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Abstract

In this paper we give examples which show that the convolution theorem
(Boll, [1], Hajek, [2]) cannot be extended to infinite-dimensional shift experi-
ments. This answers a question posed by van der Vaart, [9], and which has been
considered also by LeCam, [5].

1 Introduction

Let H be a finite dimensional vector space. Assume thet a probability measure on
the Boreleo-field B of H, which is absolutely continuous with respect to the Lebesgue-
measure, and that: H — R is a linear function.

Let T : H — R be a measurable function. The image®funderT is denoted
by L(T|P). The symbols, denotes the point measure/atce H. The measurable
functionT : H — R is called an equivariant estimator of the functipnf

L(T — f(h)|P o) = L(T|P) forhe H.

The assertion of the convolution theorem states that under some regularity conditions
there exists a probability measyren B such that

L(TIP) = L(f|P) * p
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In this form the convolution theorem has been proved by Boll, [1]. For historical
remarks on the convolution theorem we refer to LeCam, [5]. The convolution theorem
can be extended in a more or less straightforward manner to locally compact groups.
We refer to the exposition of the convolution theorem in Strasser, [7], sections 38 and
39.

The family of probability measures),, = P * §,, h € H is a so-called shift ex-
periment. In his paper, [5], LeCam posed the question whether the assertion of the
convolution theorem remains true for shift experiments if the parameter gpase

an infinite dimensional vector space. This question is important for the application of
the convolution theorem to statistical problems where the data are paths of stochastic
processes.

In the thesis by Moussatat, [6], a version of the convolution theorem is proved where
H is a Hilbert space an@P, ),y is a standard Gaussian shift experiment. Related
versions of the convolution theorem can be found in Strasser, [7], Theorem 72.15, and
in van der Vaart, [9].

The question, whether an infinite dimensional version of the convolution theorem re-
mains true if the family( P,),cy is not a standard Gaussian shift experiment, is re-
garded as unsettled by van der Vaart, [9]. The same problem is the subject of LeCam,
[5]. In view of that paper and in view of the remarks made by LeCam in Yang, [10],
pp. 236-237, this seems to have been an open problem.

In the present paper we give examples which show that the infinite-dimensional version
of the convolution theorem does not hold true, in general.

For expository reasons we will present our examples in two different but equivalent

ways corresponding to different levels of mathematical abstraction. We consider this
procedure as justified since the past literature on the convolution theorem is also writ-
ten on very different levels of mathematical sophistication. Moreover, our great respect
for and our admiration of L. LeCam encourages us to present our results also in that
abstract mathematical framework which was used by LeCam.

In section 2 we present versions of the counterexamples in terms of classical shift ex-
periments which are defined via embedding the parameter space into the sample space
by a continuous operation. However, this mathematical representation of shift exper-
iments was not that used by LeCam. LeCam liked to represent shift experiments as
families of cylindrical measures on the parameter space. Therefore, section 3 contains
the explicit construction of the counterexamples to the problem posed by LeCam, [5],
using the framework of functional analysis and cylindrical measures which was used
LeCam himself (see LeCam, [4] and [5]).



2 The case of classical experiments

In this section we will consider only classical experiments, i.e. experiments defined
as a family of probability measures on a sigma-field. The more general situation of
experiments defined by cylindrical measures will be treated in section 3.

2.1 Basic concepts

Let H be a Hilbert space and It be a Banach space. Suppose that the Hilbert space
H is the parameter space of a statistical experiniert (P,),cy With sample space
(Q, A), whereA denotes the Boret-field of Q2. A so-called shift experiment deals
with the situation where the parameter spate embedded into the sample space by
an injectionr : H — () and operates of? by the shift operation: — z= + 7(h). If
we define the probability measuré&s by applying the shift operation — x + 7(h)
to Py, i.e. if

P, = Fy % 57’(/1)7 he H,

then the experiment is called the shift experiment generatedByand(H, 7).

Let us illustrate the concept of shift experiments by some familiar examples.

(2.1) ExXamPLE Let() = R™ andH = R. Define the embedding df into (2 by
7:hw— (hh,...,h), heH=R.

The arising shift experiment is then a so-called univariate location family.

LetQ = H = R". Inthis case the parameter spdatean be embedded into the sample
space in a most simple way by the identity h — h. The arising shift experiment is
then a so-called multivariate location family.

But for 2 = H = R" there are also other embeddings feasible. In order to prepare the
ground for later examples with infinite dimensional parameter spaces let us consider
the embedding

7'2(hl,hz,...,hn)H(hl,hl+h2,...,h1+"'+hn),

whereh = (hq, hs,...,h,) € H = R". This is a parametrization of a multivariate
location family by the first differences of the location parameter.

If the embeddingr : H —  is surjective, then the shift experiment is a full shift
experiment. In such a case the embedding is a bijection.

Let us consider an example with an infinite dimensional parameter space.



(2.2) EXAMPLE Let H = L*([0,1]) andQ = €y([0,1]) = {z € €([0,1]) : =(0) = 0}.

and define .
()= ( /0 h(syds) (1)

Thent : H — Q is a continuous embedding, andH) is dense ). By X; we
denote the coordinate functian— z(t), z € C([0, 1]).

Let P, be a Borel measure qff2, A) such that(X;) is the standard Wiener process.
Then the family of probability measuré} := Fyxd.), h € H, is a shift experiment.
For everyh € H the process

Xt—/oth(s)ds

is the standard Wiener process und®r The probability measureB, are mutually
absolutely continuous and we have Cameron-Martin-Girsanov formula

dP, ! 1t
e (/0 h(t) dX; — 5/0 h (t)dt).
Any shift experiment having this likelihood structure is called a standard Gaussian

shift. O

The convolution theorem deals with the structure of equivariant estimators for shift
experiments. For simplicity we consider only the case of estimating a continuous
linear functionf : H — R, the case of a continuous linear functigrfrom H to a
general topological vector space being similar.

(2.3) DEFINITION Let (Py,)nen be a shift experiment.

A measurable function T" : () — R is called an equivariant estimator (of the linear
function f), if
L(T — f(h)|Py) = L(T|Py), forallh € H.

A Markov kernel p : 2 x B — R is called a (randomized) equivariant estimator (for
the function f), it

/p(.,B+f(h))dPh = /p(.,B) dP,, forallh € H and B € B,

where B denotes the Borel field of R.

For an arbitrary Markov kerngl we define the quadratic risk undgs, h € H, to be

| [ swyot.aan.

The quadratic risk will play an important role in our counterexamples.



If we add a constant to an equivariant estimator then the resulting estimator is again
equivariant. If an equivariant estimator has a finite first moment then by adding a
uniquely determined constant we may obtain an unbiased equivariant estimator.

The equivariant estimators constitute a large class of estimators. A considerably smaller
and simpler class are the so-called strictly equivariant estimators.

(2.4) DEFINITION Let (Py,)nen be a shift experiment.

A measurable function T' : ) — R is called a strictly equivariant estimator (for the
function f), if

T(x+7(h)=T(x)+ f(h), forallz € Qandh e H. 2

A Markov kernel p : ) x B — R is called a (randomized) strictly equivariant estimator
(for the tunction f), if

p(x+7(h),B+ f(h)) = p(z,B) forallz € Q, h € H and B € B.

Given a full shift experiment there is (up to an additive constant) only one estimator
which is strictly equivariant and non-randomized. Indeed, if in equation (2) we put
h = —7~!(x), then we obtain

T(z) =T(0) + (for)(2). 3)

Let us call these estimators canonical estimators. All canonical estimators are strictly
equiviriant and non-randomized. The estimafpr= f o 7! is a particularly simple
canonical estimator.

If the canonical estimators have a finite first moment then there is a uniquely deter-
mined unbiased canonical estimator. Moreover, if the second moment is finite, then
this unbiased canonical estimator minimizes the quadratic risk among all strictly equiv-
ariant estimators.

Let us illustrate canonical estimators by examples.

(2.5) EXAMPLE In case of2 = H = R™ and7 = Idg~» we havely(z) = f(x). Thus,
in this case the linear functiofiis a canonical estimator.

Let? = H = R" and
Ti(hl,hg,...,hn)H (hl,h1+h2,...,h1+"'+hn),
whereh = (hy, hs, ..., h,) € H=R". Then we have

7 H2) = (21,02 — 1,00, Ty — Tn1).
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If we want to estimate the special linear function

f(h) = th‘

then we obtairYy(x) = z,, as the canonical unbiased equivariant estimator.

(2.6) ExAMPLE In the case of an infinite dimensional Gaussian shift like Example
((2.2)) we may define a canonical estimator in a similar way. The case is slightly
more subtle than for a full shift experiment since the embeddiig not surjective

and therefore we obtain an equation like (3) only on a dense subskt Biit if we
impose continuity of the estimator then we may extend (3) to the whole sample space
and arrive at a similar situation as in full shift case.

As an illustration let us consider the estimation of the linear function
1
F(h) = / h(s)ds, he H
0

in the model of Example (2.2). Recall the definitionroin (1). For allx € 7(H) we
haver—!(z) = 2/ which implies

T(z) =T(0) —|—/O 2'(s)ds = T(0) + z(1).

If T"is assumed to be continuous, then this equation must hofdl émthis particular
sense the functioffi, = X; is the canonical unbiased estimatorfofd

2.2 The convolution property

We are going to introduce some definitions which will simplify the discussion of the
convolution theorem and related questions.

(2.7) DEFINITION Two equivariant estimators are called equivalent to each other, if
their distributions (under P, and then also under each P, h € H ) differ by a one-point
measure which is independent of the parameter h € H.

(2.8) DEFINITION Let us say that an estimator py has the convolution property, if
for any further equivariant estimator p there exists a probability measure 1 on (R, B),
such that the distribution of p is the convolution of the distribution of py with .

It is obvious that the convolution property is valid or not valid for all members of an
equivalence class of equivariant estimators simultaneously.
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There are several decision theoretical consequences of the convolution property. The
most simple type of such an assertion is the following trivial lemma.

(2.9) LEMMA Suppose that T' is equivariant and has the convolution property. It'T
is in L*(P,y) and unbiased, then it has minimal quadratic risk among all equivariant
estimators.

The mathematical theorem which is known as convolution theorem states that under
certain assumptions canonical estimators have the convolution property. If the canoni-
cal estimators are also it¥ () then it follows from the convolution theorem that the
unbiased canonical estimator has minimal quadratic risk among all equivariant estima-
tors.

In this paper we will present some examples which show that, in general, canoni-
cal estimators need not have the convolution property. These examples are infinite-
dimensional shift experiments.

It is a natural question to ask whether at least the decision theoretic optimality (with
respect to the quadratic risk) of the unbiased canonical estimator remains valid. There-
fore we will present two different counterexamples. In the first counterexample the
unbiased canonical estimator does not have the convolution property but still has min-
imal quadratic risk among all equivariant estimators. In the second example a non-
canonical estimator has minimal quadratic risk among all equivariant estimators, but
the convolution property does neither hold for this optimal estimator nor for the canon-
ical estimator.

2.3 The structure of the proof of the convolution theorem

It is illuminating to study the structure of the proof of the convolution theorem in the
finite-dimensional case. The proof of the convolution theorem is based on two basic
facts.

The first basic fact is concerned with the structure of strictly equivariant estimators.

Previously, we have seen that for full shift experiments non-randomized strictly equiv-
ariant estimators have a very simple structure. Below, we will see that also for random-
ized strictly equivariant estimators a similar simple structure can be established. To be
explicit, it can be shown that for full shift experiments randomized but strictly equiv-
ariant estimators are convolutions with canonical estimators. This fact is the algebraic
background of the convolution theorem.

However, this algebraic structure can be established by more or less direct computation
only for strictly equivariant estimators. In order to cover arbitrary equivariant estima-
tors, too, we have to consider a second basic fact. It is concerned with the problem of
replacing equivariant estimators by strictly equivariant estimators.
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The following theorem contains a version of this second basic fact in a form which is
needed subsequently.

(2.10) THEOREM Let (P,)nen be a dominated shift experiment as defined in section
2.1 and let p be an equivariant estimator.

(1) There exists an estimator p* such that
/p(x, B) Py(dzx) = /p*(x, B) Py(dx) forall B€ Bandh € H

and such that
p*(,B) =p*(.+71(h), B+ f(h)) Pp-ae.,

where the exceptional set depends on h € H but noton B € B.

(2) For every finite-dimensional subspace L. C H the estimator p* can be chosen in
such a way it is even strictly equivariant for h € L.

For completeness we give a proof of Theorem (2.10) in the appendix.

The counterpart of Theorem (2.10) in testing theory is the Theorem of Hunt and Stein.
The Theorem of Hunt and Stein deals with testing problems which are invariant under
the operation of a transformation group on the sample space. If this transformation
group has an invariant probability measure then the proof of the theorem is easy. In
general, the proof is based on the Markov-Kakutani fixpoint theorem. This method
of proving the Theorem of Hunt and Stein is due to LeCam and it has been used by
LeCam, [3], to prove a general version of the convolution theorem.

Next, we show how the finite-dimensional convolution theorem for full shift experi-
ments can be proved along the lines described above.

(2.11) COROLLARY Assume that H is of finite dimension and let E = (Py,)nepn be
a dominated full shift experiment. Then the canonical estimators have the convolution

property.
Proof: Let p be an arbitrary equivariant estimator 6f By Theorem (2.10), part 2,
we may assume thatis even strictly equivariant. Defining the canonical estimator by
Ty := for~!, we obtain

p(x,B) = p(x — (17 (2)), B — f(r7(x)) = p(0, B — Ty).
Denotingu(B) := p(0, B) it follows that

[ pla.B) Pufde) = (0x £(TlED) (B).



O

It should be noted that an infinite-dimensional counterpart of this result makes no sense
since dominated full shift experiments do not exist for infinite dimensional Hilbert
spaces. The only sensible question can be whether the infinite-dimensional convolu-
tion theorem holds for dominated shift experiments wheré) is dense irf2. But for

such cases the method of the preceding proof cannot be applied. Any strictly equiv-
ariant estimatop would be uniquely defined on( /), but it may happen - and in fact

is typical - thatr(H) has Fy-measure zero. Then the distributionofs completely
undetermined. A continuity argument as in the definition of canonical estimators is
not possible since even jfis continuous, the continuity cannot be maintained when
Theorem (2.10) is applied.

2.4 Examples and counterexamples

We will present three examples showing that for infinite-dimensional shift experiments
very different situations may appear. In particular, it will turn out that the convolution
theorem is not valid, in general.

Let us make the following global assumptions:

Let H = L*([0,1]) andQ = €y([0, 1]). Define the embedding by (1). Assume that
under P, the coordinate procegsX;) has continuous paths and [Bf := P, * 6.,
h € H. We are going to consider the estimation problem for the linear function

1
f:h»—>/ h(s)ds, he H.
0

Our first example is concerned with a Gaussian shift situation of Example (2.6) where
it is well-known that the convolution theorem is true. We state and prove the assertion
for completeness.

(2.12) THEOREM Suppose that the coordinate process (X;) is the standard Wiener
process under F. Then the canonical estimator T, = X has the convolution property.

Proof: Let p be an arbitrary equivariant estimator p6f By Theorem (2.10) we may
assume that is even strictly equivariant on the orthogonal complement of Ker

By strict equivariance of it follows that

pl, B) = plz + 2(1)1dg — o(1)Ide, B) = plx — 2(1)Ids, B — 2(1)),



since forh = z(1) the equationg (k) = z(1) andr(h) = z(1)ldg are true. This
implies

/p(:ﬁ,B) Ph(dl’) = /p(l’—l—T(h),B) PO(dZL’)
_ / p(z, B — f(h)) Po(da)
_ /mx—ﬂmmmB—ﬂU—fWD%W@

Since(X;) is a Wiener process undé}, the processX; — X;ldg) and the random
variable X; are stochastically independent. If we define

R(B) := / p(z — 2(1)ldg, B) Py(dx),
then we obtain
[ ota.B) Putde) = [ BB - 2() - 1) Py(ao
_ /R(B — 2(1)) Pa(da).

Hence, the distribution gf P, is for all h € H a convolution of the distribution ok
with R. O

In this particular case the canonical estimdigris also unbiased and has minimal
guadratic risk among all equivariant estimators.

Next we turn to the first counterexample.

Assume that undeP, the coordinate procegsY,) has the distribution ofv/Z¥,),
where (IV;) is a Wiener process and is a nonnegative random variable which is
stochastically independent @;). In this case the quadratic variation procéss, X );)

of (X;) comes into the game. The quadratic variation process has the following prop-
erties: The distribution of(X, X');) under eachP,, h € H, coincides with the distri-
bution of (t7), underP,, and therefore does not depend/oa H.

It follows that the functionil; := X; — (X, X); is an equivariant estimator which is
not equivalent to the canonical estimaigr= X;. Our first counterexample will show
that there are distributions ¢f such that the distribution df; cannot be written as
a convolution with the distribution df;. Nevertheless the canonical estimatgris
unbiased and has minimal quadratic risk among all equivariant estimators.

(2.13) THEOREM Assume that under P, the coordinate process (X;) has the distri-
bution of (~/ZW,), where (W,) is a Wiener process and Z is a nonnegative and Py-
integrable random variable which is stochastically independent of (W,;). Then the
following assertions are true:
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1. The canonical estimator T is unbiased and has minimal quadratic risk among all
equivariant estimators. .

2. There are distributions of Z, such that T,y does not have the convolution property.

Proof: Let us start with the proof of 1.

Let p by any equivariant estimator. By Theorem (2.10) we may assume ikaven
strictly equivariant on the orthogonal complement of{lfer

Let P} := Ry(.|(X,X)1 = z), z € R, be aregular version of the conditional proba-
bility and defineP; := Pj * d-(»), h € H. Since the distribution of(.X, X);) under
P, does not depend dne H, it follows that P\ " = P, (_|(X, X)) Py-a.e., for all
heH.

Under F} the distribution of the coordinate proceik,) is that of (/zW;), where

(W,) denotes a standard Wiener process. Hence it follows by the same arguments as
in the proof of Theorem (2.12) that for each experim@hit),cx, = > 0, the canonical
estimator/; = X; has the convolution property and has thus smaller quadratic risk
thanp.

By integration with respect to the distribution X, X'); the risk inequality extends
to the experimentP,)ncq -

In order to prove 2., we show that in general the distributioii;afannot be written as
a convolution with the distribution dfy,.

Define the distribution of to be3d, + 34;. Then we have

1 1
Tg ~ \/Zwl ~ 5(50 + §N(O, ].),
and ) )

Assume thap is a probability measure satisfying
1 1 1 1
30 +N(=1,1) = (560 + 5N, 1)) * (L. (4)

Then the singular parts must coincide, i.e.

(), = (o o) -

whence . | |
550 = (550 *fL)s = 550 * fs-

This impliesu, = dp andu = §y which is a contradiction to (4). O
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Our second counterexample shows that things can even be more complicated.

(2.14) THEOREM Assume that under Py the coordinate process (X;) has the distribu-
tion of (Zt + \/ZW,), where (W,) is a Wiener process and Z is a nonnegative, inte-
grable and nonconstant random variable which is stochastically independent of (W).
Then the following assertions are true:

1. The estimator Ty = X; — (X, X)), is equivariant and has minimal quadratic risk
among all equivariant estimators, but it is not equivalent to the canonical estimator 1.

2. There exist random variables / such that neither 11 nor T, have the convolution
property.

Proof: In order to prove 1., we proceed as in the proof of Theorem (2.13).

Under eachP; the coordinate proce$(;) has the distribution ofzt + /21¥;), where

(W;) is a Wiener prozess. Therefore it follows for the same reasons as in Theorem
(2.12) that for each experime(P?),cn, z > 0, the canonical estimatdl, = X;

has the convolution property. Howevé, is not unbiased. FoOrP?)ncuy, z > 0, the
canonical unbiased estimators are rather the functipns= 7, — = = X; — z, which

are equivalent td;, and which have minimal quadratic risk among all equivariant
estimators.

Now, letp be any equivariant estimator which is strictly equivariant on the orthogonal
complement of kerf). Then we have, for every > 0,

/ (6 — F(W)?p(..de) AP} > / (To. — (b)) dF.

This implies

[ (€= 1ot ) dri( 11X, )1)
> [(X1 — (X, X1 — F(h)>dPu(](X, X)) Pr-a.e.

By integration with respect to the distribution X, X'), the assertion follows.

In order to prove assertion 2, we consider the estiméiprand 7; separately. It is
trivial that the canonical estimatdg, cannot have the convolution property, sirie
has a smaller variance thdp. But alsoT; in general does not have the convolution
property since for some distribution &f(e.g. %50 + %61) the distribution off}, cannot
be written as a convolution with the distribution’Bf. This follows from the proof of
Theorem (2.13). O

12



3 The counterexamples for cylindrical measures

In this section we present assertion 2 of Theorem (2.14) in terms of cylindrical exper-
iments.

(3.1) THEOREM There is a cylindrical measure P = P, on the separable Hilbert
space H = L?(0, 1] such that

(1) the full shift (P,)neq forms a dominated experiment.

In fact, the abstract L-space generated by (Py)ncy can be described in an explicit way:
There is an injective continuous map 7 : H — Cy[0, 1] such that 7(P,) = (7(P))-n)
are Borel-measures on ([0, 1] and are dominated by a Borel probability measure 1.
(e.g. i = 7(Py)) on Cy[0, 1] equivalent to (7(P))nen. We identify the family (Py)nen
with elements of L' (u) := L'(Co[0, 1], p).

(2) There is a continuous linear projection A : H — R which may be factored as
A = ¢4 o7, where ¢4 is a continuous projection from Cy[0, 1] to R, and a continuous
positive contraction v : L'(u) — L'(R, \), where \ denotes the Lebesque-measure
on R, such that

(i) v(Pn) = v(PRy) % 64y forh € H,
(ii) y(Py) is not the convolution of A(P,) with any probability measure.

DefineU C H to be the one-dimensional subspace formed by the constant functions
andWV to be its orthogonal complement. We write the eleménts H ash = (u, w)
and denote byt andy, the respective orthogonal projections.

To define the cylindrical measure = P, on H we first fix an auxiliary random
variable Z uniformly distributed on [0,1]. We have to define the law@fon each
finite-dimensional subspadé of H; we may and do suppose w.l.g. tHatcontains
U so that we may again write the elements V asv = (u,w) whereu € U and
we VNW. Given{Z = s} for somes € [0, 1] we define the law o[- |Z = ]
onV as the normal distribution with meds, 0) and covariance matrix equal fo Id.
It is straightforward to check that this welldefines a cylindrical measuré pwhich
does not extend to a sigma-additive Borel-measuré&on

The experiment now is defined as the full shift = (P,)necq-

To obtain a concrete respresentation of the absfreggace generated by define

7:L20,1] — Cpl0,1] (5)

f() / f(t) (6)
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A basic fact of the Wiener process going back to the original paper by N. Wiener, [8],
implies thatr mapsP to a sigma-additive Borel measyte= 7(P) on Cy[0, 1], which

can be described explicitly: GivefZ = s} the measuré’( - |Z = s) equals Wiener
measure oit[0, 1] with variance and drift both equal to Denoting byB, the Borel
subset ol’[0, 1]

Bs ={g € Cy[0,1] : {g,9): = st, forall t € [0,1]} (7)

where (g, g); denotes the quadratic variation function, the Bethas full measure
under the lawP( - |Z = s). We observe that the sef% are invariant under shifts by
elements in the image( /) of H, a fact which will turn out to be of crucial importance.
Also note that by Cameron-Martin-Girsanov the measu(é3) are all equivalent to
7(P), foranyh € H. In particularr(P,) all are elements of.' (1) which shows
in particular that the experimeii is dominated (in the abstract sense). Lettifig-
Usepo1) Bs we exhibit a Borel subset df; [0, 1] of full -measure.

We now defined : H — R as the orthogonal projectiofi = ;. The mappingd may
be represented as = ¢4 o T whereg, : Cy[0, 1] — R is given byp4(g) = g(1). The
measured(,) now has the following law: GiveRZ = s} itis N(s, s)-distributed.

To define the map : L'(n) — L'(R, \) we first define a mapy : B — R by letting
pu(g) = dalg) — s, if g € B;. We may writepy; explicitly by
pul(g) = 9(1) = (g, gh forg € B. (8)

Note thatp,; is a Borel-measurable function di. We therefore may extend; to a
stochastic kernel

p:B — M(R) 9)
g = pg,.) = Opye) (10)

whered,, ;) denotes Dirac-measurejat(g). The kernep induces a positive contrac-
tion~ : L'(u) — L'(R, \). By construction and the invariance Bf under shifts by
7(h), for h € H, we have

v o Srn)y = Sano, forh € H, (11)

whereS; : g — f + g denotes translation by in (5[0, 1] and S, : y — z + y the
translation inR. Whence by identifying P, )< 5 with the elements (7,) of L (1) we
get the desired invariance property

V(Pr) = 7(Po) * San, forh e H. (12)

Finally note thaty(P)( - |Z = s) is normally distributed ofR with mean equal to zero
and variance equal tg i.e.,y(P) is a mixture ofN(0, s)-distributions. AsA(F) is a
mixture of N(s, s)-distributions one easily verifies for the variances thati(F,)) >
V(v(Fp)) and in particulary( ) is not the convolution ofi( ) with any probability
measure.
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4 Appendix: Proof of Theorem (2.10)

Proof: Let p be an arbitrary equivariant estimator, i.e., a Markov kernel satisfying

// oz + 7(h), dé + F(h)) Po(da) = // o, d€) Py(dz)

forallh € H andg € G, := C,(R).
Let v be a probability measure which is equivalent to the fariity),.y and denote
L' := LY(O,A,v). By B we denote the set of all bilinear functiopison €, x L'
which are continuous and satisfy

18(g, k)| < llgllull%lls if g €€y, k€L,

B(g, k) =0 ifg>0,k=>0,

B(L,k) = [kdv if ke L.
We endowB with the topology of pointwise convergence 6p x L. With respect

to this topologyB is a compact set. It is easy to see that each elemeBtadn be
represented by a substochastic kernel (cf. Strasser, [7], Lemma 42.6).

For everyh € H, let 3, be the bilinear function

0.0~ [ [ 9(©pl + 7t de + 5() ko) vido)
whereg € Gy, k € L'. Define

K :=7co{f,:he H}.
Then K is a convex and compact subsetkf
For everyh € H letT), : B — B be the linear transformation defined by
ThB: (9.k) = Blg(- = 7(h)), k(. = f(R)), g€CykeL

Then(T},)ren is an Abelian group of continuous transformations, mapginigito i .
Thus, by the Markov-Kakutani fixpoint theorem there is a fixpoinkini.e. a bilinear
function3* € K such thatl},5* = g* forall h € H.

By equivariance ofp we haveg,(g,dP,/dv) = [o(g,dPy/dv) for all g € €, and
h € H. This property extends to all elementsiéfand therefore it follows that

B*(g,dPy/dv) = Bo(g,dPy/dv), forallge €, andh € H.
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It follows that 5* can be represented by a stochastic kepiéddaving the same distri-
bution underP, asp.

SinceS* is a fixpoint we have

// (a4 7(h), dE + F(h)) k(z)v(de) // o (, d€) k(z)v(dz) (13)

forallh € H, g € C,andk € L'. It follows that for allh € H andB € B we have

p(B)=p (. +7(h)., B+ f(h)) Prae,
where the exceptional set dependshoa H but not onB € B.

In order to finish the proof of Theorem 2.10, we need a lifting argument. One may
apply lonescu-Tulcea’s lifting theorem (see LeCam, [4], section 8.3, Theorem 3) or a
direct argument like that of Strasser, [7], Theorem 48.9. O
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