

o
and X veri�es (T).

c) We �rst show that the composed map (H; B;X) 7! ( eH; eU) 7! (H0; B0; X 0) is
identity: (H0; B0; X 0) = (H; B;X). That H0 = H is trivial: two inverse time-changes
cancel. Then, B0 is de�ned by dB0

t = dUt=f(t) and U veri�es dUt = f(t) dBt, giving
B0 = B. Last, the right-continuity of U at tk yields Utk

1

= (Xtk �Xtk�1)=(tk� tk�1),
whence dX 0

t = dBt + gbdt; (Xs; s6t)ce dt = dXt, giving X
0 = X.

Now the other way round: ( eH; eU) 7! (H; B;X) 7! ( eH0; eU 0) is identity too. Again,eH0 = eH is trivial. Time-change eU and eU 0 to get a U and a U 0. For t 2 bdtk; tk+1)
(with the convention t1 =1),

Ut
0 1

=

Z t

tk

f(s) dBs +
Xtk �Xtk�1

tk � tk�1
=

Z t

tk

dUs +
Xtk �Xtk�1

tk � tk�1
:

But we have seen in the proof of b) that
Xtk �Xtk�1

tk � tk�1

1

= Utk , so Ut
0 = Ut.

d) As X and B are G-adapted, the de�nition given in a), how to obtain U from
B and X, shows that U is G-adapted. Conversely, the de�nitions given in b), how



to obtain B and X from U , show that X is adapted to the natural �ltration of U .
So U has G as natural �ltration; by time-change, this gives the relation between G
and eG.

The formulae dB = (1=f) dU and dU = f dB show that the increments of U
generate the �ltration F ; by time-change, this gives the relation between F and eF .

Proposition 4 reduces the study of Tsirelson's equation to that of CBM's.
Transferring to (T) what we know about CBM's gives the following statement (where
only the last sentence is new):

Corollary 2. | Solutions (
;A;P;H; B;X) to Tsirelson's equation exist. More
precisely, on a given

�

;A;P; (Ht)t>0

�
, a solution (B;X) exists if and only if there

exists an H-Brownian motion. The law of a solution (B;X) depends only on the
sequence (tk)k60. Given any solution, the natural �ltration of X is Brownian.

Proof. | If (H; B;X) is a solution, B is an H-Brownian motion. Conversely, if
an H-Brownian motion exists, the �ltration ( eHt)t2R de�ned by eHt = Ha(t) contains
some CBM eU by Corollary 1 and a solution (H; B;X) exists by Proposition 4.b.

The rest of the corollary is straightforward from Propositions 3 and 4.

Remarks. | a) If the reader does not care about CBM's and is only interested
in knowing that the �ltration of X is Brownian, the proofs given above can be
shortened.

First, in Proposition 4, only a) and d) are needed, so half of the computations
can be dispensed with.

More important, a long detour we have taken can be bypassed. Our proof
consisted in time-changing (T) to get a CBM; and the proof that the �ltration of a
CBM is Brownian was done by time-changing back the CBM to work on R+ (with
a time-change provided by Lemma 1). By choosing in the proof of Proposition 3
the same (modulo the time-change) sequence (tk)k60 that is used to de�ne g, it is
possible to show directly that the �ltration of X is Brownian, with a proof quite
similar to that of Proposition 3, that uses the time-changed CBM U featuring in
Proposition 4 a).

The reason for this detour was that we found it instructive, on an intuitive
level, that the \mysterious" Tsirelson example may be one-to-one translated into
Brownian motion on the circle, an object which to us does not seem mysterious
at all.

b) After this work was completed, we learned that A. Vershik proved a long time
ago the following (unpublished) result: When taken at the subdivision times tn, a
solution X to (T) generates a standard discrete �ltration, a necessary condition
for the continuous-time �ltration to be Brownian. We �nd it striking that his
(combinatorial) method of proof also involves coupling two (discrete) processes.

This standardness result was independently rediscovered by M. Malric (also
unpublished).
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