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Non-Arbitrage and

the Fundamental Theorem of Asset Pricing:

Summary of Main Results

Freddy Delbaen and Walter Schachermayer

Abstract. The concept of no arbitrage roughly says that it is impossible to
make money out of nothing. The mathematical translation of this concept
uses martingale theory and stochastic analysis. The paper gives an overview
of the results obtained by the authors.

1. Introduction and Notation

Starting from the economically meaningful assumption that (St)t2R+ essentially
does not allow arbitrage pro�ts, the fundamental theorem of asset pricing allows
the probability P on the underlying probability space (
;F ;P) to be replaced by
an equivalent measure Q such that the process S becomes a (local) martingale
under the new measure. This makes it possible to use the rich machinery of mar-
tingale theory. The present summary focuses on the question: \What is the precise
meaning of the word essentially?" From a purely mathematical point of view, we
remark that the proofs of the theorems below turn out to be surprisingly hard and
require heavy machinery from the theory of stochastic processes, from functional
analysis and also require some very technical estimates. The results are or will be
published elsewhere where we will give references to related work of other authors.
We apologise that in this summary no bibliographic references are given.

The Rd -valued process S, sometimes denoted (St)t2R+, is supposed to satisfy
mathematical properties that reect economically meaningful ideas such as no ar-
bitrage. There should be no trading strategy H for the process S, such that the
�nal payo� described by the stochastic integral (H �S)1, is a nonnegative function,
strictly positive with positive probability. The economic interpretation is that by
betting on the process S and without bearing any risk, it should not be possible to
make something out of nothing.
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Mathematically a buy-and-hold strategy is described as an integrand of the
form H = f 1]]T1;T2]], where T1 � T2 are �nite stopping times and f is FT1-
measurable. The advantage of using such integrands is that they have a clear
interpretation: when time T1(!) comes up, buy f(!) units of the �nancial asset,
keep them until time T2(!) and sell. The use of stopping times is interpreted as
the use of signals coming from available, observable information. This explains
why in �nancial theories the �ltration and the derived concepts such as predictable
processes, are important. A linear combination of such buy-and-hold strategies
is called a simple integrand. Even if the process S is not a semi-martingale,
the stochastic integral (H � S) for H = f 1]]T1;T2]] can be de�ned as the process
(H � S)t = (Smin(t;T2) � Smin(t;T1))f .

We showed that in the general case simple integrands are not su�cient to
characterise these processes that admit an equivalent martingale measure. On the
other hand the use of general integrands leads to other problems. The �rst is
that H � S has to exist. The hypothesis that S is a semi-martingale is therefore
introduced. Earlier work shows that this property follows from very weak no-
arbitrage properties. A second di�culty is the problem of doubling strategies (\les
martingales" in French). To avoid these pathologies, a lower bound on the losses
needs to be introduced. The resulting integrands are called admissible. In the
general case, i. e., a time set of the form [0;1[ or [0; 1] and with a possibility of
random jumps, the situation is very delicate.

The following notation will be used. The space (
;F ;P) as well as the �ltration
(Ft)t2R+will remain �xed. Economically this means that we are not considering im-
portant problems such as inside information or better/faster accessibility to (il)legal
information. We suppose that the �ltration satis�es the usual assumptions. The
space L0 denotes the vector space of all real-valued measurable functions de�ned
on 
, where as usual two functions equal a. s. are identi�ed. Endowed with the
topology of convergence in probability, this space becomes a complete, metrisable
vector space (i. e. a Fr�echet space). The space cannot be given an equivalent norm
and there are, in general, no continuous linear functions from L0 to R. The space
L1 is the subspace of L0 of all bounded functions. Equipped with the obvious
norm kfk1 = ess supjf(!)j, it becomes a Banach space that is the dual of L1. The
use of separation theorems in the space L1 poses the problem that the dual space
of L1 is not L1 and care has to be taken to work with sets that are weak�, i. e.,
�(L1; L1), closed. We remark that the two spaces L1 as well as L0 are, among the
Lp spaces, the only two spaces that remain the same when the original probability
measure is replaced by an equivalent one.

S denotes an Rd -valued semi-martingale, de�ned on the �ltered probability
space (
; (Ft)t2R+;P). An R

d -valued predictable process H is called a-admissible
if it is S-integrable, if H0 = 0, if the stochastic integral satis�es H � S � �a and if
limt!1(H � S)t exists a. s. If the integrand H is a-admissible for some a, then we
simply call H admissible. It is understood that vector stochastic integration theory
is used. We also need the following sets:

K = f (H � S)1 j H is admissible g;

Ka = f (H � S)1 j H is a-admissible g;

C0 = K � L0+ ;

C = C0 \ L
1:
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The following properties for S all reect the idea that it is impossible to make
something out of nothing. The bar denotes closure taken in the norm topology of
L1. This means that we will have to take care of the particularities related to the
duality (L1; L1). We say that the process S satis�es the (NA) or No Arbitrage
property if:

K \ L0+ = f0g(NA)

which is equivalent to:

C \ L1+ = f0g:

The process S is said to satisfy the (NFLVR) property or the No Free Lunch with
Vanishing Risk property if:

(NFLVR) C \ L1+ = f0g:

The latter property can be explained as follows. An element f 2 C is the limit
in L1-norm of a sequence (fn)n�1 taken in C. If f � 0 then clearly the sequence
of possible losses (f�n )n�1 tends to zero uniformly, i. e., the risk vanishes. The
expression \No Free Lunch" is an old expression used already in the early days of
the �nance literature. Kreps gave the following technical de�nition of this concept.
Let S be a bounded process and let Ksimple be the set of all outcomes with respect
to bounded simple integrands. We de�ne Csimple in the same way,

Csimple =
�
Ksimple � L0+

�
\ L1:

Kreps says that the c�adl�ag adapted process satis�es the property of \No Free
Lunch," if

(NFL) Ĉsimple \ L1+ = f0g;

where the tilde means the weak� closure. Unfortunately the weak� closure cannot
be obtained by sequences. One has to use general concepts such as nets, generalised
sequences and/or �lters. The economic interpretation of these objects is unclear.
It may happen that an element in the weak� closure can only be obtained by an
unbounded generalised sequence. On the other hand the very strong requirement of
(NFL) implies that S is a semi-martingale and that there is an equivalent martingale
measure for the process S. The property (NFLVR) is a slightly stronger version
than the no-arbitrage condition. However we pay a price (there is no free lunch
as you know). We have to introduce the set of outcomes with respect to general
admissible integrands. The construction of the stochastic integral has a lot of
stability built in. Therefore we can do it with an assumption such as (NFLVR).
The exploitation of this stability requires however the use of non-trivial arguments.

The following theorem relates the de�nition of (NFLVR) to a boundedness
property in L0.

Theorem 1. The process S satis�es the property (NFLVR) if and only if it
satis�es

1. (NA) and
2. K1 is bounded in the space L0.
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We remark that the boundedness of the set K1 has a direct economic interpreta-
tion. For outcomes that have a maximal loss bounded by 1, the pro�t is bounded in
probability, this means that the probability of making a big pro�t can be estimated
from above, uniformly over all such outcomes.

The following theorem gives a way to control the boundedness of the set K1.

Theorem 2. If there is a positive local martingale L such that L0 = 1 and
L1 > 0 a. s. as well as a strictly positive real-valued predictable process � such that
(� � S)L is a local martingale, then the set K1 is bounded in L0.

The multiplication with a function � is done in order to take care of processes
with big jumps. We will give more information on this in the last section. We
remark that when � is a bounded, nonzero real-valued predictable process, then
the set of stochastic integrals with respect to S is the same as the set of stochastic
integrals with respect to � � S. So as long as only the stochastic integrals matter,
we can always replace S by a \better" process � �S. For locally bounded processes
we usually can take � = 1. We also emphasize that in the above theorem we only
require L to be a local martingale. See also the remark after Theorem 6.

2. The locally bounded case

The next theorem shows that, at least for locally bounded semi-martingales,
the (NFLVR) property is equivalent to the existence of an equivalent probability
measure that turns the price process S into a local martingale. It is easily seen that
we may without loss of generality suppose that the process S is bounded, instead
of locally bounded. Indeed if (Tn)n�0 is an increasing sequence of stopping times
such that T0 = 0, limn!1 Tn = 1 and such that every stopped processes STn is
bounded, by say kn, then we can replace the process S by the process

S0 =
X
n�1

1]]Tn�1;Tn]]
1

kn2n
�
STn � STn�1

�
=

�X
n�1

1

kn2n
1]]Tn�1;Tn]]

�
� S :

Showing that there is an equivalent probability such that S becomes a local mar-
tingale is then the same as showing that there is a probability that turns S0 into a
martingale.

Theorem 3. The locally bounded semi-martingale S satis�es the (NFLVR)
property if and only if there is an equivalent measure Q under which S becomes a
local martingale. In this case the set C is closed in the weak� topology �(L1; L1).

The key point is of course to show that the set C is weak� closed. Because
of the (NA) property, the set C does not intersect the positive cone, and we can
separate with a hyperplane given by a function in L1. More precisely there is
a strictly positive function g in L1 such that for all f 2 C we have E[fg] � 0.
This implies that for elements of the form f = 1A(St � Ss) where s < t and
A 2 Fs, we necessarily have E[fg] = 0, since indeed both f and �f are in C. It
is here that we use that the process S is bounded. Normalising g then gives us an
equivalent probability dQ = g dP that turns S into a martingale. The fact that
C is weak� closed can be proved for general (i. e., not necessarily locally bounded)
semi-martingales. However the last step of the proof, both f and �f being in C,
fails! The proof of the weak� closure is based upon the following lemma. We �rst
need a de�nition:
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Definition 4. An element f 2 K is called maximal if for g � f a. s. and g 2 K
we necessarily have that f = g.

It is easily seen that the (NA) property says that 0 is maximal. Also there
are no maximal elements if the (NA) property is violated. Therefore we have that
f 2 K1 is maximal in K1 if and only if it is maximal in K.

Lemma 5. Suppose that the process S satis�es the (NFLVR) property. If
(fn)n�1 is a sequence in K1, then there exists a sequence of convex combinations
gn 2 convexffn; fn+1; : : : g that converges in probability to some function g: 
! R.
Moreover there is a maximal element f 2 K1 such that g � f , i. e., g 2 C.

From this lemma the weak� closure is easily deduced. One uses the property
that a convex set in L1 is weak� closed if and only if the intersections with the
balls of L1 are closed for the convergence in probability. We will not give a sketch
of the proof of the lemma.

For continuous processes we can do a little bit better as the following theorem
shows.

Theorem 6. Suppose that S is continuous with Doob{Meyer decomposition
S =M +A. If S satis�es the (NA) property, then the following assertions hold:

1. The measure dA is for almost all ! 2 
 absolutely continuous with respect
to the matrix valued measure dhM;Mi.

2. The predictable density h de�ned as dA = h dhM;Mi satis�es the property

T = inf
n
t > 0

���
Z t

0

hu dhM;Miuhu = +1
o
> 0 a. s.

3. The exponential local martingale

Lt = exp

�
�

Z t

0

hu dMu �
1

2

Z t

0

hu dhM;Miuhu

�
is de�ned.

4. There is Q, a probability measure absolutely continuous with respect to P,
under which S becomes a local martingale and for which fdQ=dP > 0g =
fL1 > 0g.

5. If Q is an absolutely continuous probability measure under which S becomes
a local martingale, then necessarily fdQ=dP > 0g � fL1 > 0g.

If L satis�es the property that L1 > 0 a. s., then we have a situation that is
described by Theorem 2 and hence the set K1 is bounded in L0. Indeed by using
Itô's calculus and the fact that S and L are continuous, it is easily veri�ed that LS
is a local martingale. Together with the (NA) property this implies the (NFLVR)
property and the theorem is proved. The case where L can become zero is more
di�cult to treat.

We remark that, except in the case of complete markets, the change of measure
is not necessarily given by the local martingale L. There are examples of a strict
local martingale Z such that there is an equivalent measure under which Z becomes
a uniformly integrable martingale. This means that if we de�ne S = 1=Z and apply
the construction above, we �nd L = Z and hence LS = 1. However the process L
does not de�ne a new probability measure since E[L1] < 1. This also shows that
for continuous processes S there is a strict separation between the (NA) property
and the boundedness of K1. As an illustration of this loose statement, we take,
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on the time interval [0; 1], the Bessel process S in three dimensions, S0 = 1 and
with its natural �ltration. It is easily seen that in this case the only candidate for
a density is the strict local martingale L = 1=S. We conclude that the process S
cannot have an equivalent local martingale measure and hence it cannot satisfy the
(NA) property.

This example also shows that when we use L as a description of a foreign
currency, there is no way of making arbitrage by betting on this currency. However
the people living in the foreign country are faced with an exchange rate given by
S and they have a possibility to make winning bets (also called investments)! Of
course this paradoxical situation arises from the notion of admissible integrands.
This notion is not invariant for currency changes. What is possible for the foreigners
is not possible for the domestics! It also shows that a change of num�eraire should
be done with some extra care.

For the following theorems we need some extra notation. It is assumed that
the bounded process S admits an equivalent local martingale measure. De�ne

Me(P) =
n
Q

��� Q is equivalent to P

and the process S is a Q-local martingale

o

and

M(P) =
n
Q

��� Q is absolutely continuous with respect to P

and the process S is a Q-local martingale

o
:

Because the process S is assumed to be bounded (or locally bounded), we can
easily show that the setM(P) is the closure in L1 of the setMe(P). Again for non
locally bounded processes this is false as an easy two period example, whereM(P)
is not closed, shows.

The weak� closedness of C, the Hahn{Banach theorem, as well as the basic
lemma yield:

Theorem 7. If f � 0, then

supfEQ[f ] j Q 2Me(P) g = inff� j There is g 2 K with f � �+ g g:

Moreover when the expression is �nite, the in�mum is a minimum and g can be
chosen to be a maximal element.

Using this equality and the characterisation of maximal elements given below,
we can give an improvement of a result of Ansel{Stricker and Jacka. The theo-
rem also says when a change of num�eraire will not produce unwanted arbitrage
opportunities.

Theorem 8. If f = (H � S)1 2 K, for H admissible, then are equivalent:
1. f is a maximal element in K.
2. f is a maximal element in Kkf�k1 .
3. There is an element Q 2Me(P) for which the process (H � S) is a Q-uni-

formly integrable martingale.
4. There is an element Q 2Me(P) for which EQ[f ] = 0.

Theorem 9. If f � 0, then the following assertions are equivalent:
1. There is Q 2Me(P) such that EQ[f ] = supfER[f ] j R 2Me(P) g,
2. f = �+ g, where g is maximal in K.
3. f = �+ (H � S)1 and H � S is a uniformly integrable martingale for some

element Q 2Me(P).
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If V = � + H � S, H admissible and f = V1 > 0 a. s., then the above are also
equivalent to:

4. (S=V; 1=V ) satis�es the (NA) property.
5. (S=V; 1=V ) has an equivalent local martingale measure.

Both these theorems are proved together and our proof does not use the H1{
BMO duality theory. Using the Bishop{Phelps theorem from functional analysis
we obtain as a corollary:

Theorem 10. If Me(P) = M(P) 6= ?, then Me(P) contains exactly one
element.

Because of the importance of the maximal elements, it is interesting to inves-
tigate the set Kmax

1 of all these maximal elements.

Theorem 11. The set Kmax
1 of maximal elements in K is a convex cone that

is stable for countable convex combinations.

Corollary 12. If (fi)i�1 is a countable family of maximal elements in K,
then there is an equivalent local martingale measure Q for S such that for all i � 1
we have EQ[fi] = 0. There are admissible strategies H i, generating fi, such that
the processes H i � S are uniformly integrable martingales under the measure Q.

It is a naive idea to think that for maximal elements f and for every element
Q 2 Me(P) we always have EQ[f ] = 0. The are examples where EQ[f ] = 0 for
a well chosen measure Q, but where ER[f ] < 0 for an even better chosen element
R 2 Me(P). Moreover we can show that in incomplete markets with continuous
prices, such a situation is more the rule than the exception! However one can show
that for a maximal element f the set fR j R 2 M(P); ER[f ] = 0 g is a dense
G�-set in M(P).

Given a convex cone, it is always a good idea to have a look at the vector space
generated by it. So let us de�ne

G = Kmax �Kmax:

For an element g 2 G we de�ne the norm

kgkG = inff a > 0 j There exist f; h 2 Ka with g = h� f g:

It is easy to see that it really de�nes a norm and that because of the properties of
the cone Kmax, the space G is complete for this norm.

Theorem 13. The space G with the above norm k � kG becomes a Banach space.
We also have that

2kgkG = supf kgkL1(Q) j Q 2Me(P) g; g 2 G:

Although the space G and its norm are de�ned in a natural way, we leave it as
a challenge to give an economic interpretation of these results.

We end this section with a theorem that says that under a weak form of the
(NFLVR) property, the process S is a semi-martingale. The theorem below there-
fore shows that in �nance, the use of processes such as fractional Brownian motion,
is not always appropriate.
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Theorem 14. If for a bounded (or more generally a locally bounded) process S,

Csimple \ L1 = f0g;

then S is a semi-martingale. (Again the bar denotes the norm closure in L1.)

3. The case of unbounded processes

The preceding section dealt with locally bounded processes. From a general
viewpoint this is not satisfactory. Insurance models typically treat the case of
unbounded claims that happen at totally inaccessible stopping times. Also from
a mathematical viewpoint it would be nicer to have a result also for the case of
unbounded jumps. The need is even greater if one compares the fundamental
theorem with the Dalang{Morton{Willinger theorem. This theorem states that
for processes indexed by a �nite time-set, the no-arbitrage property implies the
existence of an equivalent martingale measure. We remark that in the case of the
Dalang{Morton{Willinger theorem, the no-arbitrage condition is written without
any restriction to admissibility. More precisely they proved the following theorem.

Theorem 15. Let (Sn)n=0;1;:::;N be a d-dimensional process adapted to the
�ltration (Fn)n=0;1;:::;N . Let Kg be de�ned as

Kg =

� NX
n=1

fn�1(Sn � Sn�1)

���� Each fn: 
! Rd is Fn-measurable

�
:

If Kg \ L0+ = f0g, then there is an equivalent measure Q such that the process S
is a Q-martingale.

In the general case it turns out that there is no hope to prove the existence of
an equivalent (local) martingale measure. We need a more general concept. We
say that a semi-martingale X is a sigma-martingale if there is a strictly positive
predictable process � such that � is X-integrable and such that � � X is a local
martingale. In this case an easy|although not trivial|exercise shows that we can
require that � is bounded and that � � X is an H1-martingale. It is not di�cult
to see that a local martingale is a sigma-martingale and that a sigma-martingale
is a local martingale if and only if the process � can be taken to be decreasing.
The concept of a sigma-martingale was introduced by Emery and Chou who called
it \processus de la classe �m." It is related to martingales in the same way as
sigma-�nite measures are related to �nite measures.

Another easy exercise is to show that a sigma-martingale on a �nite discrete
time �ltration (the case of the Dalang{Morton{Willinger theorem), is already a
martingale.

We also remark that the set of all stochastic integrals with respect to a d-
dimensional semi-martingale S is the same as the set of all stochastic integrals with
respect to a process of the form � � S. Hence, for applications in mathematical
�nance, the concept of sigma-martingales is, in most cases, as good as the more
restrictive concept of local martingales.

We can now state the fundamental theorem in its most general form.

Theorem 16. Let S = (St)t2R+ be an Rd-valued semi-martingale de�ned on
the stochastic base (
;F ; (Ft)t2R+;P). Then S satis�es the condition of (NFLVR)
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if and only if there exists a probability measure Q � P such that S is a sigma-
martingale with respect to Q.

The proof of this theorem starts in the same way as the proof in the locally
bounded case. One �rst shows that the set C is weak� closed. But in this case such
a statement can be trivial, since the set K of outcomes of admissible integrands
can be reduced to the set f0g! Once the closedness is proved, we continue with the
following result, interesting in itself.

Theorem 17. With the notation introduced above, let Q be an equivalent prob-
ability measure such that EQ[f ] � 0 for every element f 2 C. Then for each " > 0
there is an equivalent probability measure Q0 such that kQ0 � Qk < " and such
that S is a sigma-martingale for the measure Q0.

We remark that this theorem implies the Dalang{Morton{Willinger theorem
and is in fact a little bit more general since we give somewhat more information
about the distortion of the measure.

In the rest of this section we suppose that there is a sigma-martingale measure
for the process S. Let us rede�ne:

Me(P) =
n
Q

��� Q is equivalent to P

and the process S is a Q-sigma-martingale

o
:

As is easily seen, for locally bounded processes this set coincides with the set of
equivalent local martingale measures.

The results on maximal elements shown above as well as the duality results can
be restated also in the case of unbounded processes. But as observed above, the
concept of admissible integrands is too restrictive. In order to solve this problem we
introduce the concept of w-admissible integrands, where w � 1 is a weight function.
The idea is to say that an integrand H is w-admissible if H �S � �w. Here one has
to be careful. If w is too small, then there might be no w-admissible integrands,
this can be the case if we take e. g. w = 1 (the classical concept of admissibility)
and if big jumps are present. If on the other hand we take w too big, then we might
be able to use doubling strategies and there will be arbitrage opportunities. The
good balance is to use weight functions w � 1 that satisfy the following properties:

1. There is a strictly positive predictable S-integrable function ' such that the
maximal function of the vector-valued process ' � S satis�es (' � S)� � w.
In this case we are sure that there will be enough w-admissible integrands.

2. There is a sigma martingale measure Q 2 Me(P) such that EQ[w] < 1.
This will restrict the concept of w-admissibility and will prevent the use of
doubling strategies.

It is clear that if Me(P) is nonempty (as is the case here), then there are weight
functions that satisfy both assumptions. We are now ready to de�ne the concept
of w-admissible integrands.

Definition 18. If w � 1 is a weight function that satis�es both assumptions
above, then we say that an S-integrable predictable Rd -valued process H is w-
admissible if for each Q 2Me(P) we have

(H � S)t � �EQ[w jFt]; t � 0:



10 FREDDY DELBAEN AND WALTER SCHACHERMAYER

Remark 19. We can show that in the preceding de�nition the requirement

(H � S)t � �EQ[w jFt]; t � 0;

can be restricted to those elements Q 2Me(P) satisfying EQ[w] <1. This yields
an equivalent de�nition.

Let us also de�ne

Kw = f (H � S)1 j (H � S) � �nw for some n � 0 g:

It is easily seen that the limit exists. Indeed, if EQ[w] < 1, then the process
(H � S)t +EQ[nw jFt], t � 0, is a positive supermartingale for the measure Q.

With the set of admissible outcomes we can construct the set of dominated
elements:

Cw = Kw � L0+ :

The following theorem is the equivalent of the result that says that C is weak�

closed.

Theorem 20. The set
�
1
w
Cw
�
\ L1 is weak� closed in L1.

Theorem 21. The element f 2 Kw is maximal if and only if there is an
element R 2Me(P) such that w 2 L1(R) and ER[f ] = 0.

Theorem 22. If f � �w, then we have

supfER0 [f ] j ER0 [w] <1; R0 2Me(P) g

= inff� � 0 j There is g 2 Kw with f � �+ g g:

The proofs of these results are a combination of the proofs for the locally
bounded case together with compactnes results of bounded sequences in the space
H1. We remark that even in the case of locally bounded price processes S, the
above results are more precise.
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