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Abstract


K. Larsen, M. Soner, and G. Zitkovic kindly pointed out to us an error
in our paper [1] which appeared in 2001 in this journal. They also provide
an explicit counter-example in [4].


In Theorem 3.1 of [1] it was incorrectly claimed (among several other
correct assertions) that the value function u(x) is continuously differentiable.
The erroneous argument for this assertion is contained in Remark 4.2 of [1]
where it was claimed that the dual value function v(y) is strictly concave. As
the functions u and v are mutually conjugate the continuous differentiability
of u is equivalent to the strict convexity of v. By the same token, in Remark
4.3 the assertion on the uniqueness of the element ŷ in the supergradient of
u(x) is also incorrect.


Similarly, the assertion in Theorem 3.1 (ii) that ŷ and x are related via
ŷ = u′(x) is incorrect. It should be replaced by the relation x = −v′(ŷ) or,
equivalently, by requiring that ŷ is in the supergradient of u(x).


To the best of our knowledge all the other statements in [1] are correct.
As we believe that the counter-example in [4] is beautiful and instructive


in its own right we take the opportunity to present it in some detail.
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1 Discussion


We sketch the counter-example in [4] in a slightly modified and self-contained
way. In the sequel we suppose that the reader is familiar with the paper [1]
as well as with ([3], Example 5.1 bis). We briefly recall the notation of this
example which is the basis of the counter-example in [4].


The stock price process S = (S0, S1) is defined by S0 = 1 and by letting
S1 assume the value x0 = 2 with probability p0 = 1− α and, for n ≥ 1, the
value xn = 1


n
with probability pn = α2−n, for 0 < α < 1 sufficiently small.


For logarithmic utility U(x) = ln(x) we obtain, for given endowment
x > 0, that it is optimal to invest the entire endowment into the stock S so
that we end up at time t = 1 with the random wealth X̂(x) = xS1. For the
value function u(x) we thus obtain (see [3], Example 5.1 bis for details) the
expected utility of U(X̂(x)), i.e.


u(x) = E[U(X̂(x))] = log(x) +
∞∑
n=0


pn ln(xn). (1)


Using the notation from [1], the point of this example is that the dual
optimizer Q̂(y) is not an element of L1, but only of its bidual (L∞)∗. In
other words, Q̂(y) defines a finitely additive probability measure on (Ω,F)
which fails to be sigma-additive. We write Q̂(y) = Q̂r(y) + Q̂s(y) for the
decomposition of Q̂(y) into its regular and its singular part.


To verify that ‖Q̂r(y)‖ < ‖Q̂(y)‖, fix x = y = 1. Writing X̂ for X̂(1), Q̂
for Q̂(1), and qn for Q̂[S1 = xn] we have the relation ([3], Th. 2.2)


U ′(X̂) =
dQ̂r


dP
, (2)


so that
(xn)−1 =


qn
pn
, n ≥ 0, (3)


which yields
∞∑
n=0


qn =
1− α


2
+ α


∞∑
n=1


npn. (4)


This term is smaller than 1 (recall that 0 < α < 1 is small), which readily
shows that the regular part Q̂r has a smaller mass than Q̂.


So far we just recalled Example 5.1 bis from [3]. For the next step we
follow [2] and distinguish between the odd and the even numbers n ∈ N0 :


A = {S1 = xn, for oddn ≥ 1}, B = {S1 = xn, for evenn ≥ 0}.
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Now comes the beautiful idea from [4]. Define the process S̃ = (S̃0, S̃1)
by S̃0 = S0 = 1 and


S̃1 = S1 +
1


2
1A. (5)


We also consider the random variable eT which we define as


eT = −1


2
1A. (6)


For the utility maximization problem, subject to the additional random
endowment eT , we define the value function ũ(x) as in [1]. This boils down
to the formula


ũ(x) = sup
λ∈R


E[ln(x+ λ(S̃1 − S̃0) + eT )]. (7)


For example, for x = 1, we again find that the optimizer λ̂ in (7) equals
1, i.e. it again is optimal to invest the entire initial endowment x = 1 into the
stock S̃: in this case the novel terms 1A in (5) and (6) cancel out perfectly.
In fact, for all x ≥ 1, we find that the optimal λ̂ in (7) equals λ̂(x) = x, just
as in (1). Indeed, for x ≥ 1, the crucial constraint is that we cannot invest
more than the amount λ̂ = x into the stock due to the definition of S̃ and
eT on the set B, which corresponds to the even numbers n ∈ N0.


On the other hand, for x < 1, the picture changes: now the binding
constraint is given by the odd numbers n ∈ N0, i.e. the behaviour of S̃ and
eT on the set A. For 1


2
< x ≤ 1, we obtain that the optimizer λ̂ in (7) equals


λ̂(x) = 1 − 2(1− x) = 2x− 1. The remaining amount x− (2x− 1) = 1 − x
of the initial wealth x is kept in the bond. Note that, for x ≤ 1


2
there is no


admissible solution λ in (7), i.e. ũ(x) = −∞ in (7).
We thus obtain for the optimal terminal wealth X̂(x) = x+λ̂(S̃1−S̃0)+eT ,


for 1
2
< x ≤ 1,


X̂(x) =


{
(2x− 1)xn + (1− x), n even


(2x− 1)(xn + 1
2
) + (1


2
− x), n odd


(8)


and, for 1 ≤ x <∞,


X̂(x) =


{
xxn, n even


x(xn + 1
2
)− 1


2
, n odd.


(9)


Note that we always have that X̂(x) is an a.s. strictly positive random
variable whose essential infimum is zero. The latter property is obtained by
considering the sets {Sn = xn} with n tending to infinity, where we have to
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consider the odd n′s, in the case 1
2
< x ≤ 1, and the even n′s, in the case


x ≥ 1.
Clearly, the definitions (8) and (9) coincide for x = 1 in which case we


obtain X̂(1) = S1. In particular, the value function


ũ(x) = E[ln(X̂(x))]


is continuous at x = 1, as must be the case.
We shall see that ũ has a kink at x = 1. Indeed, we may calculate the


derivative of ũ(x), for x ∈ ]1
2
, 1[ as well as for x ∈ ]1,∞[ by using the formula


d


dx
ũ(x) = E[


d


dx
ln(X̂(x))], x ∈ ]


1


2
, 1[ ∪ ]1,∞[.


Hence the difference ∆ũ′(1) = limx↘1(
d
dx
ũ(x)) − limx↗1(


d
dx
ũ(x)) of the


right and left derivative of ũ at x = 1 can be explicitly computed as


∆ũ′(1) =
∞∑
n=0


pn(
1


xn
− 2


xn
) = −(


p0
2


+
∞∑
n=1


npn),


which clearly shows that the function ũ(x) fails to be differentiable at x = 1.
Summing up, following [4] we constructed an example where the value


function ũ(·) fails to be differentiable.


We still want to have a closer look at the dual problem associated to the
above example. In particular, we want to spot precisely where the erroneous
argument in [1] has emerged.


Define


y1 = lim
x↘1


( d
dx
ũ(x)


)
and y2 = lim


x↗1


( d
dx
ũ(x)


)
.


As the dual value function ṽ (see [1] for the definition)


ṽ(y) = min
Q∈D


{
E
[
V
(
y
dQr


dP


)]
+ y〈Q, eT 〉


}
(10)


is conjugate to ũ (see [1]), we know from the fact that ũ(x) has a kink at
x = 1 that ṽ(y) is an affine function with slope −1 on the interval [y1, y2], in
view of the basic relation


ṽ(y) = sup
x
{ũ(x)− xy}.


What are the dual optimizers Q̂y for y ∈ [y1, y2], given by ([1], Theorem
3.1 and Lemma 4.1)?
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We know from [1] that the regular parts Q̂r
y are unique and are given by


the formula


U ′(X̂(x)) = y
dQ̂r


y


dP
, (11)


as in (2) above. The number x is associated to y via the relation −ṽ′(y) = x
which yields x = 1, for y ∈ [y1, y2].


This implies the amazing fact that the regular parts yQ̂r
y of the dual


optimizers yQ̂y are identical, for all y ∈ [y1, y2]. Note that the total mass of


the elements yQ̂y ∈ (L∞)∗ equals ‖yQ̂y‖ = y. If we pass, as usual, to the


normalized finitely additive probability measures Q̂y, their regular parts Q̂r
y


scale by the factor y−1.
As regards the singular part Q̂s


y of Q̂y it is clear that Q̂s
y is supported by


each of the sets
CN = U∞n=N{Sn = xn}.


Indeed, for each ε > 0, the singular measure Q̂s
y is supported by the set


{X̂(x) < ε}, where −ṽ′(y) = x. This follows from the analysis in ([3], Exam-
ple 5.1 bis). But now the additional aspect of the odd and even n′s arises:
how much of this singular mass sits on CN ∩ A and how much on CN ∩B?


It follows from (8), (9) and the subsequent discussion that, for 1
2
< x < 1


and ũ′(x) = y, the singular measure Q̂s
y is supported by A, while for 1 < x <


∞ and ũ′(x) = y the singular measure Q̂s
y is supported by B. One may also


pass to the limits x ↗ 1 and x ↘ 1 to show that Q̂s
y1


is supported by A,


while Q̂s
y2


is supported by B. It turns out that, for general y ∈ [y1, y2] of the
form y = µy1 + (1− µ)y2, we have the affine relations


yQ̂s
y[A] = µy1Q̂


s
y1


[A] (12)


and
yQ̂s


y[B] = (1− µ)y2Q̂
s
y2


[B]. (13)


Indeed, as for an equivalent martingale measure Q for S̃ we have that
EQ[S̃1 − S̃0] = 0, we also obtain 〈Q̂y, S̃1 − S̃0〉 = 0 by weak-star continuity.


As yQ̂r
y does not depend on y we obtain that 〈yQ̂s


y, S̃1− S̃0〉 does not depend
on y either, for y ∈ [y1, y2]. On the set CN ∩ A (resp. CN ∩ B) the random
variable S̃1 − S̃0 equals −1


2
(resp. −1), up to an error of at most 1


N
, which


disappears in the limit N 7→ ∞. This implies that −1
2
yQ̂s


y[A] − yQ̂s
y[B] is


constant when y varies in [y1, y2] and readily yields the affine relations (12)
and (13).


Finally let us have a closer look where the mistake in Remark 4.2 of [1]
occurred. In this argument we have fixed numbers 0 < y1 < y2 (which may or
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may not coincide with the y1, y2 considered above) and considered the value
function ṽ(y) as in (10). For y1 6= y2 we have that y1Q̂y1 is different from


y2Q̂y2 as shown in [1]. Up to this point the reasoning was correct. We then
tacitly (and incorrectly) assumed that this implies that their regular parts
y1Q̂


r
y1


and y2Q̂
r
y2


must be different too! This would imply the strict inequality
claimed in Remark 4.2 of [1]. But as we just have seen, it may happen that
these two measures coincide. In addition, the singular parts yQ̂s


y satisfy the
affine relations (12) and (13) which also prevent the inequality in Remark
4.2 of becoming strict.


We finish this erratum by thanking again K. Larsen, M. Soner, and G.
Zitkovic for providing this illuminating counter-example which we expect to
have applications and allow for additional insight also beyond the present
context.
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