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Abstract

In this paper we give examples which show that the convolution theorem
(Boll, [1], Hajek, [2]) cannot be extended to infinite-dimensional shift experi-
ments. This answers a question posed by van der Vaart, [9], and which has been
considered also by LeCam, [5].

1 Introduction

LetH be a finite dimensional vector space. Assume thatP is a probability measure on
the Borel-σ-field B ofH, which is absolutely continuous with respect to the Lebesgue-
measure, and thatf : H → R is a linear function.

Let T : H → R be a measurable function. The image ofP underT is denoted
by L(T |P ). The symbolδh denotes the point measure ath ∈ H. The measurable
functionT : H → R is called an equivariant estimator of the functionf , if

L(T − f(h)|P ∗ δh) = L(T |P ) for h ∈ H.

The assertion of the convolution theorem states that under some regularity conditions
there exists a probability measureµ onB such that

L(T |P ) = L(f |P ) ∗ µ.
1AMS 1991 subject classifications. Primary: 62A05, secondary: 28C20.
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In this form the convolution theorem has been proved by Boll, [1]. For historical
remarks on the convolution theorem we refer to LeCam, [5]. The convolution theorem
can be extended in a more or less straightforward manner to locally compact groups.
We refer to the exposition of the convolution theorem in Strasser, [7], sections 38 and
39.

The family of probability measuresPh = P ∗ δh, h ∈ H is a so-called shift ex-
periment. In his paper, [5], LeCam posed the question whether the assertion of the
convolution theorem remains true for shift experiments if the parameter spaceH is
an infinite dimensional vector space. This question is important for the application of
the convolution theorem to statistical problems where the data are paths of stochastic
processes.

In the thesis by Moussatat, [6], a version of the convolution theorem is proved where
H is a Hilbert space and(Ph)h∈H is a standard Gaussian shift experiment. Related
versions of the convolution theorem can be found in Strasser, [7], Theorem 72.15, and
in van der Vaart, [9].

The question, whether an infinite dimensional version of the convolution theorem re-
mains true if the family(Ph)h∈H is not a standard Gaussian shift experiment, is re-
garded as unsettled by van der Vaart, [9]. The same problem is the subject of LeCam,
[5]. In view of that paper and in view of the remarks made by LeCam in Yang, [10],
pp. 236-237, this seems to have been an open problem.

In the present paper we give examples which show that the infinite-dimensional version
of the convolution theorem does not hold true, in general.

For expository reasons we will present our examples in two different but equivalent
ways corresponding to different levels of mathematical abstraction. We consider this
procedure as justified since the past literature on the convolution theorem is also writ-
ten on very different levels of mathematical sophistication. Moreover, our great respect
for and our admiration of L. LeCam encourages us to present our results also in that
abstract mathematical framework which was used by LeCam.

In section 2 we present versions of the counterexamples in terms of classical shift ex-
periments which are defined via embedding the parameter space into the sample space
by a continuous operation. However, this mathematical representation of shift exper-
iments was not that used by LeCam. LeCam liked to represent shift experiments as
families of cylindrical measures on the parameter space. Therefore, section 3 contains
the explicit construction of the counterexamples to the problem posed by LeCam, [5],
using the framework of functional analysis and cylindrical measures which was used
LeCam himself (see LeCam, [4] and [5]).
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2 The case of classical experiments

In this section we will consider only classical experiments, i.e. experiments defined
as a family of probability measures on a sigma-field. The more general situation of
experiments defined by cylindrical measures will be treated in section 3.

2.1 Basic concepts

LetH be a Hilbert space and letΩ be a Banach space. Suppose that the Hilbert space
H is the parameter space of a statistical experimentE = (Ph)h∈H with sample space
(Ω,A), whereA denotes the Borel-σ-field of Ω. A so-called shift experiment deals
with the situation where the parameter spaceH is embedded into the sample space by
an injectionτ : H → Ω and operates onΩ by the shift operationx 7→ x + τ(h). If
we define the probability measuresPh by applying the shift operationx 7→ x + τ(h)
to P0, i.e. if

Ph := P0 ∗ δτ(h), h ∈ H,

then the experimentE is called the shift experiment generated byP0 and(H, τ).

Let us illustrate the concept of shift experiments by some familiar examples.

(2.1) EXAMPLE Let Ω = Rn andH = R. Define the embedding ofH into Ω by

τ : h 7→ (h, h, . . . , h)′, h ∈ H = R.

The arising shift experiment is then a so-called univariate location family.

Let Ω = H = Rn. In this case the parameter spaceH can be embedded into the sample
space in a most simple way by the identityτ : h 7→ h. The arising shift experiment is
then a so-called multivariate location family.

But for Ω = H = Rn there are also other embeddings feasible. In order to prepare the
ground for later examples with infinite dimensional parameter spaces let us consider
the embedding

τ : (h1, h2, . . . , hn) 7→ (h1, h1 + h2, . . . , h1 + · · ·+ hn),

whereh = (h1, h2, . . . , hn) ∈ H = R
n. This is a parametrization of a multivariate

location family by the first differences of the location parameter.2

If the embeddingτ : H → Ω is surjective, then the shift experiment is a full shift
experiment. In such a case the embedding is a bijection.

Let us consider an example with an infinite dimensional parameter space.

3



(2.2) EXAMPLE LetH = L2([0, 1]) andΩ = C0([0, 1]) = {x ∈ C([0, 1]) : x(0) = 0}.
and define

τ(h) :=
(∫ t

0

h(s) ds
)

0≤t≤1
. (1)

Thenτ : H → Ω is a continuous embedding, andτ(H) is dense inΩ. By Xt we
denote the coordinate functionx 7→ x(t), x ∈ C([0, 1]).

Let P0 be a Borel measure on(Ω,A) such that(Xt) is the standard Wiener process.
Then the family of probability measuresPh := P0 ∗δτ(h), h ∈ H, is a shift experiment.
For everyh ∈ H the process

Xt −
∫ t

0

h(s) ds

is the standard Wiener process underPh. The probability measuresPh are mutually
absolutely continuous and we have Cameron-Martin-Girsanov formula

dPh
dP0

= exp
(∫ 1

0

h(t) dXt −
1

2

∫ 1

0

h2(t) dt
)
.

Any shift experiment having this likelihood structure is called a standard Gaussian
shift. 2

The convolution theorem deals with the structure of equivariant estimators for shift
experiments. For simplicity we consider only the case of estimating a continuous
linear functionf : H → R, the case of a continuous linear functionf from H to a
general topological vector space being similar.

(2.3) DEFINITION Let (Ph)h∈H be a shift experiment.

A measurable function T : Ω → R is called an equivariant estimator (of the linear
function f ), if

L(T − f(h)|Ph) = L(T |P0), for all h ∈ H.

A Markov kernel ρ : Ω × B → R is called a (randomized) equivariant estimator (for
the function f ), if∫

ρ(., B + f(h)) dPh =

∫
ρ(., B) dP0, for all h ∈ H and B ∈ B,

where B denotes the Borel field of R.

For an arbitrary Markov kernelρ we define the quadratic risk underPh, h ∈ H, to be∫ ∫
(ξ − f(h))2 ρ(., dξ) dPh.

The quadratic risk will play an important role in our counterexamples.
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If we add a constant to an equivariant estimator then the resulting estimator is again
equivariant. If an equivariant estimator has a finite first moment then by adding a
uniquely determined constant we may obtain an unbiased equivariant estimator.

The equivariant estimators constitute a large class of estimators. A considerably smaller
and simpler class are the so-called strictly equivariant estimators.

(2.4) DEFINITION Let (Ph)h∈H be a shift experiment.

A measurable function T : Ω → R is called a strictly equivariant estimator (for the
function f ), if

T (x+ τ(h)) = T (x) + f(h), for all x ∈ Ω and h ∈ H. (2)

A Markov kernel ρ : Ω×B→ R is called a (randomized) strictly equivariant estimator
(for the function f ), if

ρ(x+ τ(h), B + f(h)) = ρ(x,B) for all x ∈ Ω, h ∈ H and B ∈ B.

Given a full shift experiment there is (up to an additive constant) only one estimator
which is strictly equivariant and non-randomized. Indeed, if in equation (2) we put
h = −τ−1(x), then we obtain

T (x) = T (0) + (f ◦ τ−1)(x). (3)

Let us call these estimators canonical estimators. All canonical estimators are strictly
equiviriant and non-randomized. The estimatorT0 := f ◦ τ−1 is a particularly simple
canonical estimator.

If the canonical estimators have a finite first moment then there is a uniquely deter-
mined unbiased canonical estimator. Moreover, if the second moment is finite, then
this unbiased canonical estimator minimizes the quadratic risk among all strictly equiv-
ariant estimators.

Let us illustrate canonical estimators by examples.

(2.5) EXAMPLE In case ofΩ = H = Rn andτ = IdRn we haveT0(x) = f(x). Thus,
in this case the linear functionf is a canonical estimator.

Let Ω = H = Rn and

τ : (h1, h2, . . . , hn) 7→ (h1, h1 + h2, . . . , h1 + · · ·+ hn),

whereh = (h1, h2, . . . , hn) ∈ H = Rn. Then we have

τ−1(x) = (x1, x2 − x1, . . . , xn − xn−1).
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If we want to estimate the special linear function

f(h) :=
n∑
i=1

hi

then we obtainT0(x) = xn as the canonical unbiased equivariant estimator.2

(2.6) EXAMPLE In the case of an infinite dimensional Gaussian shift like Example
((2.2)) we may define a canonical estimator in a similar way. The case is slightly
more subtle than for a full shift experiment since the embeddingτ is not surjective
and therefore we obtain an equation like (3) only on a dense subset ofΩ. But if we
impose continuity of the estimator then we may extend (3) to the whole sample space
and arrive at a similar situation as in full shift case.

As an illustration let us consider the estimation of the linear function

f(h) :=

∫ 1

0

h(s) ds, h ∈ H

in the model of Example (2.2). Recall the definition ofτ in (1). For allx ∈ τ(H) we
haveτ−1(x) = x′ which implies

T (x) = T (0) +

∫ 1

0

x′(s) ds = T (0) + x(1).

If T is assumed to be continuous, then this equation must hold onΩ. In this particular
sense the functionT0 = X1 is the canonical unbiased estimator off . 2

2.2 The convolution property

We are going to introduce some definitions which will simplify the discussion of the
convolution theorem and related questions.

(2.7) DEFINITION Two equivariant estimators are called equivalent to each other, if
their distributions (under P0 and then also under each Ph, h ∈ H) differ by a one-point
measure which is independent of the parameter h ∈ H .

(2.8) DEFINITION Let us say that an estimator ρ0 has the convolution property, if
for any further equivariant estimator ρ there exists a probability measure µ on (R,B),
such that the distribution of ρ is the convolution of the distribution of ρ0 with µ.

It is obvious that the convolution property is valid or not valid for all members of an
equivalence class of equivariant estimators simultaneously.
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There are several decision theoretical consequences of the convolution property. The
most simple type of such an assertion is the following trivial lemma.

(2.9) LEMMA Suppose that T is equivariant and has the convolution property. If T
is in L2(P0) and unbiased, then it has minimal quadratic risk among all equivariant
estimators.

The mathematical theorem which is known as convolution theorem states that under
certain assumptions canonical estimators have the convolution property. If the canoni-
cal estimators are also inL2(P0) then it follows from the convolution theorem that the
unbiased canonical estimator has minimal quadratic risk among all equivariant estima-
tors.

In this paper we will present some examples which show that, in general, canoni-
cal estimators need not have the convolution property. These examples are infinite-
dimensional shift experiments.

It is a natural question to ask whether at least the decision theoretic optimality (with
respect to the quadratic risk) of the unbiased canonical estimator remains valid. There-
fore we will present two different counterexamples. In the first counterexample the
unbiased canonical estimator does not have the convolution property but still has min-
imal quadratic risk among all equivariant estimators. In the second example a non-
canonical estimator has minimal quadratic risk among all equivariant estimators, but
the convolution property does neither hold for this optimal estimator nor for the canon-
ical estimator.

2.3 The structure of the proof of the convolution theorem

It is illuminating to study the structure of the proof of the convolution theorem in the
finite-dimensional case. The proof of the convolution theorem is based on two basic
facts.

The first basic fact is concerned with the structure of strictly equivariant estimators.

Previously, we have seen that for full shift experiments non-randomized strictly equiv-
ariant estimators have a very simple structure. Below, we will see that also for random-
ized strictly equivariant estimators a similar simple structure can be established. To be
explicit, it can be shown that for full shift experiments randomized but strictly equiv-
ariant estimators are convolutions with canonical estimators. This fact is the algebraic
background of the convolution theorem.

However, this algebraic structure can be established by more or less direct computation
only for strictly equivariant estimators. In order to cover arbitrary equivariant estima-
tors, too, we have to consider a second basic fact. It is concerned with the problem of
replacing equivariant estimators by strictly equivariant estimators.
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The following theorem contains a version of this second basic fact in a form which is
needed subsequently.

(2.10) THEOREM Let (Ph)h∈H be a dominated shift experiment as defined in section
2.1 and let ρ be an equivariant estimator.

(1) There exists an estimator ρ∗ such that∫
ρ(x,B)Ph(dx) =

∫
ρ∗(x,B)Ph(dx) for all B ∈ B and h ∈ H

and such that
ρ∗(., B) = ρ∗(.+ τ(h), B + f(h)) P0-a.e.,

where the exceptional set depends on h ∈ H but not on B ∈ B.

(2) For every finite-dimensional subspace L ⊆ H the estimator ρ∗ can be chosen in
such a way it is even strictly equivariant for h ∈ L.

For completeness we give a proof of Theorem (2.10) in the appendix.

The counterpart of Theorem (2.10) in testing theory is the Theorem of Hunt and Stein.
The Theorem of Hunt and Stein deals with testing problems which are invariant under
the operation of a transformation group on the sample space. If this transformation
group has an invariant probability measure then the proof of the theorem is easy. In
general, the proof is based on the Markov-Kakutani fixpoint theorem. This method
of proving the Theorem of Hunt and Stein is due to LeCam and it has been used by
LeCam, [3], to prove a general version of the convolution theorem.

Next, we show how the finite-dimensional convolution theorem for full shift experi-
ments can be proved along the lines described above.

(2.11) COROLLARY Assume that H is of finite dimension and let E = (Ph)h∈H be
a dominated full shift experiment. Then the canonical estimators have the convolution
property.

Proof: Let ρ be an arbitrary equivariant estimator off . By Theorem (2.10), part 2,
we may assume thatρ is even strictly equivariant. Defining the canonical estimator by
T0 := f ◦ τ−1, we obtain

ρ(x,B) = ρ(x− τ(τ−1(x)), B − f(τ−1(x)) = ρ(0, B − T0).

Denotingµ(B) := ρ(0, B) it follows that∫
ρ(x,B)Ph(dx) =

(
µ ∗ L(T0|Ph)

)
(B).
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It should be noted that an infinite-dimensional counterpart of this result makes no sense
since dominated full shift experiments do not exist for infinite dimensional Hilbert
spaces. The only sensible question can be whether the infinite-dimensional convolu-
tion theorem holds for dominated shift experiments whereτ(H) is dense inΩ. But for
such cases the method of the preceding proof cannot be applied. Any strictly equiv-
ariant estimatorρ would be uniquely defined onτ(H), but it may happen - and in fact
is typical - thatτ(H) hasP0-measure zero. Then the distribution ofρ is completely
undetermined. A continuity argument as in the definition of canonical estimators is
not possible since even ifρ is continuous, the continuity cannot be maintained when
Theorem (2.10) is applied.

2.4 Examples and counterexamples

We will present three examples showing that for infinite-dimensional shift experiments
very different situations may appear. In particular, it will turn out that the convolution
theorem is not valid, in general.

Let us make the following global assumptions:

Let H = L2([0, 1]) andΩ = C0([0, 1]). Define the embedding by (1). Assume that
underP0 the coordinate process(Xt) has continuous paths and letPh := P0 ∗ δτ(h),
h ∈ H. We are going to consider the estimation problem for the linear function

f : h 7→
∫ 1

0

h(s) ds, h ∈ H.

Our first example is concerned with a Gaussian shift situation of Example (2.6) where
it is well-known that the convolution theorem is true. We state and prove the assertion
for completeness.

(2.12) THEOREM Suppose that the coordinate process (Xt) is the standard Wiener
process under P0. Then the canonical estimator T0 = X1 has the convolution property.

Proof: Let ρ be an arbitrary equivariant estimator off . By Theorem (2.10) we may
assume thatρ is even strictly equivariant on the orthogonal complement of ker(f).

By strict equivariance ofρ it follows that

ρ(x,B) = ρ(x+ x(1)IdR − x(1)IdR, B) = ρ(x− x(1)IdR, B − x(1)),
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since forh ≡ x(1) the equationsf(h) = x(1) andτ(h) = x(1)IdR are true. This
implies ∫

ρ(x,B)Ph(dx) =

∫
ρ(x+ τ(h), B)P0(dx)

=

∫
ρ(x,B − f(h))P0(dx)

=

∫
ρ(x− x(1)IdR, B − x(1)− f(h))P0(dx)

Since(Xt) is a Wiener process underP0, the process(Xt − X1IdR) and the random
variableX1 are stochastically independent. If we define

R(B) :=

∫
ρ(x− x(1)IdR, B)P0(dx),

then we obtain∫
ρ(x,B)Ph(dx) =

∫
R(B − x(1)− f(h))P0(dx)

=

∫
R(B − x(1))Ph(dx).

Hence, the distribution ofρ Ph is for all h ∈ H a convolution of the distribution ofX1

with R. 2

In this particular case the canonical estimatorT0 is also unbiased and has minimal
quadratic risk among all equivariant estimators.

Next we turn to the first counterexample.

Assume that underP0 the coordinate process(Xt) has the distribution of(
√
ZWt),

where(Wt) is a Wiener process andZ is a nonnegative random variable which is
stochastically independent of(Wt). In this case the quadratic variation process(〈X,X〉t)
of (Xt) comes into the game. The quadratic variation process has the following prop-
erties: The distribution of(〈X,X〉t) under eachPh, h ∈ H, coincides with the distri-
bution of(tZ), underP0, and therefore does not depend onh ∈ H.

It follows that the functionT1 := X1 − 〈X,X〉1 is an equivariant estimator which is
not equivalent to the canonical estimatorT0 = X1. Our first counterexample will show
that there are distributions ofZ such that the distribution ofT1 cannot be written as
a convolution with the distribution ofT0. Nevertheless the canonical estimatorT0 is
unbiased and has minimal quadratic risk among all equivariant estimators.

(2.13) THEOREM Assume that under P0 the coordinate process (Xt) has the distri-
bution of (

√
ZWt), where (Wt) is a Wiener process and Z is a nonnegative and P0-

integrable random variable which is stochastically independent of (Wt). Then the
following assertions are true:

10



1. The canonical estimator T0 is unbiased and has minimal quadratic risk among all
equivariant estimators. .

2. There are distributions of Z, such that T0 does not have the convolution property.

Proof: Let us start with the proof of 1.

Let ρ by any equivariant estimator. By Theorem (2.10) we may assume thatρ is even
strictly equivariant on the orthogonal complement of ker(f).

Let P z
0 := P0(.|〈X,X〉1 = z), z ∈ R, be a regular version of the conditional proba-

bility and defineP z
h := P z

0 ∗ δτ(h), h ∈ H. Since the distribution of(〈X,X〉t) under

Ph does not depend onh ∈ H, it follows thatP 〈X,X〉1h = Ph(.|〈X,X〉1) P0-a.e., for all
h ∈ H.

UnderP z
0 the distribution of the coordinate process(Xt) is that of (

√
zWt), where

(Wt) denotes a standard Wiener process. Hence it follows by the same arguments as
in the proof of Theorem (2.12) that for each experiment(P z

h )h∈H , z ≥ 0, the canonical
estimatorT0 = X1 has the convolution property and has thus smaller quadratic risk
thanρ.

By integration with respect to the distribution of〈X,X〉1 the risk inequality extends
to the experiment(Ph)h∈H .

In order to prove 2., we show that in general the distribution ofT1 cannot be written as
a convolution with the distribution ofT0.

Define the distribution ofZ to be 1
2
δ0 + 1

2
δ1. Then we have

T0 ∼
√
ZW1 ∼

1

2
δ0 +

1

2
N(0, 1),

and

T1 ∼
√
ZW1 − Z ∼

1

2
δ0 +

1

2
N(−1, 1).

Assume thatµ is a probability measure satisfying

1

2
δ0 +

1

2
N(−1, 1) =

(1

2
δ0 +

1

2
N(0, 1)

)
∗ µ. (4)

Then the singular parts must coincide, i.e.(1

2
δ0 +

1

2
N(−1, 1)

)
s

=
((1

2
δ0 +

1

2
N(0, 1)

)
∗ µ
)
s
,

whence
1

2
δ0 =

(1

2
δ0 ∗ µ)s =

1

2
δ0 ∗ µs.

This impliesµs = δ0 andµ = δ0 which is a contradiction to (4). 2
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Our second counterexample shows that things can even be more complicated.

(2.14) THEOREM Assume that under P0 the coordinate process (Xt) has the distribu-
tion of (Zt +

√
ZWt), where (Wt) is a Wiener process and Z is a nonnegative, inte-

grable and nonconstant random variable which is stochastically independent of (Wt).
Then the following assertions are true:

1. The estimator T1 = X1 − 〈X,X〉1 is equivariant and has minimal quadratic risk
among all equivariant estimators, but it is not equivalent to the canonical estimator T0.

2. There exist random variables Z such that neither T1 nor T0 have the convolution
property.

Proof: In order to prove 1., we proceed as in the proof of Theorem (2.13).

Under eachP z
0 the coordinate process(Xt) has the distribution of(zt+

√
zWt), where

(Wt) is a Wiener prozess. Therefore it follows for the same reasons as in Theorem
(2.12) that for each experiment(P z

h )h∈H , z ≥ 0, the canonical estimatorT0 = X1

has the convolution property. However,T0 is not unbiased. For(P z
h )h∈H , z ≥ 0, the

canonical unbiased estimators are rather the functionsT1,z := T0− z = X1− z, which
are equivalent toT0, and which have minimal quadratic risk among all equivariant
estimators.

Now, letρ be any equivariant estimator which is strictly equivariant on the orthogonal
complement of ker(f). Then we have, for everyz ≥ 0,∫

(ξ − f(h))2ρ(., dξ) dP z
h ≥

∫
(T1,z − f(h))2 dP z

h .

This implies ∫
(ξ − f(h))2ρ(., dξ) dPh(.|〈X,X〉1)

≥
∫

(X1 − 〈X,X〉1 − f(h))2 dPh(.|〈X,X〉1) Ph-a.e.

By integration with respect to the distribution of〈X,X〉1 the assertion follows.

In order to prove assertion 2, we consider the estimatorsT0 andT1 separately. It is
trivial that the canonical estimatorT0 cannot have the convolution property, sinceT1

has a smaller variance thanT0. But alsoT1 in general does not have the convolution
property since for some distribution ofZ (e.g. 1

2
δ0 + 1

2
δ1) the distribution ofT0 cannot

be written as a convolution with the distribution ofT1. This follows from the proof of
Theorem (2.13). 2
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3 The counterexamples for cylindrical measures

In this section we present assertion 2 of Theorem (2.14) in terms of cylindrical exper-
iments.

(3.1) THEOREM There is a cylindrical measure P = P0 on the separable Hilbert
space H = L2[0, 1] such that

(1) the full shift (Ph)h∈H forms a dominated experiment.

In fact, the abstract L-space generated by (Ph)h∈H can be described in an explicit way:
There is an injective continuous map τ : H → C0[0, 1] such that τ(Ph) = (τ(P ))τ(h)

are Borel-measures on C0[0, 1] and are dominated by a Borel probability measure µ
(e.g. µ = τ(P0)) onC0[0, 1] equivalent to (τ(Ph))h∈H . We identify the family (Ph)h∈H
with elements of L1(µ) := L1(C0[0, 1], µ).

(2) There is a continuous linear projection A : H → R which may be factored as
A = φA ◦ τ , where φA is a continuous projection from C0[0, 1] to R, and a continuous
positive contraction γ : L1(µ) → L1(R, λ), where λ denotes the Lebesque-measure
on R, such that

(i) γ(Ph) = γ(P0) ∗ δAh for h ∈ H ,

(ii) γ(P0) is not the convolution of A(P0) with any probability measure.

DefineU ⊆ H to be the one-dimensional subspace formed by the constant functions
andW to be its orthogonal complement. We write the elementsh ∈ H ash = (u,w)
and denote byπU andπW the respective orthogonal projections.

To define the cylindrical measureP = P0 on H we first fix an auxiliary random
variableZ uniformly distributed on [0,1]. We have to define the law ofP on each
finite-dimensional subspaceV of H; we may and do suppose w.l.g. thatV contains
U so that we may again write the elementsv ∈ V asv = (u,w) whereu ∈ U and
w ∈ V ∩W . Given{Z = s} for somes ∈ [0, 1] we define the law ofP [ · |Z = s]
onV as the normal distribution with mean(s, 0) and covariance matrix equal tos · Id.
It is straightforward to check that this welldefines a cylindrical measure onH, which
does not extend to a sigma-additive Borel-measure onH.

The experimentE now is defined as the full shiftE = (Ph)h∈H .

To obtain a concrete respresentation of the abstractL-space generated byE define

τ : L2[0, 1] → C0[0, 1] (5)

f( · ) 7→ g( · ) =

∫ ·

0

f(t)dt (6)
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A basic fact of the Wiener process going back to the original paper by N. Wiener, [8],
implies thatτ mapsP to a sigma-additive Borel measureµ = τ(P ) onC0[0, 1], which
can be described explicitly: Given{Z = s} the measureP ( · |Z = s) equals Wiener
measure onC0[0, 1] with variance and drift both equal tos. Denoting byBs the Borel
subset ofC0[0, 1]

Bs = {g ∈ C0[0, 1] : 〈g, g〉t = st, for all t ∈ [0, 1]} (7)

where〈g, g〉t denotes the quadratic variation function, the setBs has full measure
under the lawP ( · |Z = s). We observe that the setsBs are invariant under shifts by
elements in the imageτ(H) ofH, a fact which will turn out to be of crucial importance.
Also note that by Cameron-Martin-Girsanov the measuresτ(Ph) are all equivalent to
τ(P0), for anyh ∈ H. In particularτ(Ph) all are elements ofL1(µ) which shows
in particular that the experimentE is dominated (in the abstract sense). LettingB =⋃
s∈[0,1] Bs we exhibit a Borel subset ofC0[0, 1] of full µ-measure.

We now defineA : H 7→ R as the orthogonal projectionA = πU . The mappingAmay
be represented asA = φA ◦ τ whereφA : C0[0, 1] 7→ R is given byφA(g) = g(1). The
measureA(P0) now has the following law: Given{Z = s} it is N(s, s)-distributed.

To define the mapγ : L1(µ) 7→ L1(R, λ) we first define a mappU : B 7→ R by letting
pU(g) = φA(g)− s, if g ∈ Bs. We may writepU explicitly by

pU(g) = g(1)− 〈g, g〉1 for g ∈ B. (8)

Note thatpU is a Borel-measurable function onB. We therefore may extendpU to a
stochastic kernel

ρ : B → M(R) (9)

g 7→ ρ(g, .) := δpU (g) (10)

whereδpU (g) denotes Dirac-measure atpU(g). The kernelρ induces a positive contrac-
tion γ : L1(µ) → L1(R, λ). By construction and the invariance ofBs under shifts by
τ(h), for h ∈ H, we have

γ ◦ Sτ(h) = SAh ◦ γ, for h ∈ H, (11)

whereSf : g 7→ f + g denotes translation byg in C0[0, 1] andSx : y 7→ x + y the
translation inR. Whence by identifying(Ph)h∈H with the elementsτ(Ph) of L1(µ) we
get the desired invariance property

γ(Ph) = γ(P0) ∗ δAh, for h ∈ H. (12)

Finally note thatγ(P )( · |Z = s) is normally distributed onR with mean equal to zero
and variance equal tos, i.e.,γ(P ) is a mixture ofN(0, s)-distributions. AsA(P0) is a
mixture ofN(s, s)-distributions one easily verifies for the variances thatV (A(P0)) >
V (γ(P0)) and in particularγ(P0) is not the convolution ofA(P0) with any probability
measure.
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4 Appendix: Proof of Theorem (2.10)

Proof: Let ρ be an arbitrary equivariant estimator, i.e., a Markov kernel satisfying∫ ∫
g(ξ)ρ(x+ τ(h), dξ + f(h))P0(dx) =

∫ ∫
g(ξ)ρ(x, dξ)P0(dx)

for all h ∈ H andg ∈ Cb := Cb(R).

Let ν be a probability measure which is equivalent to the family(Ph)h∈H and denote
L1 := L1(Ω,A, ν). By B we denote the set of all bilinear functionsβ on Cb × L1

which are continuous and satisfy

|β(g, k)| ≤ ||g||u||k||1 if g ∈ Cb, k ∈ L1,

β(g, k) ≥ 0 if g ≥ 0, k ≥ 0,

β(1, k) =
∫
k dν if k ∈ L1.

We endowB with the topology of pointwise convergence onCb × L1. With respect
to this topologyB is a compact set. It is easy to see that each element ofB can be
represented by a substochastic kernel (cf. Strasser, [7], Lemma 42.6).

For everyh ∈ H, let βh be the bilinear function

βh : (g, k) 7→
∫ ∫

g(ξ)ρ(x+ τ(h), dξ + f(h)) k(x) ν(dx),

whereg ∈ Cb, k ∈ L1. Define

K := co{βh : h ∈ H}.

ThenK is a convex and compact subset ofB.

For everyh ∈ H let Th : B→ B be the linear transformation defined by

Thβ : (g, k) 7→ β(g(.− τ(h)), k(.− f(h))), g ∈ Cb, k ∈ L1.

Then(Th)h∈H is an Abelian group of continuous transformations, mappingK intoK.
Thus, by the Markov-Kakutani fixpoint theorem there is a fixpoint inK, i.e. a bilinear
functionβ∗ ∈ K such thatThβ∗ = β∗ for all h ∈ H.

By equivariance ofρ we haveβh(g, dP0/dν) = β0(g, dP0/dν) for all g ∈ Cb and
h ∈ H. This property extends to all elements ofK and therefore it follows that

β∗(g, dP0/dν) = β0(g, dP0/dν), for all g ∈ Cb andh ∈ H.
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It follows thatβ∗ can be represented by a stochastic kernelρ∗ having the same distri-
bution underP0 asρ.

Sinceβ∗ is a fixpoint we have∫ ∫
g(ξ)ρ∗(x+ τ(h), dξ + f(h)) k(x)ν(dx) =

∫ ∫
g(ξ)ρ∗(x, dξ) k(x)ν(dx) (13)

for all h ∈ H, g ∈ Cb andk ∈ L1. It follows that for allh ∈ H andB ∈ B we have

ρ∗(., B) = ρ∗(.+ τ(h), B + f(h)) P0-a.e.,

where the exceptional set depends onh ∈ H but not onB ∈ B.

In order to finish the proof of Theorem 2.10, we need a lifting argument. One may
apply Ionescu-Tulcea’s lifting theorem (see LeCam, [4], section 8.3, Theorem 3) or a
direct argument like that of Strasser, [7], Theorem 48.9. 2
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