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Abstract

We show that, for a utility function U : R→ R having reasonable asymptotic
elasticity, the optimal investment process Ĥ ·S is a super-martingale under each
equivalent martingale measure Q, such that E[V (dQdP )] < ∞, where V is the
conjugate function of U . Similar results for the special case of the exponen-
tial utility were recently obtained by Delbaen, Grandits, Rheinländer, Samperi,
Schweizer, Stricker as well as Kabanov, Stricker.

This result gives rise to a rather delicate analysis of the “good definition” of
“allowed” trading strategies H for a financial market S. One offspring of these
considerations leads to the subsequent — at first glance paradoxical — example.

There is a financial market consisting of a deterministic bond and two risky
financial assets (S1

t , S
2
t )0≤t≤T such that, for an agent whose preferences are mod-

eled by expected exponential utility at time T , it is optimal to constantly hold
one unit of asset S1. However, if we pass to the market consisting only of the
bond and the first risky asset S1, and leaving the information structure un-
changed, this trading strategy is not optimal any more: in this smaller market
it is optimal to invest the initial endowment into the bond.
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1 Introduction

This paper continues the study of optimal investment in incomplete financial markets,
where we consider a utility function U : R→ R s.t.

U is differentiable, strictly concave, U ′(−∞) =∞, U ′(∞) = 0, (1)

and satisfies the condition of reasonable asymptotic elasticity, i.e.,

lim sup
x→∞

xU ′(x)
U(x)

< 1 and lim inf
x→−∞

xU ′(x)
U(x)

> 1. (2)

For the significance of the latter condition in the context of utility maximisation
we refer to [S 01]. The arch-example of a function U satisfying (1) and (2) is the
exponential utility U(x) = −e−γx, for γ > 0.

We adopt the same setting as in [S 01] to which we refer for unexplained notation:
Fixing the time horizon T ∈ ]0,∞[, (St)0≤t≤T will denote a locally bounded Rd-valued
semimartingale, modeling the price process of d financial assets. We work in discounted
terms, i.e., the bond is assumed to be constant.

We denote by Me(S) (resp. Ma(S)) the set of probability measures Q which are
equivalent (resp. absolutely continuous with respect) to P and such that S is a local
Q-martingale. We assume that

Me(S) 6= ∅ (3)

A basic problem is to find, for given initial endowment x ∈ R, a trading strategy
(Ht)0≤t≤T such that the expected utility of terminal wealth x+(H ·S)T = x+

∫ T
0
HtdSt

becomes maximal:
E [U (x+ (H ·S)T )] −→ max! (4)

We have been deliberately vague on the set of “allowed” trading strategies H over
which we maximize in (4); in fact, the choice of the “good definition” of this class of
trading strategies is rather subtle and constitutes the main topic of this paper.

The minimal requirement to impose on an “allowed” trading strategy H is that the
stochastic integral (H ·S)t = (

∫ t
0
HudSu)t makes sense. Here the theory of stochastic

integration (see, e.g., [P 90], [J 79], [RW 87]) tells us exactly what to impose on H: it
has to be a predictable S-integrable process.

But, of course, this qualitative requirement is not enough as it does not rule out,
e.g., doubling strategies, as was noticed by M. Harrison and S. Pliska ([HP 81]). In
order to rule out such strategies, some additional condition is needed.

A strong condition is the subsequent concept of admissible strategies as introduced
in [HP 81], modeling the situation of an agent with a finite credit line.

Definition 1 A predictable S-integrable process H is an admissible trading strategy
if the stochastic integral (H ·S)t = (

∫ t
0
HudSu)t is uniformly bounded from below.

This notion turned out to be very useful for no-arbitrage arguments (compare
[HP 81], [DS 94] and [DS 98b]). In the context of utility functions U taking finite values
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only on R+, while being −∞ on R− (typical example: U(x) = ln(x)), as analyzed,
e.g., in [KLSX 91] and [KrS 99], this concept also proved to be the appropriate one.

In the present setting of utility functions U taking finite values on all of R, we
also may and do use this class of trading strategies to give a precise meaning to the
maximisation problem (4).

Definition 2 We define the value function u associated to the optimization problem
(4) by

u(x) = sup {E[U(x+ (H ·S)T )], H admissible} , x ∈ R. (5)

Note that the expectation is well-defined (taking possibly the value +∞), and that
u(x) is an element of [U(x),∞].

In the present case of utility functions U taking finite values for all x ∈ R, the
class of admissible trading strategies is too narrow to find the optimizer in (5). In
general, we cannot expect to find the optimal solution to (5) such that the random
variable (H·S)T is uniformly bounded from below. For example, in the classical Merton
problem of optimal investment with respect to exponential utility in the Black-Scholes
model, the optimal solution is not bounded from below. Hence we have to look for a
somewhat broader class of “allowed” trading strategies.

A possible approach is to impose some integrability condition on the process H ·S.
But under which measure? Should we use the original measure P, or some specific
equivalent martingale measure Q, or maybe all equivalent martingale measures? This
issue was thoroughly addressed in [DGRSSS 02] and we shall elaborate further on this
topic.

For a utility function U : R → R satisfying (1) we denote by V : R+ → R its
conjugate function

V (y) = sup
x

(U(x)− xy) , y > 0. (6)

For example, for U(x) = −e−γx we have V (y) = y
γ
(ln( y

γ
) − 1). The dual problem

to (5) is given by
v(y) = inf

Q∈Me(S)
E
[
V
(
y dQ
dP

)]
, y > 0. (7)

Throughout the paper we shall make the following assumption:

Assumption 1 For each y > 0, the dual value function v(y) is finite and the mini-

mizer Q̂(y) ∈Me(S) for (7), called the minimax martingale measure, exists.

As shown in [BF 02], Assumption 1 is satisfied under rather mild conditions. We
remark that it is straightforward to verify that conditions (1), (2), and Assumption 1
imply the assumptions of Theorem 2.2 of [S 01]; hence under the present assumptions
we may apply this theorem. This fact will repeatedly be used below.

Specializing to the case of exponential utilty, it follows from the work of Cziszar
[C 75] (see also [BF 02] and [S 01, Remark 2.3]) that Assumption 1 is equivalent to the
existence of Q ∈Me(S) with finite relative entropy

H(Q|P) = EP

[
dQ
dP

ln
(
dQ
dP

)]
= EQ

[
ln
(
dQ
dP

)]
<∞. (8)
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In this case the measure Q̂(y) does not depend on y > 0, and minimizes the relative
entropy among all absolutely continuous martingale measures, i.e.,

H(Q̂|P) = min
Q∈Ma(S)

H(Q|P). (9)

Following [DGRSSS 02] we shall call Q̂ the entropy minimizing local martingale mea-
sure.

Turning again to general utility functions U, we shall say that Q ∈ Ma(S) has
finite V -expectation if E[V (dQ

dP
)] < ∞. It follows from the assumption of reasonable

elasticity (2) that in this case E[V (y dQ
dP

)] <∞, for each y > 0 (see [S 01, Corollary 4.2]).

We now can introduce several possible definitions of “allowed” trading strategies.

Definition 3 Under the above assumptions, fix the initial endowment x ∈ R.

(i) A predictable, S-integrable process H is in H1(x), if U(x+ (H ·S)T ) ∈ L1(P) and

H ·S is a super-martingale under the minimax martingale measure Q̂(y), where
y = u′(x).

(ii) A predictable, S-integrable process H is in H2(x), if U(x + (H · S)T ) ∈ L1(P)
and H ·S is a super-martingale under each Q ∈Ma(S) with finite V -expectation
E[V (dQ

dP
)].

(iii) A predictable, S-integrable process H is in H3(x), if U(x + (H ·S)T ) ∈ L1(P),
H · S is a super-martingale under each Q ∈ Ma(S) with finite V -expectation
E[V (dQ

dP
)], and there exists a sequence (Hn)∞n=1 of admissible trading strategies

such that

lim
n→∞

E [U (x+ (H ·S)T ∧ (Hn ·S)T )] = E [U (x+ (H ·S)T )] . (10)

The classes H′1(x), H′2(x) and H′3(x) are defined by replacing in (i), (ii) and (iii) above
the term “super-martingale” by the term “martingale”.

We remark that in the case of exponential utility the above concepts do not depend
on the initial endowment x.

The concept H′1 was defined — for the case of exponential utility — under the
name Θ1 in [DGRSSS 02]; it also plays (implicitly) an important role in the results
of [KrS 99] and [S 01] for the case of general utility functions U . As was remarked in
[DGRSSS 02], it is not very satisfactory to base the definition of the class of allowed
strategies on the knowledge of the dual optimizer.

The concept H′2 corresponds to the class Θ2 defined in [DGRSSS 02], where — for
the exponential utility — it was required that H ·S is a Q-martingale, for each Q with
finite entropy. It follows from [DGRSSS 02] and the recent paper [KS 02b] that this
latter concept works well for the exponential utility; but we shall see in Proposition
4 below that, for more general utility functions U : R → R, the concept of a super-
martingale is more appropriate than that of a martingale. This led us to define the
class H2.
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Definition (iii) is in the spirit of [S 01, Definition 1.3]. In addition to the require-
ments of definition (ii) we also impose an approximability of H ·S by a sequence Hn·S,
where each Hn is admissible. We remark that this concept is also related to the class
Θ3 defined in [DGRSSS 02].

Theorem 1 below asserts that it does not matter which of the classes H1, H′1, H2

or H3 (and, in the case of exponential utility, also H′2 and H′3) we choose for the utility

maximization problem (4). We always end up with the same maximizer Ĥ, which in
addition satisfies the proper duality relations with respect to the minimax martingale
measure Q̂(y).

For the case of exponential utility the analogous result was proved in [DGRSSS 02]

under a mild additional assumption (Q̂ was supposed to satisfy a reverse Hölder con-
dition RL logL). This assumption was shown to be superfluous in [KS 02a] (compare
also [Str01]).

The main result of the present paper is to establish the analogous result for general
utility functions U : R → R satisfying (1) and (2). For expository reasons, we shall
also indicate how the proof specializes to the case of exponential utility as the present
arguments are different from those in [DGRSSS 02] and [KS 02b]; we then show how
they may be extended to general utility functions. The proof of Theorem 1 relies
essentially on the ideas of concatenation and dynamic programming. It turns out
that some explicit calculations in the case of exponential utility are replaced by more
conceptual arguments in the general setting (thus avoiding some calculations).

Having established the equivalence of the concepts H1, H′1, H2 and H3 with re-
spect to the utility maximization problem (4) it will be natural to ask whether other
(weaker) requirements of “allowed” trading strategies also yield the same conclusion.
For example, consider the class of predictable S-integrable processes such that H ·S
is a martingale under some Q ∈Me(S). This class is closely related to the “workable
contingent claims” as introduced in [DS 97]. One also might try variations of this
requirement by imposing that H ·S is a martingale — or a super-martingale — under
some Q ∈Me(S) with finite V -expectation.

Proposition 2, which presents the example described in the abstract, shows in a
rather striking way that such hopes are in vain. These concepts do not allow for a
good duality theory and lead to paradoxical results from an economic point of view.
Two similar examples (Propositions 3 and 4) also show the sharpness of the assertions
of Theorem 1.

2 The Main Result

Theorem 1 Let S = (St)0≤t≤T be a locally bounded Rd-valued semimartingale and
U : R → R a utility function satisfying (1), (2), (3) and assumption 1. For x ∈ R,
consider the optimization problem

ui(x) = sup
H∈Hi(x)

E [U (x+ (H ·S)T )] . (11)

5



For i = 1, 2, 3 the optimal solution Ĥi ∈ Hi(x) exists, is unique (in the sense that

the process ((Ĥi ·S)t)0≤t≤T is unique up to the indistinguishability), coincides for all

three cases and therefore may be denoted by Ĥ. In addition, Ĥ is also the unique
optimizer in the class H′1(x).

The value function u(x) defined in (5) equals ui(x), for i = 1, 2, 3. Letting y =

u′(x), we have the following duality relation between Ĥ(x) and the dual minimizer

Q̂(y):

x+ (Ĥ ·S)T = −V ′
(
y dQ̂(y)

dP

)
and y dQ̂(y)

dP
= U ′

(
x+ (Ĥ ·S)T

)
. (12)

In the case of the exponential utility function U(x) = −e−γx, Ĥ does not depend on x;
it is also the unique minimizer in the classes H′2 and H′3; relation (12) specializes to

(Ĥ ·S)T = − 1
γ

ln
(
y
γ
dQ̂
dP

)
and dQ̂

dP
= γ

y
e−γ(Ĥ·S)T . (13)

where y = u′(0).

The theorem essentially relies on Proposition 1 below which, for the case of expo-
nential utility, was proved by Kabanov and Stricker [KS 02b]. Admitting Proposition
1 for the moment, the argument for Theorem 1 goes as follows.

Proof of Theorem 1 As remarked after Assumption 1 above, the present assump-
tions imply those of [S 01, Theorem 2.2]. In particular, we know that, for x ∈ R and
y > 0, satisfying u′(x) = y, the process

X̂t(x) = EQ̂(y)

[
−V ′

(
y dQ̂(y)

dP

)∣∣∣Ft] , 0 ≤ t ≤ T, (14)

well-defines a Q̂(y)-martingale, which is of the form X̂(x) = x + Ĥ(x) · S, for some

S-integrable predictable process Ĥ(x) and

u(x) = E
[
U
(
x+ (Ĥ(x) ·S)T

)]
. (15)

Proposition 1 asserts that X̂t(x) is a super-martingale under each Q ∈ Ma(S)

with finite V -expectation. Admitting this result, we shall show that Ĥ(x) is the
unique optimizer in the classes H1(x), H′1(x), H2(x) and H3(x).

The fact hat Ĥ(x) belongs to each of these classes is obvious for H1(x), H′1(x)

and H2(x); as regards H3(x), it follows from [S 01, Theorem 2.2] that Ĥ(x) may be
approximated by a sequence of admissible trading strategies in the sense of (10).

To show that Ĥ(x) is the unique optimizer in each of these classes, we only have
to show this for H1(x), as this is the largest class.

We shall show that, in fact, the Q̂(y)-martingale X̂(x) = x + Ĥ(x) ·S is optimal

among the class of all Q̂(y)-super-martingales (Xt)0≤t≤T starting at X0 = x. Indeed,

let X be a Q̂(y)-super-martingale and use the duality relation (see [S 01, Theorem
2.2 (i)])

u(x) = E[U(X̂T (x))] = E
[
V
(
y dQ̂(y)

dP

)]
+ xy = v(y) + xy. (16)
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Applying the inequality

U(XT (ω)) = inf
η>0
{V (η) +XT (ω)η}

≤ V
(
y dQ̂(y)

dP
(ω)
)

+XT (ω)y dQ̂(y)
dP

(ω), (17)

pointwise for ω ∈ Ω, we get from the Q̂(y)-super-martingale property of X that

E[U(XT )] ≤ E
[
V
(
y dQ̂(y)

dP

)]
+ yEQ̂(y)[XT ]

≤ E
[
V
(
y dQ̂(y)

dP

)]
+ xy = E[U(X̂T (x))], (18)

where the above estimate shows in particular that E[U(XT )+] <∞, so that E[U(XT )]

is well-defined. This readily shows that Ĥ is the unique optimizer in the class H1(x).
Hence, for i = 1, 2, 3, the value functions ui(x) coincide with the value function u(x)
as defined in (5).

As regards the fact that Ĥ(x) also is in H′2(x) and H′3(x) for the case of exponential
utility, we refer to [DGRSSS 02] and [KS 02b].

Proposition 1 Under the assumptions of Theorem 1, the process X̂(x) = x+Ĥ(x)·S,
defined by (14), is a super-martingale under Q for each Q ∈ Ma(S) with finite V -
expectation EP[V (dQ

dP
)].

To prepare the proof of Proposition 1 we start with some auxiliary results. The
subsequent lemma gives a general characterisation of local martingales X (or, more
generally, stochastic integrals of local martingales), which are super-martingales. On
the basis of a preliminary version of the present paper [S 02], Kabanov and Stricker as
well as E. Strasser have further elaborated on this topic ([KS 02b], [St 02]).

Lemma 1 Let S = (St)0≤t≤T be a local martingale on (Ω,F , (Ft)0≤t≤T ,Q), H an
S-integrable predictable process and X = H ·S.

If, for every sequence (τn)∞n=1 of [0, T ] ∪ {∞}-valued stopping times increasing to
+∞, we have

lim sup
n→∞

EQ

[
Xτn1{τn<∞,Xτn≤0}

]
= 0, (19)

then X is a local martingale and a super-martingale under Q.

The proof of the lemma relies on the subsequent sublemma which is a straight
forward consequence of a result of Ansel-Stricker [AS 94, Proposition 3.3] (compare
also [KS 02b]).

Sublemma 1 Let S = (St)0≤t≤T be a local martingale and suppose that, for X = H·S,
there is an integrable random variable ϑ ≥ 0 such that Xt ≥ −ϑ, a.s., for all 0 ≤ t ≤ T .

Then X is a local martingale and a super-martingale.
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Proof of Lemma 1 Define the sequence of stopping times by σ0 = 0, n ≥ 1, and

σn = inf{t : Xt ≤ −n}, (20)

which increases almost surely to infinity.
We assume that (19) holds true and define the random variables

ϑn = max
(
(Xσn)− 1{σn<∞}, n

)
. (21)

It follows from (19) that, for n sufficiently large, we have EQ[ϑn] <∞.
Note that the stopped process Xσn is bounded from below almost surely by −ϑn;

indeed, on {σn = ∞} we have inf0≤t≤T X
σn
t ≥ −n, while on {σn < ∞} we have

inf0≤t≤T X
σn
t = Xσn1{σn<∞} ≥ − (Xσn)− 1{σn<∞}. Sublemma 1 therefore implies that

each Xσn is a super-martingale and that X is a local martingale under Q.
We now show that (19) implies that, for every [0, T ]-valued stopping time σ, we

have
EQ[|Xσ|] <∞. (22)

Indeed, otherwise limn→∞E[|Xσ∧σn|] = ∞ and, therefore, using the supermartingale
property of Xσn ,

lim
n→∞

E[(Xσ∧σn)−] =∞. (23)

Letting An = {σn−1 < σ ≤ σn}, we obtain a partition (An)∞n=1 of Ω. For the
sequence of stopping times κn = σ1An +∞1Ω\An we obtain from (23) that

∞∑
n=1

EQ [(Xσ)−1An ] = −
∞∑
n=1

EQ

[
Xκn1{κn<∞,Xκn≤0}

]
=∞. (24)

By letting τk =
∑nk+1

n=nk+1 σ1An + ∞1
Ω\
⋃nk+1
n=nk+1 An

for a sequence (nk)
∞
k=1 increasing

sufficiently fast to infinity, we arrive at a contradiction to (19), which proves (22).

We are ready to show the super-martingale property of X. It suffices to fix stopping
times 0 ≤ ρ ≤ σ ≤ T such that ρ ≤ σn0 , for some n0 ∈ N, and to show that

EQ[Xσ −Xρ] ≤ 0. (25)

We deduce from the super-martingale property of Xσn that, for n ≥ n0,

EQ[Xσ∧σn −Xρ] ≤ 0. (26)

Using (22), we may deduce (25) from (26) and assumption (19) applied to the
sequence of stopping times ρn = (σ ∧ σn)1{σn≤σ} +∞1{σn>σ}:

EQ[Xσ] = lim
n→∞

EQ

[
Xσ1{σn>σ}

]
= lim

n→∞
EQ

[
Xσ∧σn1{σn>σ}

]
= lim

n→∞

(
EQ [Xσ∧σn ]− EQ

[
Xσ∧σn1{σn≤σ}

])
≤ lim

n→∞

(
EQ [Xσ∧σn ]− EQ

[
Xρn1{ρn<∞,Xρn≤0}

])
≤ EQ[Xρ]. (27)
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Remark 1 The sufficient condition (19) also is necessary for a process X = (Xt)0≤t≤T
to be a super-martingale: indeed, if X = (Xt)0≤t≤T is a super-martingale and the
sequence of [0, T ]∪{∞}-valued stopping times (τn)∞n=1 increases to ∞, the sequence of
random variables (Xτn1{τn<∞,Xτn≤0})

∞
n=1 is uniformly integrable, which implies (19).

We have formulated Lemma 1 for processes indexed by the closed time interval
I = [0, T ]. As pointed out by C. Stricker, this result also extends to the case of the open
time interval I = [0,∞[; we then have to require in condition (19) that the sequence
(τn)∞n=1 increases stationarily to ∞. Note that in the present case of I = [0, T ] a
sequence (τn)∞n=1 of [0, T ]∪{∞}-valued stopping times, increasing to ∞, automatically
does so in a stationary way.

We now aboard the proof of Proposition 1 for the special case of the exponential
utility U(x) = −e−γx which will rely on the subsequent Lemma 2 pertaining to the
well-known technique of “concatenation” (compare [KS 02a, Proposition 4.1]).

Lemma 2 Under the assumptions of Theorem 1, let Q ∈ Ma(S) with H(Q|P) <∞
and τ a [0, T ] ∪ {∞}-valued stopping time. Denote by (Zt)0≤t≤T and (Ẑt)0≤t≤T the

density processes corresponding to Q and Q̂ respectively, and define the probability
measure Qτ by the following “concatenation operation”:

dQτ

dP
=

{
ZT if τ =∞
Zτ

ẐT
Ẑτ

if τ <∞ (28)

Then Qτ ∈Ma(S) and H(Qτ |P) ≤ H(Q|P).

Proof Note that the random variable Y = ẐT
Ẑτ

1{τ<∞} + 1{τ=∞} solves the conditional

minimization problem

EP [Y ln(Y )| Fτ ] −→ min! a.s. on {τ <∞}, (29)

among all nonnegative random variables Y verifying EP[Y |Fτ ] = 1 a.s., and such that
the process τS := St − St∧τ “starting at τ” is a local martingale with respect to the
measure R defined by dR

dP
= Y .

Indeed, suppose there is such a function Y and an Fτ -measurable subset A ⊆ {τ <
∞}, P[A] > 0, such that

EP

[
ẐT
Ẑτ

ln
(
ẐT
Ẑτ

)∣∣∣Fτ] > EP [Y ln (Y )| Fτ ] a.s. on A. (30)

Then the probability measure Q̃ defined by

dQ̃
dP

= Z̃T =

{
ẐT on Ω\A
ẐτY on A

(31)
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would be an element of Ma(S) with smaller entropy than Q̂:

H(Q̂|P)−H(Q̃|P) = EP

[
ẐT ln(ẐT )− Z̃T ln(Z̃T )

]
(32)

= EP

[(
Ẑτ

ẐT
Ẑτ

ln
(
Ẑτ

ẐT
Ẑτ

)
− ẐτY ln

(
ẐτY

))
1A

]
= EP

[
Ẑτ1A EP

[
ẐT
Ẑτ

(
ln
(
Ẑτ

)
+ ln

(
ẐT
Ẑτ

))
− Y

(
ln
(
Ẑτ

)
+ ln(Y )

)∣∣∣Fτ]]
= EP

[
Ẑτ1A EP

[
ẐT
Ẑτ

ln
(
ẐT
Ẑτ

)
− Y ln(Y )

∣∣∣Fτ]] > 0.

This contradiction to the minimality of Q̂ shows (29).
By the same argument we conclude that Qτ is the element ofMa(S) with minimal

entropy such that Qτ |Fτ = Q|Fτ , which implies the assertion of the lemma.

Proof of Proposition 1 for the case of exponential utility
Assume that there is Q ∈ Ma(S), H(Q|P) < ∞, such that X̂ = x + Ĥ fails to be a
super-martingale under Q. Without loss of generality we may assume that x = 0 and

that Q ∈Me(S) (consider Q+Q̂
2

).

From Lemma 1 we deduce that, if X̂ fails to be a Q-super-martingale, there exists
a sequence (τn)∞n=1 of stopping times increasing to infinity such that

lim inf
n→∞

EQ

[
−X̂τn1{τn<∞,X̂τn≤0}

]
> 0. (33)

Of course, we may assume that X̂τn ≤ 0 on {τn < ∞} so that we may replace

{τn <∞, X̂τn ≤ 0} simply by {τn <∞} in the above formula.

We know that X̂ is a uniformly integrable martingale under Q̂ and therefore

lim
n→∞

EQ̂

[
X̂τn1{τn<∞}

]
= 0. (34)

It follows from (33) and (34) that we have

lim inf
n→∞

EP

[
−X̂τnZτn1{τn<∞,Zτn≥Ẑτn}

]
> 0. (35)

Now apply Lemma 2 to the probability measures Qn ∈Me(S)

dQn

dP
=

{
Zτn

ẐT
Ẑτn

for τn <∞
ZT for τn =∞

(36)

We shall show that
lim inf
n→∞

H(Qn|P) > H(Q|P), (37)

10



a contradiction to the assertion of Lemma 2 which will finish the proof.

lim inf
n→∞

(H(Qn|P)−H(Q|P)) (38)

= lim inf
n→∞

E
[(
Zτn

ẐT
Ẑτn

ln
(
Zτn

ẐT
Ẑτn

)
− ZT ln(ZT )

)
1{τn<∞}

]
(39)

≥ lim inf
n→∞

(
E
[
Zτn

ẐT
Ẑτn

ln
(
Zτn

ẐT
Ẑτn

)
1{τn<∞,Zτn≥Ẑτn}

]
+

(−1
e
)P
[
τn <∞, Zτn < Ẑτn

]
− E

[
ZT ln(ZT )1{τn<∞}

])
(40)

= lim inf
n→∞

E
[
Zτn1{τn<∞,Zτn≥Ẑτn}E

[
ẐT
Ẑτn

ln
(
ẐT

)∣∣∣Fτn]] (41)

= lim inf
n→∞

E
[
Zτn1{τn<∞,Zτn≥Ẑτn}E

[
ẐT
Ẑτn

(
−γX̂T − ln

(
y
γ

))∣∣∣Fτn]] (42)

= lim inf
n→∞

E
[
Zτn1{τn<∞,Zτn≥Ẑτn}

(
−γX̂τn − ln

(
y
γ

))]
> 0, (43)

where we have used (13) in the equaltiy of (41) and (42), and the fact that (ẐtX̂t)0≤t≤T
is a uniformly integrable martingale in the equalities of (40) and (41) as well as of (42)
and (43).

As regards the final inequality, we used (35) and limn→∞E[Zτn1An ] =
limn→∞Q[An] = 0, for every sequence (An)∞n=1 of Fτn-measureable sets decreasing
a.s. to the empty set.

We now aboard the proof of Proposition 1 for general utility functions U : R→ R

having reasonable asymptotic elasticity, i.e., satisfying (1) and (2). We shall develop
a dynamic version of the utility maximisation problem, following the classical lines of
control theory, as presented, e.g., in [E 81]. The subsequent presentation has greatly
benefitted from detailed comments of an anonymous referee which are gratefully ac-
knowledged.

Dynamic version of the utility maximisation problem. Given a stopping
time τ , valued in [0, T ], together with an arbitrary Fτ -measurable R-valued random
variable ξ, define the maximisation problem:

uτ (ξ) := ess sup E
[
U
(
ξ +

∫ T
τ
HrdSr

)∣∣∣Fτ] , (44)

where H runs through the admissible integrands supported by the stochastic interval
]]τ, T ]].

Let us verify that uτ (ξ) is a well-defined Fτ -measurable function (strictly speak-
ing: an equivalence class of Fτ -measurable functions), taking values in the interval
[U(ξ), U(∞)] almost surely. By considering H = 0 we clearly have uτ (ξ) ≥ U(ξ).
Fixing an arbitrary admissible integrand H = H1]]τ,T ]], there is C > 0 such that
(H ·S)t ≥ −C a.s., for all t ∈ [0, T ]. Hence on the Fτ -measurable sets {ξ ≥ −M} we

have ξ+(H·S)T = ξ+
∫ T
τ
HrdSr ≥ −(M+C). Sending M to infinity we conclude that,

for fixed H, the conditional expectation in (44) is a well-defined (equivalence class of)
Fτ -measureable function(s) taking values in ]−∞, U(∞)]. Hence the essential supre-
mum defined in (44) is well-defined too, and uτ (ξ) takes its values in [U(ξ), U(∞)]
almost surely.

11



We still note that one may deduce from Assumption 1 the more precise result
that uτ (ξ) takes its values in the interval [U(ξ), U(∞)[ a.s.; as we shall not need this
sharpening we don’t elaborate on its proof.

We now pass to the dynamic programming formula, which reads as follows: for
any pair τ ≤ ϑ of [0, T ]-valued stopping times we have

uτ (ξ) = ess sup E
[
uϑ

(
ξ +

∫ ϑ
τ
HrdSr

)∣∣∣Fτ] . (45)

Here again H runs through the admissible integrands supported by ]]τ, T ]] (or,
equivalently, by ]]τ, ϑ]]) and ξ is an Fτ -measurable R-valued function.

To verify (45) we may assume that ξ is bounded as it suffices to show (45) on
the Fτ -measurable sets {−M ≤ ξ ≤ M}. To show the “≥” in (45), fix admissible

integrands H and L supported by ]]τ, T ]] and ]]ϑ, T ]] respectively. Then H̃ = H]]τ,ϑ]] +L
is an admissible integrand supported by ]]τ, T ]] so that

uτ (ξ) ≥ E
[
U
(
ξ +

∫ ϑ
τ
HrdSr +

∫ T
ϑ
LrdSr

)∣∣∣Fτ] . (46)

Using the definition of uϑ we obtain the inequality “≥” in (45).
To show the “≤” in (45), fix again an admissible integrand H supported by ]]τ, T ]].

For fixed n, the integrand Ln := H1]]ϑ,T ]]1{(H·S)ϑ≤n} is admissible and supported by
]]ϑ, T ]], so that

E
[
U
(
ξ +

∫ T
τ
HrdSr

)∣∣∣Fτ] ≤ sup
n

E
[
U
(
ξ +

∫ ϑ
τ
HrdSr +

∫ T
ϑ
LnrdSr

)∣∣∣Fτ]
≤ E

[
uϑ

(
ξ +

∫ ϑ
τ
HrdSr

)∣∣∣Fτ] . (47)

Dynamic version of the dual problem. Given an arbitrary stopping time τ
valued in [0, T ] together with an Fτ -measurable strictly positive random variable ζ,
define

ZSτ (ζ) :=

{
Y := ζ

dQ/dP

E [ (dQ/dP)| Fτ ]
: Q ∈Me(S)

}
. (48)

and the associated minimisation problem:

vτ (ζ) := ess inf
Y ∈ZSτ (ζ)

E [V (Y )|Fτ ] . (49)

Using Assumption 1 and similar arguments as in [BF 02] or [S 01] one verifies that

any minimizing (Y n)∞n=1 converges a.s. to an element Ŷ (ζ) ∈ ZSτ (ζ) for which we have

vτ (ζ) = E[V (Ŷ (ζ))|Fτ ]. (50)

Also note that vτ (ζ) is a.s. finite and that ζ 7→ vτ (ζ) is a convex function.
The controls set ZSτ (ζ) is closed under the concatenation property described in

Lemma 2. This implies, similarly as (but somewhat easier than) above, the dynamic
programming formula:

vτ (ζ) = ess inf
Y ∈ZSτ (ζ)

E [vϑ(Yϑ)|Fτ ] with Yϑ := E[Y |Fϑ], (51)

12



for any pair of [0, T ]-valued stopping times τ ≤ ϑ.

We may also define the right hand side derivative v′τ of the conditional value func-
tion vτ by

v′τ (ζ) = lim
λ↘1

vτ (λζ)− vτ (ζ)

ζ(λ− 1)
. (52)

Note that the right hand side is decreasing in λ and bounded from below by
vτ (ζ)−vτ (ζ/2)

ζ/2
, so that v′τ (ζ) is a well-defined, finitely valued (equivalence class of) Fτ -

measurable function(s). We also observe that ζ1 ≤ ζ2 implies v′τ (ζ1) ≤ v′τ (ζ2) almost
surely.

One may, in fact, show that v′t is a derivative, and not only a right hand side
derivative (compare [S 01, Step 5 of the proof of Theorem 2.2]). But we want to
develop here only the minimum of the conditional theory, which enables us to prove
Proposition 1; Definition (52) is taylor-made to show the subsequent crucial estimate
in an easy way.

Lemma 3 Under the assumptions of Theorem 1, also assume U(0) > 0.
There is a constant C > 0, depending only on the utility function U , such that, for

every [0, T ]-valued stopping time τ and every Fτ -measurable ζ > 0, we have

ζv′τ (ζ) ≤ Cvτ (ζ), a.s. (53)

Proof We apply [S 01, Corollary 4.2 (ii)] to find C > 0 such that yV ′(y) ≤ CV (y), for
all y > 0. Hence

ζv′τ (ζ) = lim
λ↘1

E
[
V
(
Ŷ (λζ)

)
− V

(
Ŷ (ζ)

)∣∣∣Fτ] /(λ− 1)

≤ lim
λ↘1

E
[
V
(
λŶ (ζ)

)
− V

(
Ŷ (ζ)

)∣∣∣Fτ] /(λ− 1)

≤ lim
λ↘1

E
[
Ŷ (ζ)V ′

(
λŶ (ζ)

)∣∣∣Fτ] = lim
λ↘1

E
[
λŶ (ζ)V ′

(
λŶ (ζ)

)∣∣∣Fτ]
≤ lim

λ↘1
CE

[
V
(
λŶ (ζ)

)∣∣∣Fτ] = CE
[
V
(
Ŷ (ζ)

)∣∣∣Fτ] = Cvτ (ζ), (54)

where (54) follows from Lebesgue’s theorem and [S 01, Corollary 4.2 (i)].

We also need conditional versions of some of the results from [KrS 99] and [S 01],
which are resumed in the subsequent lemma.

Lemma 4 Under the assumptions of Theorem 1, let x ∈ R, y = u′(x), denote by

Ĥ(x) and Q̂(y) the primal and the dual optimizer, by (Ẑt(y))0≤t≤T the density process

of Q̂(y). Fix a [0, T ]-valued stopping time τ . Letting ξ = x+(Ĥ(x)·S)τ and ζ = yẐτ (y)
we have the following properties:

(i) The optimal values in (44) and (49) are attained by H := Ĥ(x)1]]τ,T ]] and Y :=

yẐT (y) respectively.
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(ii) The following duality relation holds true almost surely:

−v′τ (ζ) = ξ. (55)

Proof (i) As regards the first assertion, things are slightly subtle, as neither Ĥ(x) nor

Ĥ(x)1]]τ,T ]] is necessarily admissible. To alleviate notation we write Ĥ for Ĥ(x).
We first show the inequality

uτ (ξ) ≤ E
[
U
(
ξ +

∫ T
τ
ĤrdSr

)∣∣∣Fτ] . (56)

Indeed, suppose there is an admissible integrand H = H1]]τ,T ]] and a set A ∈ Fτ ,
P[A] > 0, such that

E
[
U
(
ξ +

∫ T
τ
HrdSr

)
1A

]
> E

[
U
(
ξ +

∫ T
τ
ĤrdSr

)
1A

]
. (57)

For τA := τ1A + T1Ω\A and H̃ := Ĥ + (H − Ĥ)1]]τA,T ]], we have

E
[
U
(
x+

∫ T
0
H̃rdSr

)]
> E

[
U
(
x+

∫ T
0
ĤrdSr

)]
. (58)

Note that H̃ · S is a Q̂(y)-supermartingale, hence by the usual Fenchel duality
argument (see (17), (18) above) inequality (58) is in contradiction to the optimality

of Ĥ, which proves (56).
To show the converse inequality

uτ (ξ) ≥ E
[
U
(
ξ +

∫ T
τ
ĤrdSr

)∣∣∣Fτ] . (59)

we use the fact ([S 01, Theorem 2.2]) that Ĥ can be approximated by a sequence of
admissible integrands in the sense of Definition 3 (iii). Using Proposition 5 from the
Appendix we may find, for ε > 0, an admissible integrand Hε such that

E
[
U
(
x+ (Hε ·S)T ∧ (Ĥ ·S)T

)]
> E

[
U
(
x+ (Ĥ ·S)T

)]
− ε, (60)

and
P [ξ > x+ (Hε ·S)τ − ε] > 1− ε. (61)

(Note that ξ = x+ (Ĥ ·S)τ ). Define Aε to be the Fτ -measurable set

Aε =
{
ξ > x+ (Hε ·S)τ − ε, (Hε ·S)τ < ε−1

}
, (62)

and τA
ε

= τ1Aε + T1Ω\Aε . The process H̃ε = Hε1]]τA
ε ,T ]] is an admissible integrand

supported by ]]τ, T ]] and it is straightforward to verify that

uτ (ξ) ≥ ess sup
ε>0

E
[
U
(
ξ +

∫ T
τ
H̃ε
rdSr

)∣∣∣Fτ] ≥ E
[
U
(
ξ +

∫ T
τ
ĤrdSr

)∣∣∣Fτ] .
14



The verification that Y := yẐτ (y) yields the optimal value in (49) is easier and left
to the reader.

(ii) is simply the conditional version of [S 01, Theorem 2.2 (iv)]:

ξ = EQ̂(y)

[
x+ (Ĥ ·S)T

∣∣∣Fτ] = −EQ̂(y)

[
V ′
(
yẐT (y)

)∣∣∣Fτ] (63)

= −EP

[
ẐT (y)V ′

(
yẐT (y)

)∣∣∣Fτ] = −v′τ (ζ).

We have used in the first equality the Q̂(y)-martingale property of Ĥ ·S, and in the
second [S 01, Theorem 2.2 (iv)]. The final equality is the conditional version of [S 01,
Theorem 2.2 (v)] and can be shown similarly as Lemma 3 above (compare the proof
of [KrS 99, Theorem 2.2]).

Proof of Proposition 1 for the general case
First note that there is no loss of generality in assuming that U(0) > 0, as the assertion
is clearly invariant under adding a constant to U . Suppose that there is Q ∈ Ma(S),

E[V (dQ
dP

)] <∞, and x ∈ R, such that X̂(x) fails to be a Q-super-martingale.
Similarly as in (35) above we conclude from Lemma 1 that there is a sequence

(τn)∞n=1 of stopping times, increasing to ∞, such that

lim inf
n→∞

EP

[
−X̂τn(x)Yτn1{τn<∞,Yτn≥Ŷτn}

]
> 0, (64)

where Yt is the density process of y dQ
dP

, Ŷt the density process of y dQ̂(y)
dP

and u′(x) = y.
Applying Lemma 3 and 4 to the stopping time τn∧T and letting c = C−1, we then

compute that:

EP

[
V (Y )1{τn<∞,Yτn≥Ŷτn}

]
= EP

[
E (V (Y )|Fτn) 1{τn<∞,Yτn≥Ŷτn}

]
(65)

≥ EP

[
vτn (Yτn) 1{τn<∞,Yτn≥Ŷτn}

]
(66)

by definition of the minimization problem vτn

≥ cEP

[
Yτnv

′
τn (Yτn) 1{τn<∞,Yτn≥Ŷτn}

]
(67)

by Lemma 3

≥ cEP

[
Yτnv

′
τn

(
Ŷτn

)
1{τn<∞,Yτn≥Ŷτn}

]
(68)

by the monotonicity of v′τn(·)

= cEP

[
−YτnX̂τn1{τn<∞,Yτn≥Ŷτn}

]
(69)

by Lemma 4.

Sending n to ∞, we deduce from (64) a contradiction to the P-integrability of V (Y )
and the fact that (τn)∞n=1 increases to ∞.
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3 The Role of Potential Investments: a Puzzling

Example

In this section we shall construct some examples, which illustrate the precise limits of
Theorem 1.

The most important example is summarized in Proposition 2 below. It highlights
the delicacy of the “good definition” of “allowed” trading strategies. It has a surprising
economic interpretation, to which we tried to refer to in the title of the present section.

It will be notationally convenient to take as time index set N0 ∪ {∞} instead of
[0, T ]; by replacing N0 ∪ {∞} by (tn)∞n=0 ∪ {T}, where 0 = t0 < t1 < . . . < tn < . . . is
a sequence increasing to T , it is obvious how to translate the present result into the
framework of the previous section (compare also [S 02]).

Proposition 2 There are processes S1 = (S1
n)n∈N0 and S2 = (S2

n)n∈N0, defined on
and adapted to (Ω,F , (Fn)n∈N0 ,P), and a probability measure Q ∼ P on F , with the
following properties:

(i) H(Q|P) <∞.

(ii) S1 is a martingale under Q and P, which is uniformly integrable under Q, but
not uniformly integrable under P.

(iii) S2 is a martingale under Q, but not a martingale under P.

(iv) Denoting by Slarge the R2-valued process (S1, S2), Q is the unique equivalent local
martingale measure for Slarge. The equality

S1
∞ = − ln

(
dQ
dP

)
(70)

holds true, and therefore the process (S1
n)n∈N0 equals the investment process

(X̂n)n∈N0, starting at X̂0 = S1
0 , which is optimal with respect to the utility func-

tion U(x) = −e−x.

(v) Denoting by Ssmall the R-valued process (S1
n)n∈N0, P is a martingale measure for

Ssmall. Hence the optimal investment process with initial endowment X̂0 = S1
0

now is the constant process X̂n ≡ S1
0 . The optimality pertains to U(x) = −e−x

(and, in fact, to any U satisfying (1)).

Let us briefly comment on this result: In the case of the “large” financial market
Slarge, the optimal investment consists in constantly holding one unit of the first asset
S1 and not touching the second asset S2 (and also not using any information revealed
by S2). Nevertheless, by passing to the “small” financial market Ssmall, which consists
of this first asset only, defined over the same filtered stochastic base (Ω,F , (Fn)n∈N0 ,P),
this strategy is not optimal any more! In this case the optimal strategy is not to invest
into the risky asset, and to keep the money in the bond.

Hence the role of the asset S2 may be compared to a catalyst in chemistry: its
sheer presence changes the situation without entering into the chemical reaction.
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One reason for this seemingly paradoxical result is that in the former case the
optimal strategy H = (1, 0) of holding one unit of the first asset can be approximated
by a sequence Hn = (Hn,1, Hn,2) of admissible strategies in the sense of Definition
3 (iii) above. The second asset is needed for these approximating strategies and such
an approximation is not possible by only trading in the first asset.

We postpone the proof of Proposition 2 and resume two more examples. Proposi-
tion 3 shows that in Proposition 1 above the finiteness of H(Q|P), or, more generally,
of E[V (dQ

dP
)], cannot be dropped.

Proposition 3 There is an R-valued financial market (Sn)n∈N0, such that the entropy-

minimal element Q̂ ∈ Me(S) as well as the optimal investment process X̂(0) with
respect to U(x) = −e−x exist, and there is some equivalent martingale measure Q ∈
Me(S), with H(Q|P) = ∞, for which the closed process X̂(0) = (X̂n(0)n∈N0∪{∞}) is
only a local Q-martingale, but not a Q-super-martingale.

Finally we show that the last assertion of Theorem 1 for the exponential utility
U(x) = −e−x, does not extend to general utility functions U : R→ R.

Proposition 4 There is a utility function U : R → R satisfying (1) and (2), and
an R-valued financial market (Sn)n∈N0, such that there is Q ∈ Me(S) with finite V -

expectation E[V (dQ
dP

)] <∞ and x0 ∈ R, such that the closed optimal process X̂(x0) =

(X̂n(x0))n∈N0∪{∞} fails to be a Q-submartingale.

The construction of all three counter-examples will follow the same pattern which
goes back to the construction of [S 93] and which we now describe. This presentation
has greatly benefitted from detailed comments by Y. Kabanov [Ka 02], which are
gratefully acknowledged.

Consider the fair game consisting of a sequence of independent trials (binary ex-

periments) where in the kth-trial the increment of the player’s capital is yk > 0 or
xk < 0, with the “success” probability being lk ∈]0, 1[. The player also observes an-
other independent sequence of binary experiments with success probabilities pk ∈]0, 1[;
the game stops at the first success in any of these two sequences.

We formalize this in a standard way. For k ≥ 1, let Ω′k, Ω′′k be the “elementary”
probability spaces {−1, 1} with P′({1}) = lk, P′′({1}) = pk (for the binary experi-
ments) and let (Ω,F ,P) be the product of all these spaces. For ω = (ω′, ω′′) ∈ Ω we
take ηk(ω) = yk or xk in dependence whether ω′k = 1 or ω′k = −1, and ξk(ω) = ω′′k .

We assume that E[ηk] = 0. In this case, for any initial value a0 ∈ R, the random
walk Σn := a0 +

∑n
k=1 ηk is a martingale with respect to the filtration (F ξ,ηn )∞n=0.

Define the stopping times τ = inf{n : ηn > 0} and σ = inf{n : ξn > 0}.
The stopped process S := Στ∧σ is a martingale with respect to (F ξ,ηn )∞n=0 and, of

course, with respect to its natural filtration (FSn )∞n=0.
Put an = a0 +

∑n
k=1 xk and bn = yn + an−1. The sequences (an)∞n=0, (bn)∞n=1 can be

taken as the primary parameters of the model. We assume that bn ≥ 0, an ≤ 0, and
an → −∞.
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Note that the condition E[ηn] = 0 means that

ln = P(ηn > 0) =
an−1 − an
bn − an

, 1− ln = P(ηn < 0) =
bn − an−1

bn − an
. (71)

Put also en = Πj≤n(1− lj).
Let C0 = Ω and define, for n ≥ 1, the sets

An = {σ = n < τ}, Bn = {τ = n ≤ σ}, Cn = {Sn = an}. (72)

The interpretation goes as follows: the set Cn, which may equivalently be defined as
Cn = {τ > n, σ ≥ n} equals the set where the game has continued up to time n and
the gambler has been losing all n games, so that Sn = an = a0 +

∑n
k=1 xk on Cn. For

n ≥ 1, the set Cn is split into the three sets An, Bn+1, Cn+1: on An = Cn ∩ {ω′′n = 1}
the game stops at time n, as the observation of ξn(ω) = ω′′n tells the gambler to do so;

on Bn+1 = Cn∩{ω′′n = −1, ω′n+1 = 1} the gambler continues to play the (n+1)th round
and wins (so that she stops at time n + 1); finally on Cn+1 = Cn ∩ {ω′′n = ω′n = −1}
the gambler continues to play the (n+ 1)th round and loses.

Clearly, the σ-algebra FSn is generated by the partition A1, ..., An−1, B1, ..., Bn,
Cn. Also note that Sn (as well as Sm, for m ≥ n) equals (ak)

n
k=1 and (bk)

n
k=1 on the

sets (Ak)
n
k=1 and (Bk)

n
k=1 respectively.

The random variable ζn+1 := 1{ξn=1}1Cn is FSn+1 measurable. Since ξn and FSn are
independent, E[ζn+1|FSn ] = pn1Cn . Thus, if Q is a measure on (Ω,F) defined in the
same way as P, but with pk replaced by qk ∈]0, 1[,

S2
n :=

n∑
k=1

2−k(ζk+1 − qk1Ck), n ≥ 0, (73)

is a bounded Q-martingale with respect to (FSn )∞n=0.

Lemma 5 If Q̃ is a measure on FS∞ such that the R2-valued process Slarge = (S, S2)

is a Q̃-martingale, then Q̃ = QS where QS := Q|FS∞.

Proof We proceed by induction and suppose that we have proved the equality of Q̃
and QS on FSn so that in particular Q̃[Cn] = QS[Cn]. By the martingale property
EQ̃ [1Cn∆Sn+1] = 0 and EQ̃

[
1Cn∆S2

n+1

]
= 0, or

xn+1Q̃(Cn+1) + yn+1Q̃(Bn+1) = 0, Q̃(An)− qnQ̃(Cn) = 0. (74)

Since similar relations hold for QS, both measures coincide also on the sets An,
Bn+1, and Cn+1 (“splitting” Cn), hence, on FSn+1.

Lemma 6 Suppose that S is L1-bounded and

0 < lim sup
n
|an|en <∞. (75)

Then S is uniformly integrable under P iff
∑
pn =∞.
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Proof Recall that |an| → ∞. Thus, (75) implies that en → 0 (hence τ <∞ a.s.) and
P(Cn) = enΠk<n(1− pk)→ 0. If S is uniformly integrable, then

lim
n→∞

|an|enΠk<n(1− pk) = lim
n→∞

E [|Sn|1Cn ] = 0. (76)

Under condition (75) this is possible only if
∑

k pk = ∞. On the other hand, the
divergence of

∑
pn and (75) imply (76). Hence,

E [|S∞ − Sn|] = E [|S∞ − Sn|1Cn ] ≤ E [|S∞|1Cn ] + E [|Sn|1Cn ]→ 0, (77)

(E[|S∞|] <∞ due to L1-boundedness), and S is uniformly integrable.

Lemma 7 The process S is L1-bounded if either

C := sup
n
bn <∞, (78)

or
∞∑
n=1

bn
|an−1| <∞. (79)

Proof If (78) holds true, the martingale S is bounded from above by C, hence L1-
bounded: E[|Sn|] ≤ C + E[|Sn − C|] = 2C.

Now suppose that (79) holds true and estimate (using an ≤ an−1 ≤ 0 ≤ bn and the
martingale property of S):

‖Sn‖L1(P) − ‖Sn−1‖L1(P) = E
[
|Sn1Cn−1|

]
− E

[
|Sn−11Cn−1|

]
(80)

= 2E [Sn1Bn ] = 2bn
|an−1|E [|Sn−11Bn|] ≤ 2bn

|an−1|‖Sn−1‖L1(P).

From (79) we obtain the L1(P)-boundedness of S.

Proof of Proposition 2 We define the process S1 as the above process S associated
to the following sequences (an)∞n=0, (bn)∞n=1, (pn)∞n=1, (qn)∞n=1:

pn = e−2n , qn = 1
n+1

, n ≥ 1, (81)

an := ln

(
n(n+ 1)pn

n−1∏
j=1

(1− pj)
)
≈ −2n, n ≥ 1, (82)

bn := ln

(
n

n−1∏
j=1

(1− pj)
)
≈ ln(n), n ≥ 1, (83)

where we use the notations
∏0

j=1 := 1 and αn ≈ βn, if there are constants 0 < c ≤
C < ∞ such that cαn ≤ βn ≤ Cαn, for all n ∈ N. Note that a1 = ln(2e−2) < 0 = b1

and choose a0 to be an arbitrary element of ]a1, b1[. Note that (an)∞n=0 decreases to
−∞, and (79) is satisfied.
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Observing that (71) gives ln ≈ 1
2

and en ≈ 2−n, we obtain the subsequent quantities
for the measures Q and P defined above:

P[An] = enpn

n−1∏
j=1

(1− pj) ≈ 2−ne−2n , (84)

P[Bn] = en−1ln

n−1∏
j=1

(1− pj) ≈ 2−n, (85)

and

Q[An] = enqn

n−1∏
j=1

(1− qj) = en
n(n+1)

≈ 2−n

n2 (86)

Q[Bn] = en−1ln

n−1∏
j=1

(1− qj) = en−1ln
n
≈ 2−n

n
. (87)

Observe that we have arranged things in such a way that we have

an = − ln
(

Q[An]
P[An]

)
, bn = − ln

(
Q[Bn]
P[Bn]

)
, for n ≥ 1. (88)

As S1
∞ equals an on An and bn on Bn, this amounts to (70).

By Lemma 6 and 7, S1 = (S1
n)∞n=0 is a martingale under Q and P, which is uniformly

integrable under Q but not under P.

Define (S2
n)∞n=0 as in (73), so that S2 is a bounded martingale under Q, and by

Lemma 5 Q is the unique equivalent martingale measure for the process Slarge =
(S1, S2) on FS∞.

We now turn to the verification of assertions (i)–(v):

(i) We have, for a constant C > 0 sufficiently large,

H(Q|P) =
∞∑
n=1

(
Q[An] ln

(
Q[An]
P[An]

)
+ Q[Bn] ln

(
Q[Bn]
P[Bn]

))
(89)

≤ C

∞∑
n=1

(
2−n

n2 2n + 2−n

n
ln
(

1
n

))
<∞. (90)

(ii) and (iii) were shown above.

(iv) We have already observed that Q is the unique equivalent martingale measure for
Slarge on FS∞ and that (70) holds true. Hence it follows from [S 01, Theorem 2.1]

that (X̂n)∞n=0 := (S1
n)∞n=0 is the optimal investment process for the exponential

utility function U(x) = −e−x, and X̂0 = a0.
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(v) For Ssmall we have that P ∈Me(Ssmall) and therefore it is the entropy-minimizing

local martingale measure for Ssmall. This trivially implies that X̂n ≡ X̂0 is the
optimal process starting at X̂0 = a0.

Proof of Proposition 3 We define S = (Sn)∞n=0 by choosing the following sequences
(an)∞n=0, (bn)∞n=1, (qn)∞n=1, (q̂n)∞n=1:

an = −(2n − 1), bn = 1, qn = 2−n, q̂n = 1− e−2n . (91)

Here q̂n plays the role of pn in the above construction. The reason for this change
of notation is, that we now shall also consider a probability measure P on FS∞ (under
which S is not a martingale) defined by dP

dQ̂
= c−1eS∞ , where the normalizing constant

c is chosen such that c = EQ̂[eS∞ ]. The expectation is well-defined, as S∞ is bounded
from above. We have

Q[An] = 2−n
∏n−1

i=1 (1− qi)qn ≈ 2−2n Q[Bn] = 2−n
∏n−1

i=1 (1− qi) ≈ 2−n

Q̂[An] = 2−n
∏n−1

i=1 (1− q̂i)q̂n ≈ 2−ne−2n Q̂[Bn] = 2−n
∏n−1

i=1 (1− q̂i) ≈ 2−ne−2n

P[An] = c−1 · e−(2n−1)Q̂[An] ≈ 2−ne−2n+1
P[Bn] = c−1e Q̂[Bn] ≈ 2−ne−2n

For the entropy H(Q̂|P) we get, with B =
⋃∞
n=1 Bn and C > 0 sufficiently large,

H
(
Q̂|P

)
=

∞∑
n=1

Q̂ [An] ln
(

Q̂[An]
P[An]

)
+ Q̂ [B] ln

(
Q̂[B]
P[B]

)
(92)

≤ C

∞∑
n=1

2−ne−2n ln
(
e2n
)

+ Q̂ [B] (ln (c)− 1) <∞

A similar calculation reveals that H(Q|P) = ∞. More generally, for any local

martingale measure Q̃ ∈ Ma(S), such that S fails to be uniformly integrable under

Q̃, we have H(Q̃|P) =∞. Indeed, the local Q̃-martingale S is uniformly integrable iff

limn→∞(2n − 1)Q̃[Cn] = 0 (compare Lemma 6). By the martingale property we have

Q̃[Bn] = Q̃[Cn]. Hence, if S fails to be uniformly integrable, we may find α > 0, and

an infinite subset I ⊆ N, such that Q̃[Bn] ≥ α2−n, for n ∈ I. This implies

H
(
Q̃|P

)
≥
∑
n∈I

Q̃ [Bn] ln Q̃[Bn]
P[Bn]

− e−1 =∞. (93)

To show the optimality of Q̂, fix Q̃ ∈Ma(S) with finite entropy H(Q̃|P); we have

seen that S is uniformly Q̃-integrable. Applying the usual Fenchel inequality (see (13),
(17), (18)) to U(x) = −e−x and V (y) = y(ln(y)− 1), we have

H(Q̃|P ) = E
[
V
(
dQ̃
dP

)]
+ 1 (94)

≥ E
[
−e−S∞+ln c − (S∞ − ln c)dQ̃

dP

]
+ 1 = −cE

[
e−S∞

]
+ ln c+ 1
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where the equality holds iff −V ′(dQ̃
dP

) = − ln(dQ̃
dP

) = S∞ − ln(c) almost surely, i.e., iff

Q̃ = Q̂. It follows from Theorem 1 that S is the optimal process starting at S0 = 0.
The proof of Proposition 3 now is complete.

Proof of Proposition 4 Define S = (Sn)∞n=0 by requiring that S := 2 − S = (2 −
Sn)∞n=0 is the above example associated to the following parameters

an = −2n + 1, bn = 1, qn = 2−n, q̂n = 1
2
. (95)

Hence the process S starts at S0 = 2, takes its values in [1,∞[, and S∞ equals
an := 2n + 1 and bn := 1 on An and Bn respectively. The process S is a uniformly
integrable martingale with respect to Q̂ but it is not uniformly integrable with respect
to Q. It is easy to see that

Q(An) ≈ 2−2n, Q(Bn) ≈ 2−n, Q̂(An) ≈ 2−2n, Q̂(Bn) ≈ 2−2n+1. (96)

For P defined by dP

dQ̂
= S∞

2
we obtain P(An) ≈ 2−n, P(Bn) ≈ 2−2n.

Take a strictly concave, smooth utility function U with U(x) = lnx, for x ≥ 1,
and U(x) = −e−x for x sufficiently small. With such a choice V (y) = − ln y − 1
when y ∈]0, 1] and V (y) = y(ln y − 1) when y is sufficiently large. Using the above

asymptotics, we obtain that E[V dQ
dP

] and E[V dQ̂
dP

] are finite. As in Proposition 3, we

verify that Q̂ minimizes E[V dQ̃
dP

] over all absolutely continuous martingale measures

Q̃, and that S is the optimal process starting at S0 = 2. The measure Q has finite
V -expectation but, for x0 = 2, the closed process (X̂n(x0))n∈N0∪{∞} = (Sn)n∈N0∪{∞},
defined over the closed index set N0 ∪ {∞}, fails to be a Q-submartingale.

The proof of proposition 4 now is complete.

Remark 2 The counter-examples constructed above are such that the processes
(Sn)∞n=0 are indexed by discrete time. It is not difficult to modify the construction
such that these processes are indexed by continuous time [0, T ] and have continuous
paths. It suffices to adapt the corresponding arguments from [S 93]. The details of
this construction as well as an extensive discussion of the economic interpretation of
Proposition 2 and other complementary results are carried out in the working version
[S 02] of the present paper.

A Appendix

In the proof of Lemma 4 we have used the following result which is in the spirit of
[DS 94, Lemma 4.5].

Proposition 5 Under the assumptions of Theorem 1, fix x ∈ R and a sequence
(Hn)∞n=1 of admissible integrands such that

lim
n→∞

E
[
U
(
x+ (Hn ·S)T ∧ (Ĥ(x) ·S)T

)]
= u(x). (97)
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Then for any [0, T ]-valued stopping time τ

lim
n→∞

(Hn ·S)τ = (Ĥ(x) ·S)τ in measure. (98)

Proof Write Ĥ for Ĥ(x). Suppose there is 1 > α > 0 such that, for

An = {(Ĥ ·S)τ ≤ (Hn ·S)τ − α}, Bn = {(Hn ·S)τ ≤ (Ĥ ·S)τ − α}, (99)

we have P[An] ≥ α or P[Bn] ≥ α, for infinitely many n’s. We assume that this holds
true for An, the case of Bn being similar.

Define τn = τ1An + T1Ω\An and the concatenaded integrands

H̃n = Hn + (Ĥ −Hn)1]]τn,τ ]]. (100)

As in Lemma 4, H̃n is such that H̃n·S is a Q̂(y)-supermartingale. By the optimality

of Ĥ (see the proof of Theorem 1)

E
[
U
(
x+ (H̃n ·S)T

)]
≤ E

[
U
(
x+ (Ĥ ·S)T

)]
. (101)

On the other hand we may write the random variable (H̃n · S)T as fn + gn where

fn = (Ĥ · S)T1An + (Hn · S)1Ω\An , and gn = ((Hn · S)τ − (Ĥ · S)τ )1An is a function
supported by An and greater than or equal to α on An.

The sequence (fn)∞n=1 tends in measure to (Ĥ ·S)T and satisfies

lim inf
n→∞

E [U (x+ fn)] ≥ E
[
U
(
x+ (Ĥ ·S)T

)]
. (102)

It follows that

sup
n

E
[
U
(
x+ (H̃n ·S)T

)]
(103)

= sup
n

E [U (x+ fn + gn)] > E
[
U
(
x+ (Ĥ ·S)T

)]
.

Indeed, let x0 ∈ R be big enough such that P[x + (Ĥ · S)T ≥ x0] < α
2

and let
β := U ′(x0 + 2α). Then

sup
n

E [U(x+ fn + gn)] (104)

≥ sup
n

E [U(x+ fn) + αU ′(x+ fn + α)1An ] (105)

≥ sup
n
{E [U(x+ fn)] + αP [An ∩ {x+ fn < x0 + α}] β} (106)

≥ E
[
U(x+ (Ĥ ·S)T )

]
+ α2β

2
. (107)

This proves (103) which yields the desired contradiction.
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Notes in Mathematics, Vol. 714.

24



[Ka 02] Yu.M. Kabanov (2002), personal communication.

[K 01] J. Kallsen, (2001), Utility-Based Derivative Pricing in Incomplete Markets.
Mathematical Finance: Bachelier Congress 2000 (H. Geman, D. Madan,
St.R. Pliska, T. Vorst, editors), pp. 313–338, Springer.

[KS 02a] Yu.M. Kabanov, C. Stricker, (2002), On the optimal portfolio for the expo-
nential utility maximization: remarks to the six-author paper. Mathematical
Finance, Vol. 12, No. 2, pp. 125–134.

[KS 02b] Yu.M. Kabanov, Ch. Stricker, (2002), On the true submartingale property
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tingales, Volume 2: Itô Calculus. Wiley, Chichester New York.

[S 93] W. Schachermayer, (1993), A Counter-Example to several Problems in the
Theory of Asset Pricing. Math. Finance, Vol. 3, pp. 217–229.

[S 01] W. Schachermayer, (2001), Optimal Investment in Incomplete Markets when
Wealth may Become Negative. Annals of Applied Probability, Vol. 11, No. 3,
pp. 694–734.

[S 02] W. Schachermayer, (2002), How Potential Investments may Change the Opti-
mal Portfolio for the Exponential Utility. Working Paper, (28 pages), Vienna
University of Technology.

[St 02] E. Strasser, (2002), Necessary and sufficient conditions for the supermartin-
gale property of a stochastic integral with respect to a local martingale.
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